C 346.50 5-448

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

В.А.Беляков, Н.М.Вирясов, Е.Н.Кладницкая, В.Н.Пенев, Е.С. Соколова, М.И.Соловьев

P-1586

13.4.64

ИЗУЧЕНИЕ ЛК⁺ И К[°]К⁻ ПАР, Рожденных в **7[°]р -**взаимодействиях при 7,5 гэв/с

C346.5a 5-448

В.А.Беляков, Н.М. Вирясов, Е.Н. Кладницкая, В.Н. Пенев, Е.С. Соколова, М.И.Соловьев

P-1586

ИЗУЧЕНИЕ АК⁺ И К[°]К⁻ ПАР, РОЖДЕННЫХ В ["]Ъ –ВЗАИМОДЕЙСТВИЯХ ПРИ 7,5 ГЭВ/С

F CLOT 18.00 13

Дубна 1964

2368/3 3

Эта работа посвящена изучению $\Lambda K^+ - и K^0 K^-$ -пар, рожденных в $\pi^- p$ - взаимодействиях при импульсе первичных π -мезонов 7-8 Гэв/с. Работа проводилась на фотографиях, полученных на 24-литровой пропановой пузырьковой камере^{/1/}. Критерии отбора V^0 -событий и их идентификация описаны ранее^{/2/}. В нашем случае идентификация заряженных K -мезонов в звездах от $\pi^- p$ -взаимодействий очень трудна. В частности, измерения ионизации^{/3/} позволяют отличить K -мезоны от π -мезонов лишь при импульсах этих частиц $P_{\pi,K} < 0,6$ Гэв/с^{X)}. Протоны от π^+ и K⁺-мезонов мы можем отличить по ионизации до импульса $P_p < 1,2$ Гэв/с.

В отдельных случаях заряженные K -частицы можно идентифицировать с помощью δ -электронов или по кинематическим соотношениям, если частица испытала распад (K^+ -мезоны) или упругое рассеяние. Однако с помощью таких методов нам удалось выделить лишь небольшое число пар странных частиц, из которых одна – заряженный K -мезон. Поэтому мы считали случаями парного рождения ($V^{\circ} K^{\mp}$)-взаимодействия, выделенные. следующим образом: из всех случаев с зарегистрированной V° -частицей отбрасывались события с однозначно идентифицированными π^{\pm} -мезонами или протонами, а также те события, положительная частица которых определялась как π^+ -мезон на основе анализа недостающих масс. События разбивались на группы (ΛK^+), ($K^{\circ}K^-$) и ($K^{\circ}K^+$) соответственно виду наблюдавшейся V° -частицы. Для каждой из этих групп с помощью статистической теории и экспериментально наблюдаемых отношений пар нейтральных странных частиц была оценена примесь случаев, в которых заряженными K -мезонами считались пионы или протоны.

На примере событий с множественностью заряженных частиц $n_s = 2$, в которых из каждой пары родивщихся странных частиц обязательно зарегистрирован Λ -гиперон, обсудим подробнее способы выделения ΛK^+ -пар. Из 168 событий следует исключить такие, в которых кроме Λ -гиперона в камере наблюдалась еще K° -частица, т.е. ΛK° пары, а также те события, в которых положительные следы звезды идентифицируются как *и* -мезоны по ионизации, δ -электронам или по кинематике взаимодействия при упругом рассеянии или распаде. Кроме того, при таком расчете недостающей массы, когда след, образованный положительный частнией принимался за след K^+ -мезона, некоторые события имеют отрицательный квадрат недостающей массы. Это факт говорит о том, что такие случаи являются либо взаимодействиями π^- -мезона с углеродом,

х) При импульсе К -мезона Р_к ~ 0,6 Гэв/с I =1,51 I_о, гдеI_о - минимальная ионизация, равная ионизации следа первичной частицы.

либо положительный след нельзя считать принадлежащим к⁺ -мезону. После исключения всех этих взаимодействий остается 77 событий, в которых положительная частица может быть к⁺ -мезоном.

Аналогичная процедура была проделана со случаями, в которых зарегистрированы \mathbf{x}° -мезоны. Здесь доля π^{\pm} -мезонов среди предполагаемых K^{\pm} -мезонов значительно больше (см. таблицу 1) за счет событий с $K^{\circ}\bar{K}^{\circ}$ - и ΛK° -парами. Значительную примесь составляют также те протоны, которые не удалось отделить от других частиц. В таблице 1 приведены данные о количестве выделенных пар. В скобках указано число пар, которое можно ожидать по расчетам отношений пар $N_{\Lambda K} + N_{\Lambda K}^{\circ}$ и $N_{K^{\circ}}\bar{\mathbf{x}}^{\circ}/N_{K^{\circ}K^{\pm}}$. Величины этих отношений были получены из экспериментальных данных по числу наблюдаемых ΛK° и $K^{\circ}\bar{\mathbf{x}}^{\circ}$ - пар $^{/4/}$ и одиночных Λ и K° -частиц, а также с помощью статистической теории. При расчете по статистической теории^{X)} учитывались резонансы, которые могут дать наибольший вклад (Y_{I}^{\bullet} , K^{\bullet} , $N_{\frac{3}{2},\frac{3}{2}}$, η , ρ , ω ,). Результаты , расчетов приведены в таблице 1. Из сравнения их с экспериментом можно грубо оценить примесь пар типа (странная частица + π -мезон) среди выделенных нами событий (см. таблицу 1). Из таблицы 1 видно, что среди пар ΛK^{+} и K° тримесь наименьшая.

1. AK⁺ - пары

На рис. 1 приведены импульсные и угловые распределения Λ -гиперонов и K^+ -мезонов в с.ц.м. от предполагаемых ΛK^+ -пар для множественности заряженных частиц $n_s = 2$ и 4. Для сравнения на рис. 1 нанесены распределения Λ и K° -частиц от ΛK° пар^{/4/}. Угловые распределения K^+ -и K° -мезонов подобны (рис. 16). Отношение числа частиц, летящих вперед, к числу летящих назад равно $\vec{n} / \vec{n} = 1,5 \pm 0,32$. Импульсное распределение K° -мезонов в с.ц.м. от ΛK° -пар немного отличается от распределения K^+ -мезонов от ΛK^+ -пар и является более жестким (рис. 1а). Среднее значение импульсов K^+ -мезонов в системе центра масс $\pi^- p$ равно $\tilde{P}_{K^+}^* = (620 \pm 32)$ Мэв (для $n_s = 2.4$) и близко к значению среднего импульса K° -мезонов от ΛK° -пар, равного $\tilde{P}_{K^{\circ}}^* =$ (717 ±54) Мэв ($n_s = 2.4$). Несколько меньшую величину импульса в первом случае можно объяснить примесью π^+ -мезонов среди высокоэнергичных K^+ -частиц (см. таблицу 1). Λ -гипероны от ΛK^+ -пар имеют импульсные и угловые распределения совершенно аналогичные Λ -гиперонам от ΛK° -пар^{/4/} (рис. 1в,г).

Распределение эффективных масс предполагаемых ΛK^+ -пар для $n_s = 2$ приведено на рис. 2. Как π^+ -мезоны, принятые за K^+ -мезоны (их по оценкам ~15%), искажают

х) При расчете указанных отношений пар довольно произвольный выбор объемов взаимодействия для странных частиц не играет существенной роли. Подробнее результаты расчета по статистической теории будут описаны в отдельной работе.

спектр эффективных масс ΛK^+ можно увидеть, если сосчитать спектр ΛK , приняв π^- -мезоны за K -мезоны в тех же взаимодействиях. Полученная таким образом фоновая гистограмма приведена пунктиром на рис. 2. Кроме этой оценки фона для его определения проводился расчет по методу Монте-Карло, причем случайные выборки углов и импульсов проводились из экспериментально полученных спектров Λ -гиперонов и K^+ -мезонов. В расчете требовалось выполнение законов сохранения энергии и импульса. При таком методе расчета могут проявиться случайные корреляции между углами и импульсами, но мы оценили, что их вклад не превышает 1%. Кривая приведена на рис. 2. Наконец, спектр эффективных масс сравнивался с кривой, рассчитанной по статистической теории (см. рис. 2).

В работах^(4,5) в спектре эффективных масс ΛK° -пар в π^{-} р-взаимодействиях при 2,8 и 7,5 Гэв/с отмечалось наличие пиков при значениях 1650 и 1750 Мэв соответственно. Из рис. 2 видно, что в спектре эффективных масс $M_{\Lambda K^{+}}$ заметно выраженных резонансных состояний в этих областях нет.

§ 3. К°К и К°К+-пары

Для выделенных нами заряженных K -мезонов, рождающихся в паре с зарегистрированными $K^{\circ}(\tilde{K}^{\circ})$ -мезонами, были построены угловые и импульсные распределения. Они показаны на рис. 3. Из этого рисунка можно заключить, что угловые и импульстные распределения K^{-} -мезонов совпадают с соответствующими распределениями K° -мезонов от $K^{\circ}\tilde{K}^{\circ}$ -пар⁽⁴⁾ для двухлучевых и четырехлучевых звезд, а также с распределениями K° -частиц из $K^{\circ}K^{-}$ -пар (см. рис. 4)^X). Средний импульс K^{-} -мезонов в с.ц.м. $\pi^{-}P$ -взаимодействия $\tilde{P}_{-}^{*} = (535 \pm 30)$ Мэв/с не отличается от среднего импульса K° -мезонов от $K^{\circ}\tilde{K}^{\circ}$ -пар⁽⁴⁾ $\tilde{P}_{K^{\circ}}^{*} = 503 \pm 34$ Мэв/с ($n_{s} = 2,4$). Ничего подобного нельзя сказать о распределениях K^{+} -мезонов от $K^{\circ}K^{+}$ -пар. По-видимому, большая примесь π^{+} -мезонов и протонов (см. табл. 1) сильно искажает импульсные и угловые распределения K^{+} -мезонов (рис. 5).

В распределении по эффективным массам ^Мк^ок - наблюдается пик в области 1050-1100 Мэв, выходящий за три стандартные ошибки над фоновыми кривыми.

На рис. 6 на распределение ^М_{к⁰к} -нанесены нормированные по случаям с <u>м _{к⁰к} > 1,2</u> Гэв фоновые кривые, рассчитанные по статистической теории^{XX)} и по <u>x</u>) Вероятность совпадения, рассчитанная по методу Колмогорова-Смирнова ^{6/} составляет для импульсных распределений 65% и 70%, и для угловых - 85% и 91% соответственно.

хх) При расчете фоновых кривых по статистической теории для пар каналы реакций, в которых рождаются известные резонансы, не включались. Как показано нами в работе⁷⁷, резонансы ρ и φ не вносят существенного вклада при рождении « ^к ^ν ^ν - пар. Влияние резонансов K* и N_{-1, 1} обсуждается ниже.

методу Монте-Карло вышеописанным способом. Вероятность совпадения экспериментального распределения с фоновыми кривыми мала^{х)}. С помощью формулы Брайта-Вигнера были определены и положение и ширина резонанса в спектре $M_{\kappa^0\kappa^-}$. Они оказались равными соответственно M_0 = 1060 Мэв и Г/2 = 30 Мэв. Изотопический спин этого состояния ≥ 1.

Распределение эффективных масс $M_{\pi^0\pi^-}$ и особенно область пика, т.е. случаи с $M_{\pi^0\pi^-}$ <1150 Мэв подвергались дальнейшему анализу.

1. Было исследовано влияние, которое может оказать наличие примеси π^- -мезонов на пик в спектре $M_{\pi^0\pi^-}$. Поскольку π и K -мезоны имеют разные массы, в с.п.м. $\pi^- p$ -взаимодействия для разных частей углового спектра K^- -мезонов примесь π -мезонов будет различной и дает наибольший вклад для частиц, которые леттят в заднюю полусферу. Путем исследования зависимости $M_{\pi^0\pi^-}$ от углов вылета K^- -мезонов в лаб.системе было установлено, что примеси π^- -мезонов не оказывают существенного влияния на спектр эффективных масс $M_{K^0\pi^-}$. Мы убедились, что и случаи рождения K^* -резонанса не оказывают влияния кинематического характера на спектр $M_{\pi^0\pi^-}$. Проверено также, что резонансные эффекты в этом спектре не могут быть обусловлены влиянием известных нуклонных резонансов, поскольку их рождение вообще не было обнаружено при исследовании спектров масс систем (нуклон+ $n\pi$) при $n = 1;2^{2XX}$.

2. Были исследованы спектры продольных импульсов системы *К*°*K*⁻ в с.ц.м. *п*⁻*p*. Оказалось, что они подобны для случаев из области пика (т.е. *М*_{к°к} <1,2 Гэв) и остальных событий (рис. 7). Этот факт говорит о том, что пик в области ~ 1060 Мэв не является простым кинематическим эффектом, обусловленным *К* -мезонами, родившимися в покое в с.ц.м. *п*⁻*p*.

3. Резонанс между К^о и К⁻-мезонами, по-видимому, способствовал бы вылету К^ои К⁻-частиц в системе центра масс в одну сторону. Наши данные не противоречат этому. Часть К^оК⁻ -пар из области пика (~30%) летит в узком конусе вместе - либо вперед, либо назад.

4. Распределение K° и К⁻-частиц в с.ц.м. К°К⁻-пары относительно направления суммарного импульса для случаев из области пика 1050-1150 Мэв дано на рис. 8. Вероятность того, что распределение по ∞sη^{*} совпадает с изотропией составляет 65%. На основании этих даиных нельзя сделать определенного заключения о спине состояния (K°K⁻).

6

х) Она оценивалась по методу Колмогорова-Смирнова. Например, вероятность совпадения экспериментального распределения с кривой, рассчитанной по статистической теории, равно 2.10⁻³%.

xx) Подробнее о рождении К^{*} и нуклонных из дбар будет сообщено в следующей работе.

Распределения масс $M_{\kappa^0\kappa^-\pi^+}$, построенные на основании нашего экспериментального материала, не обнаруживают пиков, которые можно было бы приписать наличию резонансных состояний. В частности, нет указания на существование пика в области ~ 1410 Мэв, обнаруженного в работе^{/8/}.

В заключение мы благодарим В.И.Векслера, М.И.Подгорецкого, И.В.Чувило и А.Михула за обсуждения и ценные замечания, группу лаборантов за измерения и сотрудников Вычислительного центра ОИЯИ Н.Н.Говоруна и Н.Ф.Маркову за помощь в составлении программ и проведение вычислений.

Литература

- 1. Ван Ган-чан, М.И.Соловьев, Ю.Н.Шкобин. ПТЭ, 1, 41, 1959.
- 2. В.И.Векслер, Н.М. Вирясов, И.Врана, Ким Хи Ин, Е.Н. Кладницкая, А.А.Кузнецов, Нгуен Дин Ты, М.И. Соловьев, Т.Хофмокль, Чен Лин-янь. ЖЭТФ, 44, 84,1963.
- И.Врана. Материалы Совещания по методике пузырьковых камер. Препринт ОИЯИ 796, 38, 1961.
- 4. Ван Юн-чан, В.Й.Векслер, Ду Юань-цай, Е.Н.Кладницкая, А.А.Кузнецов, А.Михул, Нгуен Дин Ты, В.Н.Пенев, Е.С.Соколова, М.И.Соловьев. ЖЭТФ,43,815,1962.
- 5. Е.В. Кузнецов, Е.П.Кузнецов, Я.Я.Шаламов, А.Ф.Грашин. ЖЭТФ, 42, 1675,1962.
- И.В.Дунин-Барковский, Н.В. Смирнов. Теория вероятностей и математическая статистика в технике. Госиздат технико-теоретической литературы, Москва, 1955.
- В.А.Беляков, В.И. Векслер, Н.М. Вирясов, Е.Н. Кладницкая, Г.И. Копылов, А.Михул, В.Н. Пенев, Е.С. Соколова, М.И. Соловьев. Препринт ОИЯИ Р-1506,1964.
- 8. R.Armenteros, D.N.Edwards. The Siena Conference on Elementary Particles, 1963.

Рукопись поступила в издательский отдел 4 марта 1964 г.

n _s	Отношение пар		Эксперименталь-	Количество	Π
	стат. теория расчет парным	по набл. и событиям	ное	лар	примесь %
2	$\frac{N}{N}\frac{\Lambda\kappa^{\circ}}{\Lambda\kappa^{+}} = \frac{1}{0,915}$,4	1,1 <u>+</u> 0,25	77 AK+	≈ 13
4	$\frac{N_{\Lambda k}^{\circ}}{N_{\Lambda K}^{\circ}} = \frac{1}{0,21}$),7	0,42 <u>+</u> 0,3	45 ΛK^+	≈ 15
	$N_{\kappa^{-}\kappa^{0}} : N_{\kappa^{+}\kappa^{0}} : N_{\kappa^{0}\kappa^{0}} =$ =0,55:0,18:0,26 $N_{\kappa^{0}\kappa^{0}} : N_{\kappa^{0}\kappa^{\pm}} = 0,36 (4 \pm 3,5)^{\times})$ $N_{\kappa^{-}\kappa^{0}} : N_{\kappa^{+}\kappa^{0}} : N_{\kappa^{0}\kappa^{\pm}} =$			115(49) K° K+	≈ 57
			0,46 <u>+</u> 0,08	117 (74) K°K -	≈ 25
				87(71) K° K ~	≈ 3 5
	$=0,59:0,32:0,09$ $N_{\kappa^{\circ}\kappa^{\circ}}:N_{\kappa^{\circ}\kappa^{\pm}}=0,1 \qquad (0,$	32 <u>+</u> 0,18) ^{xx)}	0,06 <u>+</u> 0,05	91(60) \tilde{K}° K ⁺	≈ 60

Таблица 1

х) Для случаев с одним нейтральным К -мезоном отношение N_{ΛK}•: N_K•R = 0,18. Считалось, что число Λ K° -пар, как примесь среди K°K⁺-пар и среди К°K⁺-пар пропорциональны числу событий.

^{XX)} Отношение пар
$$N_{\Lambda_{\kappa}^{\circ}}$$
 : $N_{\kappa^{\circ}}^{+}$ = 0,0.45

Рис. 1 а, б, в, г. Импульсные (а), (в) и угловые (б), (г) распределения К⁺ -мезонов (а,б) и А - гипероьов (в,г) от АК⁺ пар в с.ц.м. π⁻р -взаимодействия. Пунктиром обозначены распределения К⁰ -мезонов, А -гиперонов от АК⁰ пар, кормированное на спектры К⁺ -мезонов. Плавные кривые на импульсных распределениях - результат расчета по статистической теории. Спектры А -гиперонов приведены с поправками на эффективность регистрации в эффективном объеме камеры.

Рис. 2. Идеограмма эффективных масс $M_{\Lambda_K^+}$, n_s =2. Кривые являются результатом расчета по Монте-Карло (1) и статистической теории (11). Пунктиром обозначена гистограмма $M_{\Lambda\pi^-}$, полученная при таком расчете, когда вместо π^- -мезона ставилась масса K -мезона.

Рис. 3 а, б. Импульсные (а) и угловые (б) распределения К -мезонов от К^оК Пар для множественности заряженных частиц n_{.s} =2 и 4 в с.ц.м. π р. Пунктиром нанесены нормированные на спектры К⁻ -мезонов распределения К^о -мезонов от К^оК^опар.

11

• '

Рис. 4 а.б. Импульсное (а) и угловое (б) распределения (с поправкой на эффективность регистрации в камере) К -мезонов от К°К пар в с.ц.м. п р для n =2 и 4. Пунктирной линией обозначен спектр парных частиц от этих же событий.

12

Рис. 5 а,б,в,г. Импульсные (а,в) и угловые (б,г) распределения в с.ц.м. т^тр К⁺ от **К°К**+пар (а,б) и К° от К⁶К° пар (в,г) для звезд с п₈⁼⁴.

Рис. 6. Распределения эффективных масс $M_{\kappa} \circ_{\kappa} \sim для \ n_{s} = 2$ и 4. В качестве фоновых кривых используются распределения, полученные по методу Монте-Карло (кри (кривая 1) и по статистической теории (кривая II). Фоновые кривые нормиро-ваны на случаи с $M_{\kappa} \circ_{\kappa} \sim >1,2$ Гэв.

Рис. 7 а,б. Распределения продольных суммарных импульсов P_{ℓ}^* K° и K^- мезонов в с.ц.м. $\pi^- p$ -взаимодействия для двух разных групп событий а) для случаев, имеющих $M_{\pi^\circ \kappa} \leq 1,2$ Гэв/с, б) для случаев с $M_{K^\circ \kappa^-} = 1,2$ Гэв/с.

.

Рис. 8. Угловое распределение К[°] -мезонов для событий с 1,0 < M_{K°K} ≤ 1,15 Гэв в собственной системе К[°]К [−] пар относительно направления суммарного импульса К[°] и К[°] -частиц. Пунктиром обозначено аналогичное распределение для остальных событий.