

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Лаборатория ядерных проблем

Ю.М. Казаринов, В.С. Киселев, В.И. Сатаров

P-1553

ФАЗОВЫЙ АНАЛИЗ НУКЛОН-НУКЛОННОГО РАССЕЯНИЯ ПРИ ЭНЕРГИИ 23,1 МЭВ

Дубна 1964

Ю.М. Казаринов, В.С. Киселев, В.И. Сатаров

P-1553

ФАЗОВЫЙ АНАЛИЗ НУКЛОН-НУКЛОННОГО РАССЕЯНИЯ ПРИ ЭНЕРГИИ 23,1 МЭВ

2326/3 yr

Coronnections increaty: SAN ESSAGEORNMA MOTERA

Дубна 1964

Ранее авторами была прослежена энергетическая зависимость фазовых сдвигов первого набора до энергии 23,1 Мэв. При этом предполагалось, что для этой энергии взаимодействие в ${}^{1}D_{2}$ -, ${}^{3}D_{2}$ -, ${}^{3}D_{3}$ - и более высоких состояниях удовлетворительно описывается одномезонным приближением 11 . Появление новых данных о дифференциальных сетениях упругого *в-р* -рассеяния 22 дало возможность провести фазовый анализ при энергии 23,1 Мэв по более полной программе.

Обработанные экспериментальные данные приведены в таблице 1. Процедура поиска решений подробно описана ранее в работе^{/3/} и поэтому здесь не приводится. Результаты поиска решений со случайных начальных условий даны в таблице 2, найденные наборы фазовых сдвигов - в таблице 3.

Эффективная энергия Мэв	Измеренная величина	Число точек	Энергия, при которой велись измерения Мэв	Литерат. источник
	σ_{nn}	11	25,63 испр.	4
23,1	~ P	1	27,4	5
	. ΡΡ σ	23	22,5-27,5 интер.	6
	σ	12	22,5 испр.	2
	P	6	23,1	7
	пр С ^р Р	1	20	8

Таблица №1

Обозначения: интер.- использованы интерполированные значения сечений. испр. - исправлено по отношению сечений на угле 90° на основании данных при 7 = 25,63 и 21,9 Мэв для σ_{рр} и по полному сечению для σ_{по}

l mer	x 2	Число поисков со случ. точек	Номер решения	x ²	Примечание
		· · ·	1	35	Повторилось 2 раза
2	32	80	2	36	Повторилось 2 раза
			3	35	Повторилось 4 раза

Габлица №2

		<u>Таблица</u>	<u>№_3</u>						
	Фазовые сдвиги волн в градусах (параметризация Стаппа)								
	Набор 1	Набор 2	Набор 3	/12/	/11/				
f f ²	0,019 <u>+</u> 0,05	0,017 <u>+</u> 0,04	0,016 <u>+</u> 0,04	0,08 (фиксировано)					
'so	52,71 <u>+</u> 0,40	49,83 <u>+</u> 1,55	52,56 <u>+</u> 0,46	51	47,5				
s,	102,39 <u>+</u> 5,81	103,06 <u>+</u> 4,53	82,61 <u>+</u> 3,30	86,5	81,3				
°Po	2,18 <u>+</u> 2,46	-10,05 <u>+</u> 2,44	6,73 <u>+</u> 1,73	7,3	9,2				
¹ P ₁	2,30 <u>+</u> 1,06	-2,16 <u>+</u> 0,03	2,39 <u>+</u> 0,85	-4,6	4,5				
°P	-1,01 <u>+</u> 1,47	5,68 <u>+</u> 1,85	0,13 <u>+</u> 1,02	-4,53	-5,7				
з р'	2,22 <u>+</u> 0,16	1,66 <u>+</u> 0,85	0,47 <u>+</u> 0,19	1,66	2,5				
ē,	4,30 <u>+</u> 7,66	-0,24 <u>+</u> 69,4	67,42 <u>+</u> 3,56	1,8	1,95				
°D,	4,82+6,51	-5,73 <u>+</u> 4,33	15,16 <u>+</u> 6,34	-2,12	2,6				
'D,	0,76 <u>+</u> 0,19	-0,42 <u>+</u> 0,39	0,81 <u>+</u> 0,12	0,57	0,3				
°	7,34 <u>+</u> 3,94	7,37 <u>+</u> 3,64	7,31 <u>+</u> 3,92	2,8	3,7				
°D,	+0,21 <u>+</u> 3,30	-0,39 <u>+</u> 1,24	-0,39 <u>+</u> 0,24	0	0,17				
χ^2	35	36	35						

Все три найденные решения имеют практически равные значения χ^2 . Интересно заметить, что в интервале $\chi^2 \leq \chi \leq 1.5 \chi^2$ было найдено всего три решения с положительными значениями фазового сдвига 15 -волны. При этом набор 3 (табл. 3) имеет слишком большую величину параметра смешивания 🧯 , а набор 2 отрицательное значение Р - фазового сдвига. Это заметно противоречит предположению о монотонности энергетической зависимости фазовых сдвигов для наиболее вероятного фазового набора, найденного при анализе нуклон-нуклонного рассеяния в области высоких энергий. Заметное отличие f^2 от известного эначения константы связи 0,08+0,02/9, возможно, есть результат того, что использованное при проведении анализа приближение /lmax = 2/ недостаточно точно. Однако ошибки в опредеf² еще слишком велики. Особенно большие ошибки имеют параметр смешивания є, и фазовый сдвиг ³D, . Это обстоятельство является результатом сильной корреляции между ϵ_i , $\delta^{3}S_i$ и $\delta^{3}B_i$. Планирование эксперимента, выполненное мето-дом Соколова /10/, показывает, что с точки зрения наиболее точного измерения указанных параметров наилучшими экспериментами являются измерения коэффициентов корреляции поляризаций. Вследствие этого, именно эти параметры определяются с помощью найденных фазовых сдвигов наихудшим образом (см. рис. 1-4).

Сравнение результатов этой работы с фазовыми сдвигами, найденными в работах^{/11,12/}, сильно затруднено отсутствием в цитированных работах ошибок фазовых сдвигов, однако, согласие можно считать, по-видимому, только качественным, так как в заметном числе случаев расхождения превышают три ошибки, указанные в данной работе.

В заключение авторы считают своим приятным долгом поблагодарить Н.А.Власова за сделанные замечания.

Литература

1. Ю.М. Казаринов, В.С. Киселев, В.И. Сатаров. Препринт ОИЯИ Р-1376, Дубиа, 1963.

- 2. E.R. Flynn, P.J.Bendt. Phys. Rev., 128, 1268 (1962).
- 3. Ю.М. Казаринов, И.Н. Силин. ЖЭТФ, 43; 692, 1962.
- 4. T.H.Jeong, L.H.Jonston, D.E.Young, C.N.Waddell, Phys. Rev., 118, 1080(1960)

5. P.Christmas, A.E. Taylor. Nucl. Phys. 41, 388 (1963).

- 6. J.P. Scanlon, G.H.Stafford, J.J.Thresher, P.H.Bowen, A.Langsford. Nucl. Phys., 41, 401 (1963).
- 7. R.B.Perkins, J.E.Simmons. Phys. Rev., 130, 272 (1963).
- 8. A.Abragam, M.Borghim, P.Catillon, J.Constham, P.Roubeau, T.Thirion. Phys. Lett., 2, 310 (1962).

9. W.S.Woolcook. Proc. 1960 Ann. Intern. Conf. on HE.Phys., p.302, 1960. 10. С.Н.Соколов. Препринт ОИЯИ Д-573, Дубна, 1960.

 G.Breit, M.H.Hull, Ir.K.E.Lassila, K.D.Pyatt, H.M.Ruppel. Phys. Rev., 128, 826 (1962).
M.HHull, Ir.K.E. Lassila, H.M.Ruppel, F.A.McDonald G.Breit. Phys. Rev., 128, 830 (1962).

12. T.Hamada, J.D.Jonston. Nucl. Phys., 34, 382 (1962).

Рукопись поступила в издательский отдел 5 февраля 1964 г.

Рис. 1. Расчетные зависимости экспериментально измеряемых величин. Вертикальными отрезками показаны коридоры ошибок.

١

Рис. 2. Расчетные зависимости экспериментально измеряемых величин, Вертикальными отрезками показаны коридоры ошибок.

Рис. 4. Расчетные зависимости экспериментально измеряемых величин. Вертикальными отрезками показаны коридоры ошибок.