Yu。M。Kazarinov，YuNoSimonov

Me vt， $1958,-35, b 1, e^{78}-84$ ．

MEASUREMENT OF TOTAL CROSS SECTION FOR CHARGED PION PRODUCTION IN（ $n \subset p$ ）COLLISIONS AT NEUTRON ENERGY 586 MEV

1958 。

The total yield of the charged pions produced in ($n-p$) collisions at the effective neutron energy 586 MeV has ben measured in the laboratory angle range from 15° up to 120°. The total cross section for positive and negative pion production which was found from the obtazad data under the assumption of charged symmetry of nuclear forces is

$$
\sigma\left(n p \rightarrow \pi^{1}\right)=\sigma\left(n p-\pi \pi^{2}\right)=(2,20 \pm 0,44) 10^{-27} \mathrm{~cm}^{2}
$$

The process of charged pion production in neutren-proton collisions has not been studied in detail. The sufficiently complete investigation has been carried out only at the gutron energy $409 \mathrm{MeV}^{1 /}$. At the energy close to 600 MeV only one research has been performed earlier. ${ }^{2 /}$ In this research the mothod of nuclear emulsions was used. The spectra and yields of positive and negative pions outgoing at the angle $\$-90^{\circ}$ (labosystem) from the ilquid hydrogen target irradiated by the neutrons from the 670 MeV proton "oharge-exchange" have been measured. The comparatively small cross section for meson production, three particles in the finite state of the reactions under investigation, and the non-monoergic neutron beam used in the experiments create great difficulties in the sudy of the positive and negative pion production in ($n-p$) collisions. Nevertheless, the detailed study of ($n-p$) colilisions at the nucleon energies which considerably exseed the threshold for meson production requires the investigation of these prodess. The study of meson production in neutronproton collisions is also of interest from the standpoint of in-

* The angle \downarrow is measured with respect to the direction of neutron beam incident on the target.

Festigating the nucleon-nucleon interaction in different isotopic spin states ($T=0$ and $T=1$)。

EXPERIMENTAL ARRANGEMENT

The measurements were made at the synchrocyclotron of the Joint Institute for Nuclear Research. The neutron beam used in these experiments was obtained by the charge exchange seatterIng of the 680 MeV protons on the bexrilium targeto The energy distribution of neutrons in the beam has the maximum at the enerm gy 600 MeV and the half-width 130 MeV 。 ${ }^{3 /}$

To determine the differential cross section for the charged pion production in ($n \sim p$) collisions the ratio of the total number of positive and negative pions \mathbb{N}_{f} to the number of the recoil protons \mathbb{N}_{p} emerged from the polyethelene target at the given angle as a result of ($n=p$) collisions has been measured. Then the differential cross section for pion production has been found by the obtained ratio and by the differential cross section of elastic ($n-p$) seattering measured by the authors earlier. ${ }^{4 /}$

To measure the pion yield the podyethelene and graphite tar-. gets were placed in the neutron beam. The charged particles emerged from the targets were detected. The diffence of the numbers of particles detected from the polyethelene and graphite targets gives the total flux of the charged particles emerged from the tara get as a result of ($n-p$) collisions. The estimate has shown that this flux is mainly determined at the given neutron energy by the number of the recoil protons and pions incident on the detector.

It turned out that the admixture of muons and $\quad \beta$－particles which appear as a result of pion decay under the experimental conditions does not exceed $10-15 \%$ of the number of pions．This made it possible to neglect the admixture of μ and β－ particles and to regard in the first approximation all the par－ tickles different from the recoil protons to be pions．The cor－ responding corrections are introduced into the results of the mean－ surements further 。

The separation of pions and recoil protons was made either by the ranges or by the velocities．The range separation was used at the angles $p>60^{\circ}$

At the angles $60<\phi<15^{\circ}$ the pion separation was made by velocities．

In accordance with the two abovementioned ways of pion se paration two types of detectors were used（Table l）。 The usual telescope of three sointillation counters in coincidence was used as a detector，at large angles $\phi \geqslant 60^{\circ}$ 。 The estimates ma－ de by the data ${ }^{2 /}$ have shown that at the angles $\frac{\phi}{\overline{5}} \geqslant 60^{\circ}$ this de tector counted the overwhelming majority of pions even if the threw shold of the telescope was increased up to the maximum energy of the recoil protons by means of the absorber．

To measure the yield of the charged mesons at the angles
$\dagger<60^{\circ}$ the separation of pions was made by velocity select－ this
ing．For ${ }^{\text {th }}$ he second counter of the telespope was replaced by a Cerenkov counter．（Figs 1）o Other counters were scintillation ones： To determine the total yield of the charged particles it became necessary to replace the Cere o counter of the detector for the
scintillation one. In order that the geometry of the detector does not change when replacing the counters and the replacement may be done quickly both counters had only one photomultiplier FEU-19-M. The phosphorus of the sointillation counter was placed before the photocathode just behind the radiator of the Cerenkov Younter. At the angle $\phi=15^{\circ}$ the recoll protons of the maximum energy may be detected by the cerenkor counter. In this case the correction which takes into account the friaction of the detected protons was introduced. The geometry of the detestor provided for the angular resolution 3°. The energetic thresholds of the deo tector at different angles are given in Table 1 .

TableI

Angle of pion Energetic threshold output (lab.sys). of the detector for pions (MeV)

15°	78,0
30°	78,0

$60^{\circ} \quad 65$
$90^{\circ} \quad 37$
$1209^{\circ} \quad 37$

The detector is a Cerenkov counter (water) and two scintillation counters in concidence

The detector is a Čerenkov counter(plexiglass) and two scintillation counters connected in coicidence.

The detector is three scintillation counters connected in concidence.

The polyethelane and graphite disks with the cqual stopping power served as scatterers. The polyethelene seatterer was $0.9 \mathrm{~g} / \mathrm{cm}^{2}$ thick at the angles $\div 45^{\circ}$ and $3.2 \mathrm{~g} / \mathrm{cm}^{2}$ at the angles 45°. Copper and tungsten plates were used as absorbers.

In accordance with the abovementioned the measurements were made in the following way. First of all under the conditions of the experiments on the measurement of the differential elastio ($n-p$) scattering cross section ${ }^{4 /}$ the total flux of charged partioc les which were incident on the detector at the given intensity of the beam as a result of ($n-p$) collisions has been determined. A usual difference experiment $\mathrm{CH}_{2} \quad \Rightarrow \mathrm{C}$ was arranged。 Then the detector was placed under the conditions when the recoil protons were not detected and the total pion yield was measured. The regime of the detector necesssxy for this was achieved as it wad mentioned above either by increasing the telescope threshold up to the maximum energy of the recoil protons (the measurements at the angles $\geqslant 609$), or the replacement of the second telescope counter for the Cerenkov counter. When determining the pion field at the angles $15^{\circ}, 30^{\circ}, 45^{\circ}$, a special attention in the experiment was paid to the measurement of the backgroind. Except the usual measurments of the background from the real and accidental coin= cidences it became necessary to measure the background which was due to the fact that the detector detected an appreciable fraction of the recoil protons incident just on the photocathode of the photomultiplier of the Cerenkov counter. At the angle of 60° the general background was less than 5% and grew up to 2% of the number of mesons incident on the detector from the polyethelene

$$
060
$$

target at the angle of 15°.
The constancy of the newtron beam intensity during the measurements was controled with the help of the ionization chame ber placed in the beam and connected with the integraing circuito (Fig.1)。

RESULTS AND THEIR TREATMENT

The determination of the total cross section. Beiow the results of the measurement might be used fer the stexanation of the total cross section for pion production, ther folleming cogrections axe necessayy:
I. The correction for the admixture of μ omesons and electrons. As was poinied out earifer, among the charged particlea incident into the detectoz besides protons and pions there were present μ-mesons and electrons in small quanility. The nuraber of electrons detected by the detector together with pions was determined by computing in accordance with the data ${ }^{5 /}$ under the assumption that the angular distribution of $\pi \Gamma^{\circ}$-mesons in the com.s. of the colliding nucleons is $0,2 \oplus \cos ^{2} v$. It was also taken into accome that ahout 1.5% of the total number of
π^{0}-mesons decay according to the second mode of decay. The admixture of μ-mesons was evaluated according to the known pion field and to the calculated angular distribution of μ e mesons.
2. The correction for the proton admixture. It was intro duced only at the angle of 15° where the most energetic recoil protons may be detected by the Cerenkor counter. The correction
was determined by the known neutron spectrum and by the found dependence of the Cerenkov counter efficienty upon the velocities of particles. (Fig. 2).
3. The corrections for the presence of particles in pion spectrum the energies of which are below the detector threshold. These corrections were determined by the pion spectra calculated according to the datam $\mathrm{m}^{2 /}$ under the assumption that the pion spectrum in the comoso of the colliding nucleons does not depend upon the angle of the meson output. The calcuated correction coefficients are given in the third line of Table 2. These coefficfents were calculated again also under the assumption that the pion spectra from the x eactions $P+P \rightarrow \Pi^{+} n+p$ and $n+p \cdots-\Pi^{+}+2 n$, $n+p+1 T_{1}+2 p$ are identieal。* The magnitudes practically coinci= ding'with those given in Table 2 have been obtained.
4. The corrections for the recording efficiency due to the different absorption of pions and protons in the detector absorber and to the inefficiency of the Cerenkor counter. The magnitudes of the corrections were determined experimentally on the beams of pions and protons of the corresponding mean energies.
5. The corrections for $/ \bar{T}-\mu y$ decay. The correction coefficlents are calculatee according to the known pion lifetime, the spectra found under the abovementioned assumptions in 3 being taken into account.

Strictly speaking, when considering the results of the meam surements it would have been necessary to take also into acoount
\# This is likely to occur at the energies considerably exceede ing the meson production threshold, see, eog./6/
the error which is due to somewhat different probability of the absorption of positive and negative pions in matter. The estimate made by the data ${ }^{|7|}$, however, shows that the error due to the above mentioned circumstance is very small under the conditions of the experiment and may be neglected.

The corrected results after the integration over angles provided the charge symmetry of the nuclear ferces give the value

$$
\sigma\left(n p \rightarrow \Pi^{+}\right)=\sigma\left(n p \rightarrow \Pi^{-}\right)=(2,0 \pm 0,5) 10^{-27} \mathrm{~cm}^{2}
$$

for the total cross section of positive and negative pion production in $(n-p)$ collisions

Table2.

Angle 90	15	30	45	60	90	120
Correction for admixture of muons and electrons	0,9	0,0	0,9	0,92	0,90	0.88
Correction for proton admixture	0,15					
Correction for pions with the energy below the detector \qquad				\cdots	1.25	$I_{0} 95$
Correction for recording efficiency	1,21	1,21	1,20			
Correction for decay	1,03	1,03	1,03	1,04	1,06	1.1
$N / / K \%$	$8,6 \pm 3,5$	19+2,3	$3,7 \pm 2,7$	9,7+0,5	$44 \pm 1,3^{*}$	$\begin{aligned} & 4,3+ \\ & +0,9 * \end{aligned}$

* Pion yield is determined with respect to the yield of the recoll protons at $\quad t=60^{\circ}$ 。

Apart from this, the total cross sections of the reactions under investigation may be determined also by the pion Jield found for the somcalled "isotropic" angle ${ }^{8 /}$, ioe., the angle for which there exist the ratio

$$
\sigma_{\Pi}\left(\vartheta_{1}\right)=\frac{1}{4 \pi} \sigma_{n p}\left(n p-\Pi^{+}\right)
$$

between the differential cross section $\sigma_{\Pi}(v)$ and the total cross section。The "isotropic" angle V_{i} may be easily found if one takes into acoount according to the obtained data that the angular distribution of pions (in the comos.) is unlikely to involve the terms higher than $\cos ^{2} \hat{v}$ and may be written in a form:

$$
\sigma_{\Pi}+(v)_{=}=\sigma_{\Pi}-(v)=a+b \cos ^{2} v
$$

where ϑ is the angle of outgoing meson, a and b are the constants, \mathcal{V}_{1} iss known to be equal to arccos $\frac{1}{\sqrt{3}}$ and corresponds in our case to the angle $\phi=30^{\circ}$ (labosys). If onèmakes use of the magnitude $\frac{N_{\|}}{N_{p}}$ for this angle given in rable 2, then the total cross section is found to be equal to

$$
\sigma\left(n p \rightarrow \Pi^{+}\right)=\sigma\left(n p \rightarrow \Pi^{-}\right)=(2,20 \pm 0,44) \cdot 10^{-27} \mathrm{~cm}^{2}
$$

The obtained ealues of the cross sections are rather close to each other. This is very likely to point out that the assumtpions under which the above-mentioned values have been obtained do not introduce any serious distortions into the pion angular distribution.

The determination of the effective energy. In the method of the measurments employed the detector detected the pions produced in collisions of particles the energies of which
changed in a refher wide energy range from 300 up to 670 MeV . The problem about the determination of the mean effective energy.

E eff was therefore of special interest. To determine Eegt eff its dependence upon the form of the excitation function of the investigated reaction at the given form of thenergetic neutron spectra has beel found. The excitation function was taken in the form ${ }^{9 /}$.

$$
\begin{equation*}
\sigma\left(n p \rightarrow \prod^{+i}\right) \propto l_{\text {max }} \tag{9}
\end{equation*}
$$

where mox the maximm ealue of the pion momentum in the 0. mos. It has been found that under the given conditions the wean effedtive energy for the exponents $\|>3$ in Eq。 1 is practical= ly constaxt and does not depend upon (Fig. 2). Taking this into account by the known value of $\sigma\left(h \rho \rightarrow \eta^{+}\right)$at the neutros energy 409 MeV we have found that in our case the mean effectio ve energy is equal to $(586 \pm 15) \mathrm{MeV}$ 。

DISCUSSION OF THE RESULTS

The companison of the obtained value $G^{3}\left(h p \rightarrow \Pi^{i}\right)=\left(2,2 \pm 0,44 \sum^{2}\left(0^{2} \mathrm{~cm}^{2}\right.\right.$ with the cross section found at the energy $409 \mathrm{Mev}^{1 /}$

$$
\sigma\left(h p \rightarrow \Gamma^{+}\right)+(0,1650,04) 1\left(0^{-2} \mathrm{~cm}^{2} \quad\right. \text { shows that the total }
$$ cross section for positive and negative pion production in ($n-p$) = collisions increases more tian tan times with the energy increas se from 409 up to 586 MeV . It turnes out that the dependence of the cross section upon the maximum pion momentum $\eta_{\text {max }}$ may be written in the form

$$
\sigma\left(n p \rightarrow 7^{+}\right)-\eta^{510,}
$$

This dependence is in good agrement with the dependerce

$$
\sigma\left(n p \rightarrow-\Pi^{+}\right) \sim \eta_{\max }^{4+1} \quad \text { Pound } \text { in }^{10 /} \text { whied was obtained on }
$$ the basis of the ealues of the cross sections calculated in a Wide energy range by the known cross sections $\sigma\left(n p-\Pi^{+}\right), \sigma\left(p p-\Pi^{0}\right)$ and $\sigma\left(p n \rightarrow \Pi^{\circ}\right)$ under the assumption of charge imdependence of nuclear forces. It is to be noted, however, the for $\sigma\left(p n \rightarrow \Pi^{+}\right)$ at 580 MeV the authors ${ }^{10 /}$ give somewhat lemalue $(0,8 \pm 1,1) 10^{-27} \mathrm{~cm}^{2}$ which, nerertheless, within the abovenentioned effors does not contradict to the magnitude obeaine in this paperp.

The value determined is also in satisumetory agreement with the hypothests of isotopic invariance. Realls, according to this hypothesis

$$
\sigma\left(n p-\Pi^{+}\right)=\sigma\left(n p-\Pi^{0}\right)+\sigma\left(p p \rightarrow \Pi^{0}\right)=1 / 2 \sigma\left(p p \rightarrow \Pi^{+}\right)
$$

(7n)
(12 Rsume $O\left(n p-r 7^{\circ}\right)=(5,7 \pm 1,5) \cdot 10^{-27} \mathrm{~cm}^{2151}$

$$
G\left(p p \rightarrow \Pi^{0}\right)=(1,6 \pm 0,2) \cdot 10^{-27} \mathrm{~cm}^{2110} \text { and } \sigma\left(p p-\Pi^{*}\right)=(8,5 \pm 0,7) \cdot 10^{-27} \mathrm{~cm}^{2 / 11 /}
$$

then it turnes out that $\sigma\left(n p-\Pi^{+}\right)=(3 \pm 1,6) \cdot 10^{-27} \mathrm{~cm}^{2}$
what within the limits of the abovementioned accuracy coincides with the measured magnitude.

As is known $9 / \sqrt{\text { according }}$ to hypothesis of charge independence nccording to the cross sections of all the processes of pion production in nucleon-nucleon collisions axe experessed in terms of the three partial cross sections $\sigma_{10}, \sigma_{11}, \sigma_{01}{ }^{x /} . \sigma_{11}$ and σ_{10} and in the wide energy range have been studied in 10 . The obtained
magnitude of the cross section $\sigma\left(n p \rightarrow-\Pi^{+}\right)$makes it possible to determine σ_{01} at the energy 586 MeV :

$$
\sigma_{01}=2 \sigma\left(n p \rightarrow \Pi^{+}\right)-\sigma_{11}=(2,8 \pm 0,9) 10^{-27} \mathrm{~cm}^{2}
$$

It is also knomi ${ }^{10 /}$ that at $409 \mathrm{MeV} \quad \sigma_{01}=(0,23 \pm 0,09) \times 10^{-27} \mathrm{~cm}^{2}$ Thus, $G_{o t}$ sharply increases with the energy increase whereas the dependence \widehat{V}_{01} uposs the maximum meson momentum is given by

$$
\sigma_{01} \sim \eta_{\max }^{4,7 \pm 0,8}
$$

The total cross section for pion production in ($\mathrm{a}-\mathrm{p}$) - colo lisions at $586-590 \mathrm{MeV}$ is $\sigma^{(}\left(n \rho \cdots \Gamma^{t, 0}\right)=$

$$
=\sigma\left(n p \rightarrow \Pi^{0}\right)+2 \sigma\left(n p \rightarrow \Pi^{+}\right)=(10,1 \pm 1,7) 10^{-27} \mathrm{~cm}^{2}
$$

The total cross section of ($n-p$) - interaction is equal to (36 ± 2) $10^{-27} \mathrm{~cm}^{2}$. Therefore, in approximately 30% of the cases the collision of a neutron with a proton leads to the production of a pion。

In conclusion making use of the obtained magnitude and of the data from ${ }^{5 /, 10 /, 11 / ~ l e t ~ u s ~ c o m p a r e ~ t h e ~ p r o b a b i l i t i e s ~ o f ~}$ pion production in the nucleon-nucleon interaction in different isotopic spin states. It may be; It may be shown $12 /$ that the total cooss section for pion production in ($n-p$) collisions

$$
\sigma\left(n p \rightarrow \Pi^{ \pm}, 0\right)
$$

may be written in the form

$$
\begin{equation*}
2 \sigma\left(n p-\Pi^{ \pm, 0}\right)=\sigma_{\Pi}^{\prime}+\sigma_{\Pi}^{0} \tag{3}
\end{equation*}
$$

where σ_{Π}^{\prime} and σ_{Π}^{0} are the cross sections for pion product= ion in nucleon-nucle on collision in the spates with the isotopic spin $T=1$ and $T=0$, respectively。 Assuming from the values given earlier

$$
\begin{aligned}
& \left.\sigma_{n}=\sigma\left(p p \rightarrow \Pi^{\circ}\right)+\sigma_{(p p-}-\Pi^{+}\right)=(10,1 \pm 0,73) 10^{-27} \mathrm{~cm}^{2} \\
& \sigma\left(n p-\Pi^{ \pm}, 0\right)=2 \sigma\left(n p \rightarrow \Pi^{+}\right)+\sigma\left(n p-\Pi^{0}\right)=(10,1 \pm 1,82) 10^{-27} \mathrm{~cm}^{2}
\end{aligned}
$$

from (3) one may obtain that

$$
\sigma_{\Pi}^{0}=(10,1 \pm 3,7) 10^{-27} \mathrm{~cm}^{2}
$$

So, in the nucleon interaction in the states with $T=0$ and $T=1$ pion production occurs with approximately equal probability and, thus, the nucleons in these states interact in this sense with identical intensity.

The approximate equality of σ_{n}^{0} and σ_{n}^{\prime} indicates also that in the processes investigated at the energy close to 600 MeV the transitions as a result of which the pion-nucleon system turns out to be in the states with the total isotppio spin $T=3 / 2$ and $T=1 / 2$ occur with approximately equal probability。The latter circumstance is very likely to be the main reason that the ratb$10 \frac{\sigma^{\prime}\left(p \beta-\Pi^{+}\right)}{\sigma\left(A P \rightarrow \Pi^{+}\right)}$ which in our case is equal to to 3.9 ± 1 is considerably less than ten. The value of the ratio equal to ten may be predicted according to the hypothesis of the isotopic invariance under the assumption that the pion-nucleon system is always found only in the state $T=3 / 20^{12 /}$ It should be noted however, that the value of this ratio in $|12|$ has been obtained under some simplifying assumptions and may be in fact somewhat different.

The authors are grateful to E.I. Lapidus for the discusision of the results and to NoS. Amaglobeli for the assistance in the course of the present research.

Figures

Fig．1．The set up of the experimenton n is a neutron beam． M is a monitor（ionization chamber）． $1,2,3$ are schin－ tillation counters．4．is the radiator of the Ceren－ kov counter．Φ is a filter．P is a scatterex．

Fig．2．The dependence of the Cerenkoy counter eftiblemay upon the velocities of the detected particles． a）－the radiator made of plexiglass，B）or made of water。

Fig．3．The dependence of the effective neutron energy apon the exponent of the maximum pion momentum in Eq。（1）。

- 15-

Fig. 1

- In -

Fig. 2

Fig. 3

```
Refexences
```

I．Go．B．Yodh，Physo．Revo 98，1330，1955．
2．VoM．Sidorov JETP，28，727，1955。
3．VoS。Kiselev，VoBo Fliagin JETP，32，962，1957。
4。Yu。M。Kazarinov，Yu。No Simonov，JETP，31，169， 1956.
5。V。P。Dzhelopov，K。O。Oganesian，VoBoFliagin，JETP，29，886， 1955。

6．Luke C．K．Yoan，SoJo Linderbaum，Physo Revo 103，404，1956。 7。RoM。Sternheimer，Phys．Rev．101，384，1956．

8．A．A．Tiapkin，JETP，30，1150，1956。
Yu．D。 Prokoshkin，JETP，31，732，1956。
9。Rosenfeld，Phys。Rev．96，146，1954。
10．Yu。 Do Prokoshkin，AoA。 Tiapkin，JETP，32，750， 1957.
11．MoGo Meshcheriakov，BoSo Neganov Dokl。 Akad．Nauk SSSR，100， 677，1955．B．So Neganov，O．V．Savchenko，JETP，32，1265，1957． 12．LoI。 Lapidus JETP，31，865，1956：DoC．Peaslee，Physo Revo 92：1085，1954．

