·T.d. Isty.

<u>C346</u> 5-91

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

С.А. Бунятов

P-1494

ПИОННЫЕ РЕЗОНАНСЫ

/Обзор экспериментальных данных/

P-1494

ПИОННЫЕ РЕЗОНАНСЫ /Обзор экспериментальных данных/

2224 y y.

Дубна 1964

Second Ashibit MICTERS: Reconst MCCACED

	n i	л	A	8	π	e	H	H	8
<u> </u>	6		-	-		-			-

8	1.	в	в	e	д	e	H	Ħ	e.	• •			<u>je 1</u>	• .	• . •		• 3						• •	• :	• •		ÿ	* *		÷ ž	è è	ř	3
				k	Ba	HT	OB	ые	•	R	ла		INC	HI	ны	X	p	834	он	AH	co)В.			•	•	•	•	•	•	•	•	3
							G	-	पर	T	100	TH			•	•	•	•		•		•	• •			•		•	•	•			
8	2.					1	7	-	M	e 3	он.				•	•		•	•	•			•	•			•	•	•	•			4
9	3.						P	-	м	e 3	он.		•				•	•	•	• •	•	• •		•		•	•	•	•	•	• •	•	9
9	4.						ω	-	м	ea	юн	• •	•		•	•		•	•	•	•	• •	•	•	•	•	•	•	•	•			12
8	5.						φ	-	M	ез	он		• •			•	•	•		•	•	•	• •	• •	•	•	•	•	•				14
9	6.						f	-	M	930	DH.			,				•				• •	•	•	•	•	•	•	•/	• •		-	18
9	7.					4	ť.	-	aP	IK.	•	•	• •		•		•	•		•	•		• •			•	•	•	•				20
						(Сп	EC	OK	л	ITE	e pe	ату	p	a.								•		•	•	•						23

Одним из наиболее важных достижений в области сильных взаимодействий за последние несколько лет является открытие целого ряда резонансных состояний в различных системах элементарных частиц. Если всего десять лет назад было известно только одно резонансное состояние - так называемая /3,3/ изобара, то к настоящему времени число резонансов достигло уже тридцати трех; причем большинство из них открыто в последние несколько лет.

Теперь совершенно ясно, что существование резонансных состояний является общим свойством сильных взаимодействий. Поэтому все резонансы в соответствни с разделением сильновзаимодействующих элементарных частиц можно разбить на несколько групп в зависимости от значения барионного числа - В и странности -

S . Это разделение приводится в следующей таблице:

Г	руппы резонансов	В	S	
1.	л - мезонные	0	0	
2.	К - мезонные	0	1	
3.	Барионные	1	0	
4.	Гиперонные	1	1,2	

Последний обзор экспериментальных данных по пионным резонансам был сделан Пуппи в июле 1962 г.^{/15/} на XI конференции по физике высоких энергий в Женеве. За прошедший год появилось много данных как об известных, так и о новых пионных резонансах. В настоящем обзоре обсуждаются новые экспериментальные данные, дается таблица основных свойств пионных резонансов, приводится библиография работ, опубликованных до августа 1963 года.

Квантовые числа пионных резонансов, С -четность

Прежде всего нужно отметить, что совсем не обязательно, чтобы пнонные резонансы распадались только на п -мезоны. Оне могут распадаться, например, по электромагнитным каналам с участием у - квантов или на пары К -мезонов.

Следует отметить также, что пноимые резонансы, кроме квантовых чисел, общих для всех резонансов, таких, как спин – J, четность – P, изотопический спин – I, характеризуются еще и специфическим квантовым числом G – четностью, которую иногда называют изотопической четностью. G – четность определяется оператором $G = CT_2$, где C – оператор зарядового сопряжения, а T_2 – поворот на 180° вокруг второй оси в изотопическом пространстве. Определяенся G – четность могут иметь только частицы или системы частиц с равными нулю барионным числом и странностью. G – четность π – мезонов равна /-1/. G – четности систем нуклои-антинуклои и бозои + антибозон равны соответственно /-1/ и /-1/ и /-1/.

В дальнейшем пиониые резонансы обсуждаются не в хронологическом порядке, а в порядке возрастания их масс.

Первое экспериментальное указание на существование η -мезона было получено Певзнером и др.^{2.17} при исследовании спектра масс 3-пнонной системы от реакции $\pi^+ + d \rightarrow p + p + \pi^+ + \pi^- + \pi^0$ в 72-дюймовой дейтериевой пузырьковой камере при импульсе первичных π^+ -мезонов 1,23 Гэв/с. В слектре был обнаружен пик при значении эффективной массы = 550 Мэв. Позднее существование

у -мезона было подтверждено в целом ряде других работ в различных реакциях. Ко времени конференции 1962 г. были хорощо установлены масса, изотопический спин л -мезона, был дан верхний предел ширины. Однако оставались некоторые вопросы, связанные с окончательным подтверждением предполагаемых P - четности и G -четности соответственно 0, -1, +1 = 0. спина - / В работах, опубликованных после конференции, эти квантовые числа нашли дальнейшее подтверждение. В частности, серьезным подтверждением того факта, что η -мезона не равен 1, является обнаружение распада η → y + y . Дело СПИН в том, что для системы из двух фотонов с равной нулю суммой импульсов строго запрещено иметь момент количества движения, равный 1. Это правило запрета является следствием поперечности электромагнитных воли и впервые в общем виде было установлено Ландау /2.21/. Оно основано на невозможности построения волновой функции двух фотонов с полным моментом, равным 1, которая одновременно удовлетворяла бы двум требованиям: 1/ волновая функция должна быть симметричкой по отношению перестановки двух фотонов и 2/ вследствие поперечности

электромагнитного поля векторы поляризации фотонов должны быть перпендикулярны к направлению их относительного импульса.

В работе ^{/2.6}, выполненной во Фраскатти с помощью электроники и доложенной на конференции, были зарегистрированы у -кванты от распада η -мезонов, образованных в реакции $\gamma + p \rightarrow \eta^0 + p$. Но, к сожалению, нельзя было различить две возможные ветви распада $\eta \rightarrow \gamma + \gamma$ и $\eta + \pi^0 + \gamma$. В работе группы В.Б. Любимова ^{/2.15}/исследовался энергетический спектр у -квантов, образованных в π + р взаимодействиях при $E \approx 7$ Гэв в пропановой пузырьковой камере. Энергия у -квантов определялась по магнитному отклонению e^+e^- -пар. Кроме максимума при $E_{\gamma} = \frac{m_0}{2}\pi^-$, был обнаружен второй максимум при

Е_у = 250-300 Мэв. Возможным источником этих у -квантов могут быть распады

$$\eta \rightarrow \gamma + \gamma ,$$

$$\eta^{0} \rightarrow \pi^{0} + \gamma .$$

Первый из них дает у -кванты с $E_{\gamma} = 274$, второй - с $E_{\gamma} = 259$ Мэв. Эднако экспериментальная точность не позволяет, как и в предыдущем опыте, разделить эти две ветви. Вскоре после конференции появилась работа Кретина и др., ^(2,13) в которой также была предпринята попытка обнаружить распад $\eta \rightarrow 2\gamma$. С этой целью 50-л пузырьковая камера, наполненная смесью пропана, метил-иодида и этана /радиационная длина 8,2 см/ облучалась π^- -мезонамя с импульсом 1140 Мэв/с. Регистрировались случаи, соответствующие реакции $\pi^- + p \rightarrow X^0 + n$ с последующим распадом $X^0 \rightarrow 2\gamma$. Экспериментальная техника состояла в нахождении безлучевых взаимодействий π^- -мезонов, связанных с двумя конвертированными в камере фотонами. Направление движения каждого фотона трансформировали в систему центра инерции и строили распределение углов между двумя фотонами в этой системе. Наблюдались также случай с большим числом конвертированных фотонов / до 6/. Эти события использовались для определения фона.

Распределение углов, $\theta_{\gamma\gamma}$ можно подсчитать теоретически, предполагая, что **X**⁰ распадаются изотропно в собственной системе центра масс. Это угловое распределение имеет максимум вблизи минимального угла, который определяется массой <u>X</u>⁰ - частицы и импульсом первичного π -мезона. Распределение углов между у -квантами показано на рис. 1. На рисунке видны два максимума. Первый - при 25[°] соответствует массе /144 ± 16/ Мэв. Это пик от π -мезонов. Максимум при 100[°] соответствует массе /545 ± 30/ Мэв. Это значение массы согласуется с массой η - мезона. Естественно предположить, что события в области второго максимума связаны с распадом $\eta + 2\gamma$. Однако и этот эксперимент полностью не исключил возможности распада

$$\eta \Rightarrow \pi' + \gamma$$

Как показали расчеты Квецоли и Силвестрини /2.14/, распределение углов меж-

ду двумя фотонами от распада $\eta + \pi^0 + \gamma$ также имеет максимум в районе 100⁰, и поэтому события с $\theta_{\gamma\gamma} = 100^0$ могли быть распадами $\eta + \pi^0 + \gamma$ в которых один из γ - квантов не конвертировал в камере. Это ставило под сомнение однозначность выводов работы Кретина и др.

В работе Бера в др. $^{/2.17'}$ эта неоднозначность была преодолена, хотя число зарегистрированных распадов $\eta \rightarrow 2\gamma$ невелико: $^{/21} \pm 6'$. В этой работе исследовалась реакция $\pi^- + p \rightarrow \eta + /2$ или 3γ / при энергии 1,15 Гэв/с на синхрофазотроне "Сатурн" в Сакле. Реакция изучалась в пузырьковой камере с тяжелым наполнением /50% смесь $C_3 H_8$ и $CF_3 Br$. Раднационная длина 22 см/. Камера была помещена в сильное магнитное поле ~ 1,75 тл, что позволяло с 30% точностью определять энергию e^+ и e^- по магнитному отклонению. Было построено распределение эффективных масс Зу в 2 γ . В распределении масс

 3γ /24 событня/ не было обнаружено заметного пика в области массы η мезона. Распределение эффективных масс двух у -квантов /рис. 2/ имеет два пика: первый соответствует π° -мезону /среднее значение массы 138,5 ± 3,7 Мэв/. Второй - η° - мезону /среднее значение массы 573 ± 26/. После вычитания фона от реакции $\pi^{-} + p \rightarrow \pi^{\circ} + \pi^{\circ} + a$ в области пика остается /21 ± 6/ распадов $\eta \rightarrow 2\gamma$. Отсутствие пика в распределении 3γ и заметный пик в распределении масс 2γ ивляется дополнительным аргументом в пользу наблюдения распада $\eta \rightarrow 2\gamma$. Таким образом, хотя статистическая точность каждого из рассмотренных экспериментов невелика, по совокупности экспериментов можно утверждать, что распад $\eta \rightarrow 2\gamma$ установлен.

Следовательно, спян η -мезона не равен 1. Минимальные значения спива 0 или 2. В пользу нулевого спина говорит тот факт, что угловое распределение π° мезонов от распада $\eta^{\circ} + \pi^{+} + \pi^{-} + \pi^{\circ}$ в с.ц.и. изотропно $^{(2,11)'}$. Анализ распределения точек, соответствующих распаду $\eta^{\circ} + \pi^{+} + \pi^{+} + \pi^{\circ}$ по циаграмме Далитца, приводит к квантовым числам η^{-} мезона 0^{-+} . Отсюда следует, что первоначально обнаруженный распад $\eta + \pi^{+} + \pi^{-} + \pi^{\circ}$ происходит с нарушением G^{-} четности / G^{-} четность π^{-} мезона отрицательна/ и является электромагнитным процессом второго порядка, в котором имеет место испускание и поглощение виртуального γ^{-} кванта. Так как наблюдается распад, связанный с электромагнитным процессом второго порядка, то казалось, должны бы наблюдаться и распады, связанные с электромагнитным процессом первого порядка и, в частности, распад $\eta + \pi^{+} + \pi^{-} + \gamma$. Напомним, что, по теоретическим оценкам Кобзарева и Окуня, $^{(2,22)}$ этот распад должен быть преобладающим. Однако ко времени конференции эксперитментально такой распад не наблюдался, и это вызывало некоторые сомнения в справедливости установленных квантовых чисел η^{-} мезона 0^{-+} .

В опубликованной после конференции работе Фаулера и др. $^{/2.16/}$ распад $\eta \star \pi^+ + \pi^- + y$ был наблюден. В водородной пузырьковой камере Альвареца каучалась реакция $\pi^+ + p \star \pi^+ + p + \eta$ с последующим распадом $\eta \star \pi^+ + \pi^- + \chi^\circ$, где χ° - неизвестная нейтральная частица /или частицы/. Импульс первичных π^+ мезонов в центре камеры был равен 1170 Мэв/с с очень небольшим разбросом $\star 6$ Мэв/с. Было отобрано 76 распадов $\eta \star \pi^+ + \pi^- + \chi^\circ$. Оказалось, что χ° частица всегда была либо фотоном, либо π° -мезоном /рис. 3/. Причем отношение / $\pi^+ + \pi^- + \gamma/\pi^+ + \pi^- + \pi^\circ$ / = 0,28 \pm 0,08. Таким образом, распад $\eta \star \pi^+ + \pi^- + \gamma$ сильно подавлен. Хотя Гелл-Манну и др. $^{/2.24/}$ удалось объяснить столь низкую вероятность распада $\eta \star \pi^+ + \pi^- + \gamma$ с помощью модели "двух промежуточных ρ° " с последующим распадом на у и $\pi^+ + \pi^- (\eta \star \rho^\circ + \rho^\circ + \gamma + \pi^+ + \pi^-)$, все-таки противоречие с обычными теоретическими оценками сценками.

Причиной подавления распада $\eta + \pi^{+} + \pi^{-} + \gamma$, возможно, является сильное взаимодействие между двумя π -мезонами в конечном состоянии 0^{++} и l = 0 в области небольших энергий /примерно до $M_{\pi\pi} = 400$ Мэв/. Существование такого взаимодействия в настоящее время хорошо установлено . Это взаимодействие будет проявляться в распадах $\eta + \pi^{+} + \pi^{-} + \pi^{0}$ и $\eta + \pi^{0} + \pi^{0}$

Таким образом, можно считать, что в настоящее время нет экспериментов, противоречащиях установленным для η -мезона квантовым числам 0.

Соотношение между нейтральными модами распада

Учитывая, что квантовые числа η -мезона 0^{-+} , следует ожидать, что одной из основных нейтральных схем распада, наряду с распадом $\eta + \gamma + \gamma$, будет распад $\eta + 3\pi^{\circ}$. На конференции было известно лишь отношение между вероятностями распада η на нейтральные и заряженные. Распад η на нейтральные определялся по подсчету "недостающей массы". Под распадом на заряженные понимается распад $\eta + \pi^+ + \pi^- + \chi^{\circ}$, где $\chi^{\circ} - \pi^{\circ}$ -мезон или γ - квант. Среднее значение отношения вероятностей распадов по нескольким экспериментам равнялось 2.6 ± 0,6. В двух работах, выполненных после кон-

ференции удалось наблюдать распад $\eta \to \pi^0 + \pi^0 + \pi^0$ и оценить отношение $R = \frac{\eta + \gamma \gamma}{\eta + 3\pi^0}$. В работе Кроуфорда и др. ^(2.18) изучались реакция $\pi^+ + p + \pi^+ + p + \eta$ и чол-в 72 д. водородной пузырьковой камере Альвареца при импульсе первичных п⁺мезонов 1170 Мэв/с. Нейтральные моды распада 7 -мезона наблюдались в 1500 двухлучевых событиях, свизанных'с у -квантом, конвертированным на элеки др. /2.19/ трон-позитронную пару. Мы остановимся подробнее на работе Вассі в которой с помощью электроники получены несколько более точные данные по соотношению нейтральных ветвей распада η -мезона. В этой работе наблюдалось фоторожη -частиц при энергин у -квантов 978 и 938 Мэв, используя электронление ный синхротрон на 1100 М эв во Фраскати. Экспериментальная установка показана на рис. 4. Пучок У -квантов падает на 7 см жидководородную мишень. Протоны отдачи с определенной энергией и под фиксированным углом регистрировались телескопом из искровых камер, который не регистрировал пионы. При этом направление и импульс п однозначно определялись законами сохранения энергии и импульса. Вдоль линни полета л имелся черенковский счетчик полного поглошения из свинцового стекла для регистрации у -лучей от распада л на совпадение с протоном отдачи. Энергия у -квантов определялась по величине импульса анализатора. у - лучи с энергией меньше 200 Мэв не запускали искровую камеру. Таким образом устранялся фон от фоторождения одиночного "о -мезона. С описанной установкой рождение и распад 7 -мезона можно было наблюдать двумя различными способами. Отметим, что в этом эксперименте нельзя было отличить распады η + 3π° п + 2γ, и на самом деле измерялось отношение $R = \frac{\eta + \gamma + \gamma}{\eta + 3\pi^{\circ} + \eta + \pi^{\circ} + 2\gamma}$. Можно предположить, однако, что распад $\eta + \pi^{\circ} + 2\gamma$ будет маловероятным. Так как спин η – мезона 0, то распад $\eta + \pi^{\circ} + \gamma$ строго запрещен.

<u>1 способ. По спектру у -квантов.</u> Эксперимент ставился в условиях, когда энергия первичных у -квантов была либо ниже, либо выше порога образования η° . Факт существования η -мезона был установлен по наличню дополнительного числа у -квантов по отношению к фону от множественного рождения, как только образование η становилось кинематически возможным. Определение отношения двух ветвей распада $\eta + 2\gamma$ и $\eta + 3\pi^{\circ}$ основано на резком различии спектров у -квантов от этих распадов. Спектр у -квантов от распада $\eta + 2\gamma$ вдоль линии полета η -мезонов, образованных в процессе $\gamma + p + p + \eta$, почти монохроматичен с центром около 560 Мэв. В то время, как распады $\eta + 3\pi^{\circ}$ или $\eta + \pi^{\circ} + 2\gamma$ дают у -кванты, которые кмеют непрерывный спектр, обрываюшийся около 500 Мэв. Как видно из рис. 5, при превышении порога рождения η° появляется дополнительный счет у -квантов. Причем разность эффекта и фона ясно показывает наличие двух спектров. Отношение плошадей под этими спектрами дает искомое отношение. *R*. <u>2. Метод ступеньки</u>. Второй метод основан на том, что при появлении нового двухчастичного канала $\gamma + p \rightarrow p + \eta^{\circ}$ в слектре протонов должна появляться ступенька. При этом так как слектры от распадов $\eta \rightarrow 2\gamma$ и $\eta \rightarrow 3\pi^{\circ}$ сильно отличаются, то имеется возможность разделить эти распады. Если регистрировать

у -кванты с энергией $E_{\gamma} > 400$ Мэв, то ступенька будет вызвана распадом $\eta + 2\gamma$, если же регистрировать 240 $< E_{\gamma} < 400$ Мэв, то должна появиться ступенька от распада $\eta + 3\pi^{\circ}$ или $\eta + \pi^{\circ} + 2\gamma$. Отношение высот этих ступенек и даст отношение ветвей распада $\eta - частицы$. Среднее значение $R = \frac{\eta + \gamma + \gamma}{\eta + 3\pi^{\circ} + \eta + \pi^{\circ} + 2\gamma}$ определенное двумя методами, равно 0,8 \pm 0,25. Путем комбинаций этой величины со всеми остальными данными /пренебрегая распадом $\eta + \pi^{\circ} + 2\gamma$ / получаются соотношения между вероятностями распадов, приведенные в таблице 1. Эти вероятност ти определены примерно с 30% точностью.

83. p-мезон

Хронологически это был первый резонанс, обнаруженный в системе двух π мезонов. После многочисленных попыток многих авторов найти резонанс, анализируя реакцию $\pi N \rightarrow \pi\pi N$, Эрвин и др.^(3,6) определили, наконец, то положение резонанса / $M_{\pi\pi} \approx 750$ Мэв/, которое считаетси в настоящее время общепринятым. На возможность существования резонанса с квантовыми числами J = 1, I = 1, впервые обратил внимание Дрелл,^(3,34) анализируя данные об электромагнитной структуре нуклона. Используя данные об изовекторной части формфакторов нуклона, Фрезер и Фулко^(3,36) количественно оценили параметры предполагаемого резонанса. Позднее эти параметры были оценены Баукоком и др.^(3,37), которые привлекли также данные о πN -фазовых сдвигах. Теоретические предсказания положения и ширины резонанса вместе с первыми экспериментальными оценками приводятся в таблице.

№№ Авторы п.п.	Положени М[тад]	е резонанса /Мэв/	Ширина Г /Мэв/	Заряд
Теория 1.W.R.Frazer, J.R.Fulco [/] 3.36/ 2.F.J. Bowcock, W.N.Cottingham,D.Lurie [/] 3	3,18 0.37/ 4,7	440 660	80 110	
1. J.Derado/ 3.1/	4,7	660		
2. E.Pickup, F. Aver, E.O.Salant 3.2/	4,3	660		-
3. J.G.Rushbrooke, D.Radojicic/ 3.3/	4,7	660		
4. J.S. Anderson et al. 13.4/	4,5 4,7	630-660	150	-
5. D. Stonehill et al. / 3.5/ 6. A.R.Erwin et al. / 3.6/ 7. E.Pickup, D.K.Rolinson, E.O.Salant / 3 8. J. Button et al. / 3.16/ 9. J. Button et al. / 3.16/	5,0-5,5 5,97 5,4 5,48 5,5	700-770 750 754 765 768	90 150-200 130 98 112	+ -0 -0 +- 0

Первые данные о р - резонансе

На конференции было установлено, что р -мезон имеет квантовые числа I = 1 . I = I . G = + 1. Правда, если предположить, что слин р -мезона равен 1, то сечение рассеяния и + ин при энергии, соответствующей резонансу должно равняться 4ях² (2] + 1) = 12ях = 120 /здесь λ -комптоновская длина волны п -мезона в системе покоя р-мезона/. Однако сеченже с_ , определенное методом Чу и Лоу^{/3,38/} из анализа реакции п N + пп N в физической области переданных нуклону импульсов, систематически получается меньше этого предела. По-видимому, это связано с неоднозначностью метода Чу в Лоу. Тем более, что сечения о пределяются не с помощью экстраноляими в нефизическую область, а в физической области переданных импульсов. Недавно Селери /3.39/ модифицировал формулу Чу и Лоу, учетом виртуальности имезона в одномезонной диаграмме для процесса и N + виN . При этом используется функция 🖡 , связанная с пконными формфакторами нуклона, которая была определена в работе Феррари я Селери /3.40/ из анализа одиночного рожденая мезонов в нуклон-нуклонных столкновениях. С помощью формулы Селера получается удовлетворительное согласие сечения ят + ят в области резонанса с ожидаемой величиной 12 нд . Для яллюстрации на рис. 6 приводятся результаты расчетов сечения # # + # по формулам Чу в Лоу в Селеры, полученные в работе Alliti и др. (3.33)' из анализа реакции $\pi^+ p \rightarrow \pi^+ + \pi^- + n$ при импульсе 1,59 Гэв/с. Однако, несмотря на то, что квантовые числа р -мезона были установлены достаточно хорощо, поведение р -мезона остается довольно непонятным. Это относятся прежде всего к изменению формы пика и положения максимума при различных энергиях падающих частиц. Как образно говорилось в докладе Пуппя /1.5/ Профяль р - мезона очень похож на гору, приведенную в смятенне землетрясеннем; профиль время от времени изменяется и на горе появляются протуберанцы". При этом причины сложного поведения пиков у заряженных и нейтрального р -мезона согут быть разные. Для заряженных р -мезонов причина, по-видимому, связана с тем, что бремя жизни р -мезоно мало и он не успевает покинуть область взаимодействия до распада. Взаимодействие в конечном состояния может привести к уширению резонанса и изменению положения пика. Пля выяснения действительной ширины резонанса желательны точные эксперименты при больших энергиях / ~ 10 Гэв/ - имеются в виду эксперименты кл + та № . После конференции опубликована всего одна работа, в которой всследовалось образование заряженных р -мезонов. Это работа Кармони и Ванде Валля. /3.27/ в которой изучались в водородной пузырьковой камере реакции т + p + r + p + r • и = + p + r • при импульсе первичных г -мезонов 1.25 Гэв/с. Сечения # ++ # оцениваются с помощью экстраполяционного метода Чу и Лоу. Отмечается, что из данных реакции с # / в отличие от реакция с "* / не видно преобладания одномезонного обмена в физической облас-

тя. Но величины σ_π-π⁰ и σ_π+_{π⁰}, определенные с помощью лянейной экстраполяции согласуются между собой и указывают на существование ρ[±]-мезона с массой /725 ± 25/ Мэв. Масса ρ[±]-мезона в этом эксперименте несколько занижена, по-видимому, из-за того, что пик расположен на конце фазовой кривой.

Что касается неопределенности ширины и положения р° -мезона, то здесь помимо тех причин. О которых говорилось выше, существуют дополнительные причины: $1/\omega$ -мезон, масса которого близка к массе ρ^o -мезона, может распадаться на "+ "- с нарушением G -четности /такой распад наблюдался эксперяментально и обсуждается в следующем параграфе/. Это может привести к дополнительной интерференции между двумя амплитудами с разными спинами. 2/ Кроме того, в системе $\pi^+\pi^-$ в отличие от $\pi^++\pi^0$ два π^- мезона могут взаимодействовать в состоянии с изотопическим спином I = 0, что также межет вызвать дополнительную интерференцию между амплитудами с различными нзотопическими спинами. Иллюстрацией более сложного поведения системы "" по сравнению с системой $\pi^{\pm}\pi^{0}$ в области р -резонанса может служить величина асниметрии углового распределения одного из п -мезонов в системе центра масс дилиона относительно направления движения первичного пиона. Как видно на рисунка 7. если для систем $\pi^+ \pi^0$ в области ρ -резонанса угловое распределение симметрично, что и должно наблюдаться для резонанса в чистом состоянии, когда интерференция мала, то для системы " " . имеется заметная асимметрия. Причем характер этой асимметрия меняется в зависимости от энергии первичного

и -мезона.

Еще до конференции обсуждался вопрос о расшеплении пика ρ^{0} – мезона, обнаруженного в работе *J. Button* и др.^{/3.16/}, в которой изучалась реакция $\bar{p} + p + 2\pi^{+} + 2\pi^{-} + n\pi^{0}$ при импульсе 1,81 Гэв/с, на два пика: ρ_{1}^{0} с массой 720 Мэв и шириной 20 Мэв и ρ_{1}^{0} с массой 780 и шириной 60 Мэв. Такой эффект не обнаружен в работе ^{/3.22/2}, где ρ^{0} -мезон наблюдался в лучших фоновых условиях /анализировались случан аннигиляции остановившихся антипротонов в реакции $\bar{p} + p + \pi^{+} + \pi^{-} + \pi^{0}$. Поэтому можно считать, что двойная структура, обнаруженная в работе *J. Button* и др. является статистической флуктуацией.

На конференции докладывалась работа Колдвелла и др.^{/3.25/}, в которой с помощью искровых камер регистрировались распады р° -мезонов, образованных

 π^- -мезонами с импульсом 12 и 17 Гэв/с в реакции $\pi^- + p + \pi^+ + \pi^- + n$. Наблюдаемый при массе 725 Мэв пик имеет ширину 40 Мэв, то есть намного уже, чем в опытах при энергиях π -мезонов /1-3/ Гэв. Но это пока единственный опыт,и он должен быть безусловно уточнен. Интересно отметить, что из дисперсионных уравнений для рассеяния $\pi + \pi \to \pi + \pi$ не удается получить ширину ρ мезона больше, чем 40 Мэв.

После конференции появилась работа Allié и др., $^{(3.33)}$ в которой исследуется реакция $\pi^- + p + \pi^+ + \pi^- + \pi$ в водородной пузырьковой камере при импульсе 1,59 Гэв/с. Положение и ширина максимума в сечения $\pi^+ + \pi^- + \pi^+ + \pi^-$, определенном по формуле Чу и Лоу и Селери равны: M_ =750 Мэв и Г = 100 Мэв.

Таким образом, проблема определения ширины и точного положения ρ -

Схемы распада ρ -мезонов. Основные схемы распада $\rho^{\pm} + \pi^{\pm} + \pi^{0}$ и /3.26/ $\rho^{\circ} + \pi^{+} + \pi^{-}$. Повски 4-пнонных распадов дают оценки меньше нескольких %. В работе Белякова и др. ^{/3.31} и Любимова и др. ^{/2.15}/ получены указания на возможность радвационного распада $\rho^{\circ} + \pi^{+} + \pi^{-} + \gamma$.

. 34. ω - мезон

В 1957 г. Намбу^(4.21) обратил внимание на то, что весьма трудно понять большой радвус изоскалярной части нуклонного формфактора в опытах Хофштадтера^(3.35) и предположил возможность существования мезона, сильно связанного с нуклоном и имеющего те же квантовые числа, что и фотон /спин 1, четиость отрицательная/. Намбу оценил, что для объяснения зарядового и магнитного формфактора масса такого мезона должна быть равной 670 Мэв. На этом основании предполагалось существование тяжелого векторного мезона с изотопическим спином

T = 0, который распадается по схемам $\omega^{\circ} \rightarrow \pi^{+} + \pi^{-} + \pi^{\circ}$ $\rightarrow \pi^{\circ} + \gamma$

11

в таким образом мог быть обнаружен в процессах соударения при высоких энергиях. Экспериментально ω -мезон был открыт в работе *B.C. Maglic* и др. ⁴.1/. При анализе распределения масс $\pi^+ + \pi^0 + \pi^-$ в аннигиляции протон-антипротон $\tilde{p} + p + \pi^+ + \pi^- + \pi^0 + \pi^0$

с импульсом антипротона 1,51 Гэв/с был обнаружен пик при M = 785 Мэв и шириной $\Gamma \leq 12$ Мэв. В этой же работе были установлены квантовые числа ω мезона I = 0; J = I; G = -1. На конференции эти квантовые числа были подтверждены,

Оставался неясным вопоос о нейтральных модах распада в о распаде $\omega + 2\pi$ <u>Распад $\omega + \pi^+ + \pi^-$ </u>. Как впервые отмечал Glashow , /4.23/ ω может распадаться на 2π с нарушением G -четности по электромагнитному каналу. Бериштейн н Файнберг в работе под названием "Иголка в стоге сена".

подсчитали спектр масс 2 п от смеси р-и с -мезонов. Этот спектр действительно имеет вид узкого, похожего на иглу пика с -мезона на фоне широкор - пика. В работе Fickinger и др. 4.16/, появившейся после конференго ции, сделана попытка дать оценку отношения $R = \Gamma(\omega + 2\pi)$. С этой целью изучаная, од едана попатка дать околку отношения попатка $\Gamma(\omega \to \beta \pi)$ нась реакция $\pi^- + p \to \pi^+ + \pi^- + n$ при импульсе 1,7 Гэв/с в водородной пузырьковой камере. Было зарегистрировано 2137 событий, из них примерно 800 событий /без фона/ в области р -пика. На рис. 8 /а/ показано распределение эффектив-∆². Распределение имеет широкий пик в области 650-850, ных масс для всех но оно асимметрично относительно 750 Мэв /383 события между 750 и 800 Мэв и 298 событий между 750 и 700/. Если предположить, что Р имеет ту же массу и симметричное распределение, как р, то асимметрия может быть вызвана концентрацией событий в районе ω пика-780 М эв. Для более отчетливого проявления ω -пика все события былн разделены на три группы по величине Δ^2 : $\Delta^2 < 0,15$ Гэв/с, $0,25 < \Delta < 0,70$ Гэв/с и Δ^2 > 0,070 Гэв/с. В событиях с $\Delta^2 < 0,15$ Гэв/с ρ - наблюдается, а ω сильно подавлен /рис. 8 /8//. Авторы объясняют это тем, что в событиях с малой передачей импульса преобладает одномезонный обмен, в котором образование о запрещено по G -четности. В событиях второй подгруппы /рис. 8 /с//, наоборот, отчетляво проявляется ω , а ρ подавлен. Наконец, в событиях с большой передачей импульса нуклону /рис. 8 / d // не проявляется ни ω , ни р что связано, по мнению авторов, с влиянием 3,3 изобары. В группе событий с 0,25 < Д² < 0,70 Гэв/с в интервале 780-800 Мэв наблюдается над фоном 27 событий. Следовательно, распределение масс п п имеет пик с массой, близкой к массе и на 4 стандартных отклонения выше фона.

Отношение $R = \frac{\Gamma(\omega + 2\pi)}{2}$ было найдено подбором параметров из работы Бернштейна и Файнберга ⁽⁴.20 ($\omega + 3\pi$) было найдено подбором параметров из работы Бернштейна и Файнберга ⁽⁴.20 таким образом, чтобы описать экспериментальное распределение ($\pi\pi$) -масс. Принимая во внимание, что отношение / $\sigma_{\omega} / \sigma_{\rho}$ (= 1были получены следующие оценки: $R \ge 0.05$, если ширина ω равна 10 Мэв, и $R \ge 0.07$, если ширина ω равна 1 Мэв. Это же отношение оценивалось в работе Shafer и др. ⁽⁴.18)</sup>, в которой изучалась реакция $K + p + \Lambda + \omega^{\circ}$ при импульсе K -мезонов 1.51 Гэв/с в 72-дюймовой водородной пузырьковой камере. Величина R, определенная по 15 событиям $\omega^{\circ} + \pi^{+} + \pi^{-}$ оценивается \approx /4.8 ± 1.2/%. В этой же работе дается по 5 случаям оценка отношения

$$\frac{\omega^{\circ} \div e^{-} \div e^{-}}{\omega^{\circ} \to \pi^{+} + \pi^{+} \pi^{\circ}} \le 1\%$$

Обнаружение распада $\omega^{\circ} + \pi^{\circ} + \gamma$. Существование распадов ω -мезона на нейтральные частицы было подтверждено экспериментально в нескольких работах /4.8,11,14/. Усредненное по результатам этих работ отношение вероятностей $\omega^{\circ} + \pi^{+} + \pi^{-} + \pi^{\circ} / \omega + иейтр. = 5 + 1$. Однако природа продуктов распада ω[°] - мезона в этих работах не установлена. В работе Бармина и др.^{/4.19/} был обнаружен распад ω⁹ + π⁹ + γ и показано, что эта мода распада является преобладающей среди распадов на нейтральные.

Для изучения распада w° + п° + у исследовалась реакция п + p + n + w на пучке "-мезонов от протонного синхротрона ИТЭФ в 17 л пузырьковой камере, наполненной смесью пропана С.Н. и ксенона. Опыты проводились при им пульсах л -мезонов 1,25 Гэв/с, 1,55 Гэв/с и 2,8 Гэв/с. Было получено соответственно 11000, 20000 и 60000 стереоснимков. Искались случан, когда три и больше е - пар конверсии были направлены в точку остановки "-мезона, при условия, что остановка не сопровождается какими-либо следами ядерного взаимодействия /безлучевые звезды/. Фон в основном происходит от множественного рождения. Для выделения случаев распада ω° + π° + у + Зу использовался статистический кинематический метод, аналогичный методу, который был использован в работе Кретина и др. /2.13/ для обнаружения распада л + у + у . В случае распада направления трех у -квантов в с.п.н. расположены на поверхности $\omega^{\circ} + 3v$ зависящий только от массы ω° и от первичной энергии п -мезонов. Следовательно, при каждой фиксированной энергии 7 -мезонов имеется свой минимальный угол. На рис. 9 представлены распределения по углу β для событий, соответствующих реакции п + р + п + Зу после вычитания фона. Стрелками указаны значения углов раствора В конуса распада для 🥢 - мезона с массой 782 Мэв. Как видно из рис. 9, большинство событий находится в интервале углов, больших β , что доказывает, что эти распределения являются следствием распадов $\omega^{\circ} + \pi^{\circ} + \gamma + 3\gamma$. Небольшое количество случаев при углах $\beta < \beta$ может быть следствием статистической флуктуации, фоном от реакции $\pi^- + p + K^0 + \Sigma^0 + \pi^0$ или неучтенными систематическими ошибками. Сравнение сечения образования $\omega^{0} \rightarrow \pi^{0} + \gamma$ с сечением $\omega^{0} \rightarrow -$ нейтральные показывает, что распад $\omega^{0} \rightarrow \pi^{0} + \gamma$ является основным среди нейтральных мод распада. Отношение вероятностей

 $\omega \rightarrow 2\pi^{0} + \gamma$, усредненное по трем сериям измерений, составляет < 0,1.

 $\omega + \pi^{0} + y$ Время жизни ω° . На конференции в Сиене /Италия/ была доложена работа, ито соответствует среднему времени жизни $r = /0.60 \pm 0.15/.10^{-22}$ сек.

8 5. ф - мезон

В предыдущих параграфах рассматривались свойства резонансов, о существовании которых было известно на Женевской конференции 1962 г. В этом и следующем параграфе обсуждаются работы, в которых открыты новые резонансы. Ко времени конференции был известен только один векторный мезон с изотопическим спином 0-а – мезон.

Существование двух векторных мезонов с изотопическим спином 0 и отрицательной G -четностью впервые обсуждалось в рамках векторной теории силь ных взаимодействий Сакураи ^{/5,4/}. Один из них должен быть связан с барионным током / B -мезон/, а другой с гиперзарядным током / B - мезон/.

Позднее Gell – Мапл ^(5.5) построил симметричную модель, основанную на унитарной группе SU(3) , в рамках которой оба векторных мезона находят место: B_y – мезон как член унитарного октета, н B_B – мезон – как унитарный синглет. Первое сообщение о возможном существовании второго векторного мезона появилось в 1962 г. в работе *L.Bertanza et al*. Окончательно существование резонанса, получившего название ϕ -мезон, и его квантовые числа установлены в оаботах *P.L.Connoly et al.*/Брукхейвен-Сиракузы/, ^(5.3) *P.Schlein et al* /Калифорнийский университет/. ^(5.2) В работе ^(5.3) изучались реакции

 $K^{-} + p \rightarrow \Lambda + K^{0} + \overline{K}^{0} , \qquad /1/$ $K^{-} + p \rightarrow \Lambda + K^{+} + K^{-} \qquad /2/$

в 20-дюймовой водородной пузырьковой камере Брукхейвенской лаборатории, облученной K^- -мезонами с импульсом 2,33 Бэв/с. Всего проанализировано 36 событий в нейтральном канале /1/ и 22 события в заряженном канале /2/. Фон в канале /1/ вызван главным образом реакцией $K^- + p + \Sigma^0 + K^0 + \overline{K}^0$ и оценивается в 10%. Кандидатами для канала /2/ считались случаи с распадом Λ^0 на заряженные. По этой причине заряженный канал свободен от фона.

На рис. 10 показан график Далица для квадратов эффективных масс *КК* и *АК* для 58 событий от обоих каналов. Превышение над статистическим распределением в области $M^2(K\bar{K}) = 1,04$ Гэв, очевидно. Вероятность случайного отклонения в этой области 10^{-6} . Для масс $M(K\bar{K})$ в области от 1000 до 1040 Мэв была построена ндеограмма. Распределение имеет пик при значении массы /1019+1/ Мэв.

Спин и четность ф -мезона

Определение спина ϕ -резонанса основано на исследовании распадных свойств системы $\tilde{K}^{\circ} \tilde{K}^{\circ}$ /5.6,7/. Дело в том, что система \tilde{K}°_{o} и \tilde{K}° , как и любая система бозон-антибозон, обладает важной особенностью: ее комбинированная четность СР равна + 1. С другой стороны, экспериментально наблюдаются короткоживущие \tilde{X}_{1}° -мезоны / $r = 0,9.10^{-10}$ /, обладающие CP = +1 и долгоживущие \tilde{X}_{2}° -мезоны / $r = 6.10^{-8}$ сек./, имеющие CP = -1. Пары $\tilde{K}_{1}^{\circ}\tilde{K}_{1}^{\circ}$ в $\tilde{K}_{2}^{\circ}\tilde{K}_{2}^{\circ}$ в силу тождественности входящих в них частиц всегда находятся

в состояннях с четнымя моментами / $\ell = 2m$ / в обладают комбинированной четностью СР = + 1. Комбинированная четность пары $K_{1,2}^{0}$ равна /-1/ ℓ +1. Поэтому если эта пара образовалась из пары $K^{0}\tilde{K}^{0}$, обладающей СР = + 1, то для нее возможны только нечетные орбитальные моменты $\ell = 2m + 1$. Таким образом, если система $K \tilde{K}$ распадается по каналам $K_{1,1}^{0} K^{0}$ в $K_{2,2}^{0}$, то она обладает четным спином, если по каналу $K_{2,0}^{0} K_{1,0}^{0}$, то нечетным.

Имея вывду эту связь, подсчитали для обоих гипотез-спин четный и спин нечетный /или что то же самое - четность положительную или четность отрицательную, т.к. $P = (-1)^J$, ожидаемое отношение ϕ -распадов к экспериментально наблюдаемым вариантам конечных состояний канала /1/, которые обозначаются по видимым вилкам так: $\Lambda K_1^0 K_1^0$, $\Lambda K_2^0 H K_1^0 K_1^0$. Ожидаемые относительные числа $\Lambda K_1^0 K_1^0$, ΛK_1^0 и $K_1^0 K_1^0$, даны в таблице.

T	a	б	л	H	п	a
-		-		_		_

Типы канала /1/	Предсказ <i>P</i> = -1 <i>K</i> ⁰ ₁ <i>K</i> ⁰ ₂	ываемые относительные чеслар++1 $K^{0}K^{0}, K^{0}, K^{0}$	Наблюдаемые относя- тельные числа для со- бытий в пике
AK°K°	0	0,4	0 + 0,04
∧ K• 1	1	0,4	$1 \pm 0,2$
K KC	0	0,2	0 <u>+</u> 0,04

Как видно из таблицы, в пике наблюдаются только $\Lambda + K_{I}^{\circ}$ и нет ни одного события $\Lambda K_{I}^{\circ} K_{I}^{\circ}$ и $K_{I}^{\circ} K_{I}^{\circ}$. Отсюда следует, что четность отрицательная и спин ϕ - мезона нечетный /наиболее вероятные значения J = 1 или 3/. Дальнейшая информации о спине может быть получена из рассмотрения относительной вероятности распада

$$a = \frac{\phi \to K_{j}^{\circ} K_{2}^{\circ}}{\phi \to K_{j}^{\circ} K_{2}^{\circ} + K^{\dagger} K^{\dagger}}$$

При отсутствии разности масс K^+ и K° и кулоновских эффектов а не должно зависеть от J. Зависимость a_j от слина появляется из-за различия угловых моментов и кулоновского барьера систем $K_1^{0}K_2^{0}$ и K^+K^- . Теоретические оценки дают, что $a_{j=1} = 0,39;$ $a_{j=3} = 0,26$.

Экспериментальное эначение а = 0,45 ± 0,10. Таким образом, наблюдаемое отношение К -мезонных мод распада находится в хорошем согласии с гипотезой J = 1 и противоречит гипотезе J = 3 на две стандартных ошибки.

Ширина резонанса. Ширина резонанса в работе^{/5.3/} определялась по модифицированной формуле Брейта-Вигнера с учетом экспериментального разрешения /Г = /3 ± 1/ Мэв/. При этом использовались только заряженные пары. Учитывая фон и статистические ошибки, $\Gamma = 1_{-1}^{+2}$, причем $\Gamma > 0$. Более точное значение ширины ϕ -мезона получено в работе Гелфанда и др.^{75.107}, в которой изучалась аннигилляция остановившихся антипротонов в реакции $\tilde{p} + p + K^+K^- + \pi^+\pi^-$. По данным этой работы, $\Gamma = /3.1 + 1.0/$ Мэв.

Изотопический спин и G - четность.

Так как G - четность системы $K^0 \tilde{K}^0$ равна /-1/ , где J - угловой момент, равный в рассматриваемом случае 1, а I -изотопический слин, то значение изотопического слина можно получить, зная G - четность ϕ - мезона. Если бы G - четность ϕ - мезона была * 1, то был бы разрешен распад на 2π и этот распад из-за отношения фазовых объемов и прозрачности барьера должен быть преобладающим /в зависнмости от принятого радиуса взаимодействия $\phi + 2\pi / \phi + K \tilde{K} \approx 10 - 20$). Двухлионный распад исследовался по распределению $M(\pi^+\pi^-)$ от реакции $K^- + p + \Lambda + \pi^+ + \pi^-$. Верхний предел для отношения распадов $\phi + 2\pi$ 5

$$\frac{\phi + 2\pi}{\phi + K + K} = \frac{5}{19 + 23} < 0, 2.$$

Как видно, экспериментальная величина отношения на два порядка отличается от теоретической. Отсюда следует, что ϕ имеет отрицательную G - четность. Следовательно, /-1/¹⁺¹ = - 1, и изотопический спин ϕ - мезона равен 0.

Таким образом, ϕ - векторный мезон с отрицательной G -четностью и I = 0. Все данные о ϕ -мезоне приводятся в таблице.

В работе P. Schlein и др.^{/5.2/} изучались те же реакции /1/ и /2/ при импульсе 1,95 Гэв/с. Было зарегистрировано 24 события, соответствующих реакции /1/, и 10 событий, соответствующих реакции /2/. Результаты полностью согласуются с работой P.L. Connely и др.

Используя данные по угловым распределениям продуктов распада ϕ -мезона, авторы приводят дополнительные аргументы в пользу спина J = 1. Для случаев, когда ϕ - мезон вылетал в направлении, близкоч к направлению пучка / $\cos \theta > 0.5$ /, строилось распределение распадов в зависимости от величины $\vec{x} \cdot \vec{k}$ /видоизмененный анализ Эдера^(5.8)/, где \vec{i} - направление первичного пучка, \vec{k} -направление K⁻/иля K_1^{ϕ} / в системе покоя ϕ . Для этих событий гипотеза J = 0 противоречит опыту на \approx 4 стандартных ошибки, а сравнение с J = 1 и J = 3 показывает, что J = 1 в 4 раза более вероятно, чем J = 3.

Схемы распада, ф - мезона.

Конкурирующей схемой распада ϕ -мезона с квантовыми числами 1 на К + К должен быть распад $\phi \rightarrow 3\pi$ и , в частности, распад $\phi \rightarrow \rho + \pi$ который может оказаться более вероятным из-за большей величины двухчастичного фазового объема по сравнению с трехчастичным. Распад $\phi \rightarrow \rho + \pi$ исследовался в реакции $K^+ \rho + \Lambda^0 + \pi^+ + \pi^- + \pi^0$

Экспериментальное отношение $\beta = \frac{\phi + \rho + \pi}{\phi + \pi + \pi} \approx 0.35 \pm 0.2$. Теоретичеческие оценки /5.9/ дают для β величину 3-4, то есть на порядок больше экспериментального значения. Однако на самом деле противоречие может быть не столь сильным, так как теоретические оценки очень грубые.

\$ 8. f⁰ - мезон

Предположение о существовании мезона с квантовыми числами вакуума, кроме спина, то есть с изотопическим спином I = 0 и четностью P = +1, высказывалось в работе Чу и Фраучи^{6.9/}. Предполагая, что эта частица лежит на вакуумной траектории Редже и имеет спин J = 2, предсказывалось, что масса ее должна быть = 1000 Мэв /траектория Редже в области больших масс не вычислялась, а получалась путем линейного продолжения/. Такая частица может распадаться на четное число $\pi -$ мезонов.

Первые экспериментальные указания на возможность существования максимума в спектре масс "+ " за пиком от р -мезона были получены в работе Шаламова и Грашина ^(6.1), в которой изучалась реакция π⁻+p→ π⁻+ π⁺+ п при импульсе первичного "-мезона 2,8 Гэв/с на свободных и квазисвободных протонах рабочей смеся С Н + Хе в 17-литровой пузырьковой камере. Однако камера работала без магнитного поля, и энергия вторичных частиц не измерялась. Идентификация быстрых частиц не проводилась; считалось, что частицы с конизацвей < 1,5 - 2 от нонизации первичных я -мезонов являются я - мезонами. Идентнфицировались только медленные частицы с конизацией 1.5-2. Спекто масс "+ " вычислялся из углового распределения пар "+ " в лабораторной системе координат. При этом нужно было делать предположения об энергетическом спектре нейтронов и угловом распределении п -мезонов в их системе центра. В полученном таким образом спектре масс "" - наблюдался максимум при И + = 1400 Мэв; квантовые числа не определялись. Вскоре после значения и др. /6.2/ сообщили об обнаружении резонанса в спектре TOTO Gniragossian масс п п от той же реакции при значении М + = 990 Мэв К в точном согласии с предсказаниями Чу и Фраучи. Реакции п+ p - п + + п + л π + p → π + π + р изучались в водородной пузырьковой камере при энергии

х/ При увеличении статистики максимум сместился к 1250 Мэв в согласии с результатами Силова и др. /6.3/. первичных *п* -мезонов 3,3 Гэв. Так как в спектре масс *п п* аналогичного пика не наблюдалось, то отсюда следовало, что спин предполагаемого резонанса *I* = 0.

Принятое теперь значение положения пика /при 1250 Мэв/ впервые было получено в работе Силова и др. $^{6.3/}$. Реакции $\pi^- + p + \pi^+ + \pi^- + n / 264$ события/ и π + p → π + π ° + п /349 событий / изучались при импульсе первичного π -мезона 3 Гев/с в водородной пузырьковой камере. Вывод о существовании пика при 1250 Мэв в системе " " основан на различия между распределениями масс π⁻π⁰ н π⁺π⁻ /рис, 11/. Распределение масс π⁻ π⁰ за ρ -пиком полностью согласуется с распределением фазового объема. Распределение масс # " сильно отличается от фазового распределения. Если сравнить числа случаев в интервалах от 50 до 100 Мав. взятых из области 1000-1600 Мав, с соответствующими числами случаев по статистическому распределению, то вероятность согласия данных с фазовым объемом примерно 1/1000. Пик находится при значения М += /1250+25/Мэв и имеет щирину Г = /100 + 50/ Мэв. Позднее пик наблюдался в работе Veiller и др.^{/6.4/} - М_+_= /1260 + 35/ Мэв, Г < 200 Мэв, в которой реакция π + p → π + π + n /457 случаев/ изучалась при импульсе первичного π -мезона 6.1 Гев/с в 300-литровой камере с тяжелым наполнением /смесь СF Вг - С. В. Bondar и др. /8.6/ наблюдаля пик при М_+_= 1260 и Г = 160 Мэв, в реакции /6.8/ $\pi^{-} + p \rightarrow \pi^{+} + \pi^{-} + n$ /630 случаев/ при импульсе 4 Бэв/с. Guiragossian той же реакции /532 события при эмергии 3,3 Гэв/ наблюдал пик при 1250 Мэв с шараной Г = 200 Мев. Дополнительный аргумент в пользу существования резонанса при 1250 Мэв основан на изучении асимметрии углового распределения и --мезона в системе центра масс " + + " относительно направления первичного " -N_{BD}-N_H мезона. На рис. 12 в показана зависимость коэффициента асимметрии . от массы п + п - . Как видно из рисунка в области массы f⁰ -коэффициент асимметрии близок к нулю, что и должно наблюдаться в случае п - п резонанса в отсутствия интерференции с фоном.

Изотопический слин f⁰ -мезона

Во всех работах f° -мезон проявляется в спектре масс $\pi^{+}+\pi^{-}$ и не обнаружен в системе $\pi^{-}\pi^{\circ}$ /I=1 и 2/. Отсюда следует, что изотопический спин f° -

Спин и четность f° -мезона

 f^{0} -мезон имеет большую ширину и, следовательно, распадается по сильному каналу с сохранением четности и G -четности. Так как обнаружен распад f^{0} на два π -мезона, то отсюда следует G $_{10}$ = + 1. Так как изотопический спин f^{0} -четный, то спин f^{0} -мезона должен быть четным, а т.к. четность равна /-1/, то она должна быть положительной, то есть спин-четность может быть: 0⁺, 2⁺, 4⁺ и т.д. В работе Vaillet и др. ^{/6.4} и Силова и др. ^{/6.3} показано, что спин f⁰ больше 0. Этот вывод следует из углового распределения и мезонов в системе центра π⁺ π⁻ в области f⁰ -мезона и из углового распределения π⁻-мезонов относительно направления дипиона /анализ Эдера /.^{/6.10/}. Эти распределения не изотропны и имеют пики в переднем и заднем направлениях. Вероятность того, что изотропия может привести к такому распределению 1:500. Следовательно, нулевое значение спина противоречит угловым распределениям.

В работе L.Bondar и др. $^{6.6!}$ приводятся аргументы в пользу слина 2. Они основаны на сравнении сечения $\pi^+\pi^- \star \pi^+\pi^-$ в области f^0 – мезона с геометрическим значением, которое в резонансе должно равняться $4\pi\lambda^2$ (2J + 1), здесь λ – комптоновская длина волны π – мезона в системе пентра f^0 ,

J -спин fo -мезона.

Сечение вычислялось по формуле Селери $^{(3,39)}$ /см. 8 3/. На рис. 13 показаны сечения и и геометрические пределы для значений спина f° : 0, 2 и 4 /коеф. 4/9 учитывает распад $f^{\circ} \rightarrow \pi^{\circ} + \pi^{\circ}$ /. Как видно из рис. , подсчитанные сечения противоречат спину 0 и 4 и согласуются со спином 2.

Таким образом, из имеющихся в настоящее время экспериментальных данных следует, что наиболее вероятные квантовые числа $f^0 - 2^+$.

В работах ^(6,11,12) обсуждался вопрос о том, лежит ли экспериментально обнаруженный f⁰ мезон на вакуумной траектории. Вывод таков: f⁰ может принадлежать вакуумной траектории, но, возможно, что существует еще одна вакуумная траектория с соответствующим ей еще одним мезоном с изотопическим спином 0. Масса этого мезона оценивается равной примерно 1800 Мэв^(6,11). Однако все эти расчеты выполнены в двухчастичном приближении, и надежность их в области масс 1000-2000 Мэв, по-видимому, невелика.

Схемы распада

До сих пор наблюдалась лишь одна ветвь распада $f^0 + \pi^+ + \pi^-$, f^0 – мезон должен распадаться также на нейтральные мезоны $f^0 + \pi^0 + \pi^0$. В работе Bondar н др. $f^{0.8/}$ дается верхний предел для распада на $2\pi^+ + 2\pi^-$. Отношения ветвей

$$\frac{f \to \pi^{+} + \pi^{-} + \pi^{-} + \pi^{-}}{f^{0} \to \pi^{+} + \pi^{-}} < 0,08 + 0,06.$$

Если квантовые числа f равны 2^{++} , то он может распадаться также на пары $\overline{K}^+\overline{K}^-$, $K^0\overline{K}^0$ (K^0_0, \overline{K}^0_0).

В этом параграфе обсуждается широко известный "резонанс", существование которого не подтвердилось в дальнейших экспериментах.

Об обнаружения ζ - мезона сообщалось в работах /7.1,11/; в которых изучалась реакция п + р эп+ п + р в водородной пузырьковой камере при энергиях первичного "+ -мезона 820, 900 и 1050 Мэв(соответственно 347, 274 и 315 событий)Ло последним данным, /7.11/ спектр масс # + # сравнивался с предсказаниями изобарной моделя Штейнхаймера-Линденбаума 7.13/ и статистическим распределением. Общее поведение спектра находится в лучшем согласни с изобарной моделью. Однако в распределении масс "" вмеется пик около 600 Мэв. Пик более отчетливо проявляется при первичной энергии и - мезонов 900 Мэв при энергин 820 Мэв пик становится много шире, а при 1050 Мэв почти исчезает, что объясняется влиянием р -мезона. Авторы рассмотрели влияние изобары на спектр "+ "° . Для этого было построено распределения М + отдельно для случаев, имеющих импульс " или ", равный импульсу мезона отдачи от распада /3,3/-изобары, и для остальных случаев /последние считались событними не изобарного происхождения/. Для случаев не изобарного происхождения кажется, что пик проявляется более сильно и примерно при одинаковых значениях массы /590 + 20/ Мэв. Отмечалось также, что пик проявляется более отчетливо не в периферических столкновениях, а в столкновениях с большой передачей импульса. нуклону. Полная ширина пика на полувысоте равна 40 М эв. Так как экспериментальное разрешение такого же порядка, то, следовательно, действительная ширина 🕻 меньше 40 Мэв. В распределении масс M + or реакции "+ p + "+ "+ при тех же энергиях нет викаких пиков. Отсюда делается вывод, что изотопический спин

 ζ - мезона равен 1. Однако нельзя было полностью отвергнуть возможность того, что наблюдаемый авторами пик является результатом статистических флуктуаций. Поэтому вывод авторов нуждался в дальнейшем подтверждении. Некоторым подтверждением выводов была работа *B.S.Zom*, в которой изучалась реакция $p + p \rightarrow d + \pi^{+} + \pi^{0}$ в водородной пузырьковой камере и наблюдался узкий пик при $M_{\pi^{+}\pi^{0}} \approx 560$ Мэв. Следует отметить, что эта реакция очень удобна для нзучения $\pi - \pi$ взаимодействия, так как $\pi - N$ взаимодействие здесь сильно подавлено, а система $\pi^{+} + \pi^{0}$ изотопический спин дейтона равен 0, образуется только в состоянии с изотопическим спином 1. Но в этой работе статистика была намного меньше, чем в предыдущей /всего 14 событий в пике/.

На конференцию был представлен ряд работ^{77.6-87}, в которых ζ -мезон не был обнаружен. Следует отметить работу *H. Foelsche* и др.^{77.77} /см. также D.L.Stonchill ^{77.97}/, в которой реакция $\pi^+ + p + p + \pi^+ + \pi^0$ изучалась примерно в той же области энергий со статистикой в 3 раза большей, чем в работе^{77.17} Пик соответствующий ζ -мезону, не обнаружен ня в событиях с малой передачей импульса, ня в событиях с большой передачей импульса нуклону /импульс протона > 500 Мав/с/. После конференции появились новые работы, в которых ζ -мезон

тоже не обнаружен. F.Turkot и др. $^{7.10}$ изучали образование пионных резонансов в реакции $p + p \rightarrow d + \chi$, измеряя с помощью счетчиков импульсный спектр дейтронов под 0°. Спектры измерялись при энергиях протонов 1,55; 1,93; 2,12 и 2,50 Гэв с разрешеннем по импульсу 2% и статистической точностью 5%.

X - частица могла вметь иметь массу от 2 m до 7 m . При энергии 2,5 Гэв обнаружен только ρ - мезон с массой 750 Мэв. Ни в одном из измеренных спектров не было найдено убедительных указаний на существование

ζ -мезона с массой 560 Мав.

Наконец, против существовання ζ - мезона говорит тот факт, что спектр масс $\pi^+ \pi^0$ при энергиях ниже 1 Бэв может быть вполне удовлетворительно описан модифицированной изобарной моделью^{/7,12/}, в которой учитывается только π N взанмодействие в состояние 3/2, 3/2. Как известно, главные предположения изобарной модели Линденбаума и Штейнхаймера^{/7,13/} состоят в следующем:

1/ можно пренебречь интерференцией между двумя возможными каналами образования изобары с одним из двух п ~мезонов;

2/ изобара образуется в S - состоянии;

статистически достоверных отклонений в области (- мезона.

 3/ изобара распадается изотропно в собственной системе центра масс.
 S.Bergia и др.^{7.14} модифипировали эту модель, учтя интерференцию между двумя каналами образования изобары. M.Olsson и G.B.Yodh ^{7.12}
 учли еще P - волновой распад изобары. На рис. 14 показаны спектры масс п⁺ п⁰ в сравнении с предсказаниями модифицированиой изобарной модели. Как видно, эксперимент удовлетворительно описывается теоретической кривой и нет

Таким образом, в настоящее время нет статистически достоверных экспериментальных указаний на существование ζ' - мезона^{X/}.

Кроме работ, рассмотренных в этом обзоре, существует целый ряд сообщений, в которых делаются выводы об обнаружении новых пионных резонансов. Все эти выводы, на наш взгляд, нуждаются в уточнении и по этой причине не обсуждаются в обзоре.

х/ В недавно опубликованной работе АШій в др. /3.33/ обнаружено отклонение от фазового объема спектра масс в + по в области 550 Мев примерно на две стандартные ошибки.

ЛИТЕРАТУРА

1. Обзоры

- 1. R.H. Dalitz. BNL-735. Three Lectures on Elementary Particle Resonances Brookhaven, 1961.
- 2. J.F. Detoeuf. The Aix. en-Provance Intern. Conf., p. 57, 1961. Les isobares des Nucleons et les Etats Resonnants des Sistems de Plusieurs Mesons.
- 3. G.R. Lynch. Proc. Phys. Soc., <u>80</u>, 46, 1962. Experimental Data on New Resonances.
- 5. G. Puppi. Proc. Intern. Conf. at CERN, p. 713, 1962. Interactions of pions, nucleons and antinucleons.
- 6. M. Roos. Rev. Mod. Phys., <u>35</u> 314, 1963. Tables of Elementary Particles and Resonant States.

2. 7 - M @ 3 O H

1. <u>A. Pevsner, R. Kraemer, M. Nussbaum, C. Richardson, P. Schlein, R. Strand</u> and <u>T. Toohig, M. Block, A. Engler, R. Gessaroli</u> and <u>C. Meltzer, Phys.</u> Rev. Lett., 7, 421, 1961, Evidence for a three-pion resonance near 550Mev.

N Theory

- P.L. Bastien, J.P. Berge, O.I. Dahl, M. Ferro-Luzzi, D.H. Miller, J.J. Murray, A.H. Rosenfeld and M.B. Watson. Phys.Rev. Lett., 8, 114, 1962. Decay modes and width of the η -meson.
- 3. D.D. Carmony, A.H. Rosenfeld and R.T. Van de Walle. Phys. Rev. Lett., 8, 117, 1962. Evidence that the η -meson has isospin zero.

х/ Экспериментальные работы приведены в хронологической последовательности. Ссылки на цитированные в каждом разделе теоретические работы приводятся в конце списка литературы.

- 4. E. Pickup, D.K. Robinson and E.O. Salant, Phys. Rev. Lett., 8, 329, 1962. Three-pion mass distributions and the η - meson.
- 5. A.H. Rosenfeld, D.D. Carmony and R.T. Van de Walle. Phys. Rev. Lett., 8, 293, 1962. Search for ρ -meson decay into $\eta + \pi$.
 - C. Mencuccini, R. Ouerzoli, G. Salvini and V.G. Silvestrini. Proc. Intern. Conference at CERN, p. 33, 1962. A first evidence of a radiative decay mode of the intermediate pion resonance (M = 550 MeV).
 - 7. H. Foelsche, E.C. Fowler, H.L. Kraybill, T.R. Sanford and D. Stonehill . Proc. Intern. Conf. at CERN, p. 36, 1962. π⁺ - p interactions near 1 GeV. Phys. Rev. Lett., 9, 223, 1962. Properties of the η. meson.
 - 8. C. Alff, D. Colley, N. Gelfand, U. Nauenberg, D. Riller, J. Steinberger, T. Tau, H. Brugger, P. Kramer and R. Plano. Proc. Intern. Conf. at CERN, p. 50, 1962. Preliminary results on the production and decay properties of the ω, η and ρ mesons and other resonances in π⁺ proton collisions at 2.35, 2.6 and 2.9 GeV/c. Phys. Rev. Lett., 9, 322, 1962.
 Production of pion resonances in π⁺p interactions. Phys. Rev. Lett., 9, 325, 1962. Decay of the ω and η-mesons.
 - 9. T. Toohig, R. Kraemer, L. Madansky, M. Meer, M. Nussbaum, A. Pevsner, C. Richardson, R. Strand and M. Block. Proc. Intern. Conf. at CERN, p. 99, 1962. An analysis of the production of η - and ω - mesons by the interactions of pions with deuterium.
 - 10. M. Meer, R. Strand, R. Kraemer, L. Madansky, M. Nussbaum, A. Pevsner, C. Richardson, T. Toohig, M. Block, S. Orenstein and T. Fields. Proc. Intern. Conf. at CERN, p. 103, 1962. The decays of the η - and the ω - mesons.
 - M.C. Foster, M.L. Good, R.P. Matsen, M.W. Peters, G.W. Tautfest and R.B.Wil-Imann. Proc. Inter. Conf. at CERN, p. 108, 1962. Myltiple pion production by 1275 MeV/c pions.
 - 12. J. Button-Shafer, M. Ferro-Luzzi, J. Murray, M.L. Stevenson and F.T. Solmitz. Proc. Intern. Conf at CERN, p. 307, 1962. Λ ** ** *** and Λ + neutral final states in K⁻+p interactions at K⁻ momenta of 1.22 and 1.51 GeV/c.
 - 13. M. Chretien et all. Phys. Rev. Lett., 9 , 127, 1962. Evidence for spin zero of the η from the two gamma-ray decay mode.
 - 14. R. Ouerzoli and V. Silvestrini, Nuovo Cim., 27, 555, 1963. On the quantum numbers of the η particle.
 - V.B. Lybimov, Mu Jun, M.I. Podgoretsky, S.I. Portnova, V.N. Streltsov and Z. Trka. Physics Letters, <u>3</u>, 287, 1963; JETP, 44, 760, 1963. y - quanta production in the interaction of 7 GeV y - mesons with nuclei.
 - 16. E.C. Fowler, F.S. Crawford, Jr. L.J. Lloyd, R.A. Grossman and L. Price. Phys. Rev. Lett., 10, 110, 1963. Experimental determination of the branching ratio $\Gamma(\eta + \pi^+\pi^-\gamma)/\Gamma(\eta + \pi^+\pi^-\pi^\circ)$.
 - 17. L. Behr, P. Mittner and P. Musset. Physics Letters, 4, 22, 1963. Direct Measurement of the η decay into two γ .

- F.S. Crawford, Jr. L.J. Lloyd and E.C. Fowler. Phys.Rev. Lett., <u>10</u>, 546, 1963. Experimental determination of the neutral branching ratios of the η – meson.
- C. Bacei, G. Penso, G. Salvini, A. Wattenberg, C.Mencuccini, R. Ouerzoli and V. Silvestrini, Phys. Rev. Lett., <u>11</u>, 37, 1963. Photoproduction and neutral decay modes of the *n* particle.
- 21. Л.Д. Ландау. ДАН, 60, 207, 1948. О моменте системы из двух фотонов.
- 22. И.Ю. Кобзарев, Л.Б. Окунь. ЖЭТФ, <u>43</u>, 1288, 1962. О возможных распадах новых мезонов.
- 23. G. Feinberg, A. Pais. Phys. Rev. Lett., 9, 45, 1962. Electromagnetic effects on decays of G. eigenstates.
- 24. M. Gell-Mann, D. Sharp, W.G. Wagner. Phys. Rev. Lett., 8, 261, 1962. Decay rates of neutral mesons.
- 25. R.H. Dalitz. Phil. Mag., 44, 1068. 1953. On the analysis of 7 meson data and the nature of the 7 - meson.

3. Р-мезон

- 1. I. Derado. Nuovo Cim., <u>15</u>, 853, 1960. Experimental evidence for the pion-pion interaction at 1 GeV.
- E. Pickup, F. Ayer and E.O. Salant. Phys. Rev. Lett., 5, 161, 1960. Single pion production in 0.96 BeV n⁻ - p interactions.
- 3. J.G. Rushbrooke and D. Radojicic, Phys. Rev. Lett., 5, 567, 1960. Search for resonance in $\pi \pi$ interaction in πN scattering at 0.96 BeV.
- J.A. Anderson, V.X. Bang, P.G. Burke, D.D. Carmony and N. Schmitz. Rev. of modern Physics, <u>33</u>, 431, 1961. Pion-pion Interactions. Phys. Rev. Lett., 6, 365, 1961. Experimental results of the π - π cross section.
- D. Stonehill, C. Baltay, H. Courant, W. Fickinger, E.C. Fowler, H. Kraybill, J. Sandweiss, J. Sanford and H. Taft. Phys. Rev., Lett., 6, 624, 1961. Pion-pion interaction in pion production by "+-p collisions.
- 6. A.R. Erwin, R.March. W.D. Walker and E. West. Phys.Rev. Lett., 6, 628, 1961. Evidence for a $\pi - \pi$ resonance in the I=1, J=1 state.
- 7. E. Pickup, D.K. Robinson and E.O. Salant. Phys.Rev. Lett., 7, 192, 1961. $\pi - \pi$ resonance in π^--p interactions at 1.25 BeV.
- D.Mc.Leod, S. Richert and A. Silverman. Phys. Rev. Lett., 7, 383, 1961.
 Evidence for a pion-pion resonance from photoproduction of pion pairs.
- 9. D.D. Carmony and R.T. Van de Walle. Phy.Rev. Lett., 8 73, 1962. Differential $\pi \pi$ cross sections: evidence for the spin of the ρ -meson.

- 10. Я.Я. Шаламов, А.Ф. Грашин. ЖЭТФ, <u>42</u>, 1115, 1962. Данные о *п*-*п* взаимодействии из реакций рождения *п* -мезонов в *пр* соударениях 1.
- 11. А.Ф. Грашин, Я.Я. Шаламов. ЖЭТФ, 42, 1140, 1962. О спине р -мезона.
- М.С. Айнутдинов, С.М. Зомбковский, С.Я. Никитин, Я.М. Селектор, А.Ф.Грашин. ЖЭТФ, 42, 1413, 1962. п - п - взаимодействие в п - р - столкновениях при энергии 7,2 Гэв.
- Я.Я. Шаламов, А.Ф. Грашин. ЖЭТФ, 43, 21, 1962. Данные о п-п взаимодействии из реакции рождения п -мезонов в п-р соударениях П. Рождение р° -мезонов.
- 14. B.S. Zorn. Phys. Rev. Lett., 8, 282, 1962. Pion-pion resonances in a pure T = 1 state.
- 15. A.H. Rosenfeld, D.D. Carmony and R T. Van de Walle. Phys. Rev. Lett., 8, 293, 1962. Search for ρ -meson decay into $\eta + \pi$.
- 16. J. Button, G.R. Kallfleisch, G.R. Lynch, B.C. Maglic, A.H. Rosenfeld and M.L. Stevenson. Phys. Rev., 126, 1858, 1962. Pion-pion interaction in the reaction $\tilde{p} + p \rightarrow 2\pi^+ + 2\pi^- + n\pi^0$.
- 17. J. Alliti et all. Nuovo Cim., 25, 365, 1962. Investigation of resonant $\pi \pi$ interaction in the J=1, T=1 state.
- H. Foelsche, E.C. Fowler, H.L. Kraybill, J. R. Sanford and D. Stonehill. Proc. Intern. Conf. at CERN, 36, 1962. #+ p interactions near 1 GeV.
 - D.L. Stonehill and H.L. Kraybil. Rev. Mod. Physic, 34, 503, 1962. Pion-pion interactions in π^+-p collisions.
- 19. W.D. Walker, E. West, A.R. Erwin, R.H. March, Proc. Intern. Conf. at CERN, 42, 1962 ω and ρ production.
- 20. C. Alff, D. Colley, N. Gelfand, U. Nauenberg, D. Riller, J. Steinberger, T.H. Tau, H. Brugger, P. Kramer and R. Plano. Proc. Intern. Conf. at CERN, 50, 1962. Preliminary results on the production and decay properties of the ω , η and ρ mesons and other resonances in π^+ proton collisions at 2.35, 2.6 and 2.9 GeV/c. Phys. Rev. Lett., 9 322, 1962. Production of pion resonances in π^+p interactions.
- 21. C. Grote, J. Klabuhn, J. Klugow, U. Krecker, U. Kundt, K. Lanius, U.W. Meier, S. Nowak and R. Pose. Proc. Intern. Conf. at CERN,64, 1962. Evidence for the ρ° - meson in $\pi - p$ interactions at 7.8 GeV/c.
- 22. G.B. Chadwick, W.T. Davies, M. Derrick. C.J.B. Hawkins, J.H. Mulvey, D. Radojičić, C.A. Wilkinson, M. Cresti, S. Limentani, and R. Santangelo Proc. Intern. Conf. at CERN 69, 1962. Phys. Rev. Lett., 10, 62, 1962. A study of the annihilation of stopped antiprotons in hydrogen: the reaction $\tilde{p} + p + \pi^+ + \pi^-$
- 23. G.B. Chadwick et al Proc. Intern. Conf. at CERN, 73, 1962. Production and decay of the ρ and ω mesons in antiproton annihilation.
- 24. T. Ferbel, J. Sandweiss, H.D. Taft, M. Gailloud, T. Morris, R. Lea and T.E. Kalogeropoulos. Proc. Intern. Conf. at CERN 76, 1962. Elastic scattering and multipion annihilations of 3.25 GeV/c antiprotons in hydrogen.

- 25. D.O. Caldwell, E. Bleuler, B. Elsner, L.W. Jones and B. Zacharow. Proc. Intern. Conf., at CERN 610,1962. Results on peripheral pion-nucleon interactions at 12 and 17 GeV/c. Physics Letters 2, 253, 1962. Production of ρ° mesons at 12 and 17 GeV/c.
- 26. N.H. Xuong and G.R. Lynch. Nuovo Cim., 25, 923, 1962. Search for a fourpion resonance and some decay modes of the p = and ω -mesons. Phys. Rev., 128, 1849, 1962. Search for multipion resonances in the reaction $\tilde{p} + p + 3\pi^{+} + 3\pi^{-} + n\pi^{\circ}$.
- 27. D.D. Carmony and R.T. Van de Walle. Phys. Rev., 127, 959, 1962. Determination of $\pi - \pi$ Cross sections by the Chew-Low Extrapolation Method.
- E. Pickup. D.K. Robinson and E.O. Salant. Phys. Rev. Lett., 9, 170, 1962. Departures from one-pion exchange in 1,25-BeV # - p interaction.
- 29. L.B. Auerbach, T. Elioff, W.B. Johnson, J. Lach, C.E. Wiegand and T. Ypsilantis. Phys. Rev. Lett., 9, 173, 1962. Study of pion-pion interaction from pion production by pions.
- 30. J. Naiss. Physics Letters 1, 247, 1962. Experiment and the p-meson.
- 31. В.А. Беляков, Ван Юн-чан, Н.М. Вирясов, Ду Юань-цай, Ким Хи Ин, Е.Н.Клодницкая, А.А. Кузнецов, Нгуен Дин Ты, В.Н. Пенев, Е.С. Соколова, М.И.Соловьев. ЖЭТФ, 44, 1474, 1963. Изучение свойств п^о -мезонов, рождающихся со странными частицами в п⁻р и п⁻С - взаимодействиях.
- 32. V. Hagopian and W. Selove. Phys. Rev. Lett., 10, 533, 1953. Experimental evidence on $\pi \pi$ scattering near the ρ and f° resonances, from $\pi^{-} + p \rightarrow \pi + \pi +$ nucleon, at 3 BeV/c.
- 33. Alliti et. al. Nuovo Cim., 29, 515, 1963. π + p. Interactions at 1, 59 GeV/c.
- 34, S.D. Drell, Proc. Intern. Conf. at CERN., p. 27, 1958. "Nucleon structure". Theoretical II.
- Hofstadter, Bumiller, Yerian. Rev. Mod. Phys., <u>30</u>, 482, 1958. Electromagnetic structure of the proton and neutron. Перевод в сборнике "Электромагнитная структура ядер и нуклонов".
- 36. W.R. Frazer and J.R. Fulco. Phys. Rev. Lett., 2, 365, 1959. Effect of a pionpion scattering resonance on nucleon structure. Phys. Rev., <u>117</u>, 1609, 1960. Effect of a pion-pion scattering resonance on nucleon structure-II.
- F.J. Bowcock, D. Lurie. Nuovo Cim., <u>16</u>, 918, 1960. Effect of a pion-pion scattering resonance on low energy pion-nucleon scattering. Nuovo Cim., <u>19</u>, 142, 1961. The effect of a pion-pion interaction on low-energy meson-nucleon scattering II.
- 38. C.F. Chew, F.E. Low. Phys. Rev., <u>113</u>, 1640, 1959. Unstable particles as targets in scattering experiments.
- 39. F. Selleri. Physics Lett., 3, 76, 1962. Off-shell pion-pion scattering in the T = J = 1 state.
- 40. Ferrari and F. Selleri. Phys. Rev. Lett., 7, 387, 1961. Pionic form factor effects in peripheral nucleon-nucleon collisions.
- 41. В.В. Серебряков, Д.В. Ширков. Препринт ИМ. С.О. АН СССР. ТФ-5, 1962. Естественное объяснение узкого пкон-пконного резонанса.

- 1. B.C. Maglic, L.W. Alvarez, A.H. Rosenfeld and M.L. Stevenson, Phys. Rev. Lett., 7, 178, 1961. Evidence for a T = 0 three-pion resonance.
- N.H. Xuong and G.R. Lynch. Phys. Rev. Lett., 7, 327, 1961. Evidence confirming the T = 0 three-pion resonance.
- A. Pevsner, R. Kramer, M. Nussbaum, C. Richardson, P. Schlein, R. Strand, T. Toohig, M. Block, A. Engler, R. Gessaroli and C. Meltzer. Phys. Rev. Lett., 7, 421, 1961. Evidence for a three-pion resonance near 550 MeV.
- 4. M.L. Stevenson, L.W. Alvarez, B.C. Maglic and A.H. Rosenfeld. Phys. Rev., 125, 687, 1962. Spin and parity of the ω -meson.
- 5. N.H. Xuong and G.R. Lynch. Nuovo Cim., 25 923, 1962. Search for a fourpion resonance, and some decay modes of the ρ and ω mesons.
- 6. W.D. Walker, E. West, A.R. Erwin and R.H. March. Proc. Intern. Conf. at CERN, p. 42, 1962. ω and ρ production.
- D.D. Carmony, F. Grard, R.T. Van de Walle and N.H. Xuong. Proc. Intern. Conf. at CERN, p. 44, 1962. Multipion production by 2.03 GeV/c in hydrogen.
- 8. C. Aliff, D. Colley, N. Gelfand, U. Nauenberg, D. Riller, J. Steinberger, T.H. Tau, H. Brugger, P. Kramer and R. Plano. Proc. Intern. Conf. at CERN, p. 50, 1962. Preliminary results on the production and decay properties of the ω, η and ρ mesons and other resonances in π⁺ proton collisions at 2.35, 2.6' and 2.9 GeV/c. Phys. Rev. Lett., 9, 322, 1962. Production of pion resonances in π⁺p interactions Phys. Rev. Lett., 9, 325, 1962. Decays of the ω and η mesons.
- 9. G.B. Chadwick et all. Proc. Intern. Conf. at CERN, p. 73, 1962. Production and decay of the ρ and ω mesons in antiproton annihilation.
- T. Ferbel, J. Sandweiss, H.D. Taft, M. Gailloud, T. Morris, R.M. Lea and T.E. Kalogeropoulos. Proc. Intern. Conf. at CERN, p. 76, 1962. Elastic scattering and multipion annihilations of 3.25 GeV/c antiprotons in hydrogen.
- 11. R. Armenteros et all. Proc. Intern. Conf., at CERN, p. 90, 1962. Study of the ω meson in annihilations $\tilde{p} + p \rightarrow K + \tilde{K} + \omega^{\circ}$.
- T. Toohig, R. Kraemer, L. Madansky, M. Meer, M. Nussbaum, A. Pevsner, C. Richardson, R. Strand and M. Block. Proc. Intern. Conf. at CERN p. 99, 1962. An analysis of the production of η and ω mesons by the interactions of pions with deuterium,
- M. Meer, R. Strand, R. Kraemer, L. Madansky, M.Nussbaum, A. Pevsner, C. Richardson, T. Toohig, M. Block, S. Orenstein and T. Fields. Proc. Intern. Conf. at CERN, p. 103, 1962. The decays of the η- and the ω - mesons.
- 14. J. Button-Shafer, M. Ferro-Luzzi J. Marray, M.L. Stevenson, and F.T. Solmitz, Proc. Intern. Conf. at CERN, p. 307, 1962. Λ π⁺π^p and Λ + neutral final states in K⁻-p interactions at K⁻ momenta of 1.22 and 1.51 GeV/c.

- 15. N.H. Xuong and G.R. Lynch, Phys. Rev., 128, 1849, 1962. Search for multipion resonances in the reaction $\bar{p} + p \rightarrow 3\pi^+ + 3\pi^- + n\pi^\circ$.
- W.J. Fickinger, D.K. Robinson and E.O. Salant. Phys. Rev. Lett., <u>10</u>, 457, 1963. Evidence for two-pion decay mode of the ω -meson.
- 17. В.А. Беляков, Ван Юн-чан, И.М. Вирясов, Ду Юань-цай, Ким Хи Ин, Е.Н. Кладницкая, А.А. Кузнецов, Нгуен Дин Ты, В.Н. Пенев, Е.С. Соколова, М.И. Соловьев. ЖЭТФ, 44, 1474, 1963. Изучение свойств по-мезонов, рождающихся со странными частицами в пор и по-С взаимодействиях.
- J.B. Shafer, J.J. Murray, D.O. Huwe, F. Solmitz and M.L. Stevenson, Bull. Am. Phys. Soc., 8, 22, 1963. Rare decay modes of the ω° - meson.
- В.В. Бармин, А.Г. Долголенко, Ю.С. Крестников, А.Г. Мешковский Ю.П. Никитин, В.А. Шебанов. Преприит ИТЭФ, № 161, 1963. Обнаружение распада ω → n° + γ. ЖЭТФ 45, 1879, 1963 г.
- J. Bernstein, G. Feinberg, Proc. Intern. Conf. at CERN, p. 170, 1962. A Needle in a Haystack.
- 21. Y. Nambu. Phys. Rev., <u>106</u>, 1366, 1957. Possible Existence of a Heavy Neutral Meson.
- Г.И. Копылов и В.И. Огневецкий. Препринт ОИЯИ Р-1161, Дубна, 1962. Запрещенные конфигурации мезонов в многомезонных распадах.
- 23. S. Glashow. Phys. Rev. Lett., 7, 469, 1961. Is isotopic spin a good quantum number for new isobars?
- N. Gelfand, D. Miller, M. Nussbaum, J. Ratau, J. Schultz, J. Steinberger, T.H. Tan, L. Kirsch, R. Plano. Phys. Rev. Lett, <u>11</u>, 436, 1963. Lifetime of the ω - meson.

5. ¢ - мезон

- 1. L. Bertanza, V. Brisson, P.L. Connolly, E.L. Hart, L.S. Mittra, G.C. Moneti, R.R. Ray, N.P. Samios, I.O. Skillicorn, S.S.Yamamoto, M. Goldberg, L. Gray, J. Leitner, S. Lichtman and J. Westgard, Phys. Rev. Lett, 9, 180, 1962. Possible resonances in the $\Sigma + \pi$ and K + K.
- 2. P. Schlein, W.E. Slater, L.T. Smith, D.H. Stork and H.K. Ticho, Phys. Rev. Lett., <u>10</u>, 368, 1963. Quantum numbers of a 1020 MeV K K resonance.
- P.L. Connely, E.L. Hart, K.W. Lai, G. London, G.C. Moneti, R.R. Rau, N.P. Samios, I.O. Skillicorn, S.S. Yamamoto, M. Goldberg, M. Gundzik, J. Leitner and S. Lichtman. Phys. Rev. Lett., <u>10</u>, 371, 1963. Existence and properties of the \$\phi\$ -meson.

4. J.J. Sakurai, Ann. Phys. 11, 1, 1960. Theory of strong Interactions.

- 5. M. Gell-Mann. Phys. Rev., 125, 1067, 1962. Symmetries of Baryons and Mesons.
- 6. M. Goldhaber, J. Lee, C. Yang, Phys. Rev., <u>112</u>, 1796, 1958. Decay modes of a $(\theta + \theta)$ system.

- 7. В.И. Огиевецкий, Э.О. Оконов, М. И. Подгорецкий. ЖЭТФ, <u>43</u>, 720, 1962. Замечания о свойствах пар К -мезонов.
- 8. S.B. Treiman. Phys. Rev., <u>128</u>, 1342, 1962. Adair spin analysis with parity nonconservation.
- 9. J.J. Sakurai. Phys. Rev. Lett., 9, 472, 1962. Possible existence of a T = 0 Vector Meson at 1020 Mev.
- N. Gelfand; D. Miller, M. Nussbaum, J. Ratau, J. Schultz, J. Steinberger, T T.H. Tan, L. Kirsch, R. Plano. Phys. Rev. Lett., 11, 438, 1963. Width of the φ meson, 1962.

6. f^o - мезон

- Я.Я. Шаламов, А.Ф. Грашин. ЖЭТФ, 43, 21, 1962. Данные о ππ взаимодействии из реакции рождения π -мезонов в πр соударениях. Рождение ρ° - мезонов.
- 2. Z.G.T. Guiragossian, W.H. Powel, H.S. White. Bull.Am.Phys.Soc., 7, 281, 162. Evidence for new $\pi-\pi$ Resonances.
- 3. W. Selove, V. Hagopian, H. Brody, A. Baker and E. Leboy. Phys.Rev. Lett., 9, 272, 1962. Evidence for a $T = 0 (\pi^+ - \pi^-)$ resonance at 1250 MeV.
- 4. J.J. Veillet, J. Hennessy, H. Bingham, M. Bloch, D. Drijard, A. Lagarrigue, P. Mittner, A. Rousset, G. Bellini, M. di Corato, E. Fiorini and P.Negri. Phys. Rev. Lett., <u>10</u>, 29, 1963. Existence and spin of the proposed $f^{\circ}(\pi^{+}-\pi^{-})$ resonance.
 - 5. N.H. Xuong, R. Lander and P. Yager. Bull. Am. Phys. Soc. Ser. II, v. 8, 342, 1963. Production of multipion resonances by π^+ at 3,43 Bev/c in hydrogen.
 - 6. L. Bondar et all. Physics Lett., 5, 153, 1963. Further evidence for the f° -meson, and a determination of its spin.
 - 7. V. Hagopian and W. Selove. Phys. Rev. Lett., 10, 533, 1963. Experimental evidence on $(\pi^+\pi^-)$ -scattering near ρ and f° resonances from $\pi^- + p \rightarrow \pi^+ + \pi^-$ nucleon, at 3 BeV/c.
 - 8. Z.G.T. Guiragossian. Phys. Rev. Lett., <u>11</u>, 85, 1962. Study of Pion-Pion Resonances in 3.3 BeV π^-p interaction.
 - 9. G.F. Chew and S.C. Frautschi. Phzs. Rev. Lett. 8, 41, 1962. Regge trajectories and principle of maximum strength for strong interactions.
- 10. R.K. Adair. Phys. Rev., <u>100</u>, 1540, 1955. Angular distribution of Λ° and θ° decays.
- 11. A. Pignotti. Phys Rev. Lett., <u>10</u>, 416, 1963. Does the *f*^o particle lie on the Pomeranchuk trajectory?
- 12. A. Ahmadzadeh and I.A. Sakmar, Phys. Lett., 5, 145, 1963. An approximation method for Regge trajectories and its implication on the spin - 2 particle of the Chew-Frautschi diagram.

7. С - пнк

- 1. Barloutand, J. Heughebaert, A. Levegue, J. Meger and R. Onmes. Phys Rev. Lett., 8, 32, 1962. Evidence for a T = 1 pion-pion resonance of 575 MeV.
- 2. B.S. Zorn, Phys. Rev. Lett., 8, 282, 1962. Pion-pion resonances in a pure T = 1 state.
- 3. V.P. Kenney, W.D. Shephard and C.D. Gall. Phys. Rev. <u>126</u>, 736, 1962. Single Neutral Pion Production by Pions of 1100 MeV.
- 4. C.C. Peck, L.W.Jones and M.L.Perl. Phys. Rev., <u>126</u>, 1836,1962. Evidence concerning pion-pion interactions below the 765 MeV pion-pion resonance.
- C. Richardson, R. Kraemer, M. Meer, M. Nussbaum, A. Pevsner, C. Richardson, R. Strand and M. Block. Proc. Intern. Conf. at CERN, p. 96, 1962. Two pion resonances below mass 900 MeV.
- 6. G.B. Chadwick, W.T. Davies, M. Derrick, C.J.B. Hawkins, P.B. Jones, J.H. Mulvey, D. Radojicic, C.A. Wilkinson, M. Cresti, A. Grigoletto.
- S.Limentani, A. Li mentani, A. Loria, L. Peruzzo and R. Santangelo. Proc. Intern. Conf. at CERN, p. 73, 1962. Production and decay of the p-and ωmesons in antiproton annihilation.
- H. Foelsche, E.C. Fowler, H.L. Kraybill, J.R. Sanford and D. Stonehill. Proc. Intern. Conf at CERN, p. 36, 1962. π⁺+ p in interaction near 1 GeV.
- 8. C. Alff, D. Colley, N. Gelfand, U. Nauenberg, D. Riller, J. Steinberger, and R. Plano. Proc. Intern. Conf. at CERN, p. 50, 1962. Preliminary results on the production and decay properties of the mesons and other resonances in π -proton collisions at 2.35, 26 and 2.9 GeV/c. Phys. Rev. Lett., 9, 322, 1962. Production of pion resonances in $\pi^+ p$ interactions.
- D.H. Stonehill and H.L. Kraybill. Rev. Mod. Physics, 34, 503, 1962. Pionpion interactions in #*p collisions.
- 10. F. Turkot, G.B. Collins, T. Fujii, M.A.R. Kemp, J. Menes, J. Oostens, R.A. Carrigan, R.M. Edelstein, N.C. Hien. Bull of the Amer. Phys. Soc. Ser II, 7, 620, 1962. Search for T = 1 pion resonances in deuteron production.
- 11. Barloutaud, J. Heughebaert, A. Leveque, C. Louedec, J. Meyer and D. Tycho. Nuovo Cim., <u>27</u>, 238, 1963. Single-pion production in Collisions at 820 and 1050 MeV.
- 12. M. Olsson and G.B. Yodh. Phys. Rev. Lett., 10,353, 1963. Isolar model analysis of single pion production in pion-nuclear collisions below 1 BeV.
- 13. R.M. Sternheimer and S.J. Lindenbaum. Phys. Rev., <u>109</u>, 1723, 1958. Pion production in pion-nucleon collisions.
- 14. S. Bergia, F. Bonsignori and A. Stanghellini, Nuovo.Cim., <u>16</u>, 1073, 1960. Pion production and the "Isobaric" model.

Рис. 1. Рэспределение углов между двумя у -квантами после вычитания фона. Плавиан линия соответствует теоретическому расчету для п^о-мезона с учетом разрешении прибора.

Рис. 2. Спектр эффективных масс двух у -квантов: пунктир - без вычитания фона; сплошная линия - спектр после вычитания фона.

Рис. 3. Зависимость $E^2(X^0)$ от $p^2(X^0)$. Светлые точки – события, соответствующие распаду $\eta \to \pi^+ + \pi^- + \gamma$. Темные точки – события, соответствующие распаду $\eta \to \pi^+ + \pi^- + \eta^0$.

Рис. 5. Спектры у - квантов от распада Х°, образованной в реакции у + p → p + Х°. /а/ - ниже порога образования η - частицы. /ь/, /с/, / d / - выше порога. Сплошная линия в нижней части каждой фигуры - вклад от процессов множественного рождения мезонов. В верхией части показана разность между экспериментальными точками и сплошной линией.

Рис. 6. Сечение п + п + п + п в зависимости от М пп . Сплощная линия соответствует сечению для резонансного рассеяния в состоянии J = 1 . О- формула Чу и Лоу, х - формула Селлери.

Рис. 7. Зависимость коэффициента асимметрии углового распределения п-мезонов в системе центра масс (п п) и (п п +) относительно направления первичного п -мезона от квадрата полной энергии системы.

положение эффективных масс $\pi^+\pi^-$ системы. Стрелки указывают /в/ $\Delta^2 < 0.15$ /Гэв/с/², /с/ $0.25 \le \Delta^2 \le 0.70$ /Гэв/²/с / d / $\Delta^2 \ge 0.70$ /Гэв/с/². Рис. 8. Распределение эффективных масс

Рис. 9. Гистограмма событий, соответствующих реакции $\pi^- + p + n + 3\gamma$ после вычитания фона. а - 1,55 Гэв/с, в - 2,8 Гэв/с.

Рис. 10. Распределения событий, соответствующих реакции К + p → Λ + K + K на графике Далитца. Импульс К -мезонов 1.95 Гэв/с.

Рис. 12. /а/ Распределение масс то треакции то + p + т + то /в/ Асимметрия углового распределения то в с.ц.н. (т+то) относительно направления первичного то -мезона.

Рис. 13. Сечения π⁺ π⁻ рессеяния в реакции π⁻+ p → π⁺ + π а/ в области ρ⁻ резонанса / б/ в области f⁰ - резонанса для спина 0, в/ в области f⁰ - резонанса для спина 2, / в области f⁰ - резонанса для спина 4.

Рис. 14. Спектры Q -величин системы π⁺π^o эт реакции π⁺+ p → π⁺+ π^o + p Сплошная кривая рассчитана по изобарной модели Олсона н Йодха. Пунктир - изобарная модель Линденбаума и Штейнхеймера. Энергия первичных π⁺-мезонов: а/ 1090 Мэв, d / 910 Мэв, с/ 820 Мэв.

Таблица I

Пионные резонансы

		-			110-	0	DI	Pacna	1ð
Обознач	нения	Злектрич. Заряд Q	масса Мэв М	ширина Мэв Г	изотоп Спин І	СПИН И четность Ј	9-чет- ность У	Установлен схемы распада	СООТНО- ШЕНИЯ Ветвей %
Эта	2	0	548±1	≤7	0	0-	+	π ⁺ + π ⁻ +π° π ⁺ +π ⁻ +γ π°+π°+ π° γ+γ	~23 ~6 ~39 ~31
	p+	+1	750±10	100 ± 10	1	ſ	+	$\pi^{+}+\pi^{\circ}$	~100
po	p°	0	750±10	100±10	1	1-	+	$\pi^+ \pi^-$	~100
	p-	-1	750 ±10	100±10	1	1-	+	$\pi^+ \pi^\circ$	~100
Омега	ω	0	783±1	9,5±2,1	0	1-	-	π*+π+π° π°+γ π‡π-	~84 ~12 ~4
фи	q	0	1019 ± 1	3,1±1,0	0	1-		$ \begin{array}{c} K+\overline{K} \begin{cases} K^{+} + K^{-} \\ K_{1}^{\circ} + K_{2}^{\circ} \\ \underline{\rho} + \pi \\ \overline{K} + \overline{K} \end{array} $	~35±20
эф	f°	0	1250±25	100±50	0	2+	+	$\frac{\pi^{+} + \pi^{-}}{\pi^{+}\pi^{-}\pi^{-}}$ $\frac{\pi^{+}\pi^{-}\pi^{-}}{\pi^{+}\pi^{-}}$	≼8±6