

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

В.С. Барашенков, Д.И. Блохинцев, И. Патера, Г.Л. Семашко

P-1458

АНАЛИЗ ИМПУЛЬСНОГО СПЕКТРА ПРОТОНОВ ОТДАЧИ В НЕУПРУГИХ П⁻р ВЗАИМОДЕЙСТВИЯХ ПРИ 7 ГЭВ

Nucl. Phys., 1964, ~ 54, ~ 3, p 492-496.

В.С. Барашенков, Д.И. Блохинцев, И. Патера, Г.Л. Семашко

P-1458

АНАЛИЗ ИМПУЛЬСНОГО СПЕКТРА ПРОТОНОВ ОТДАЧИ В НЕУПРУГИХ П⁻-р ВЗАИМОДЕЙСТВИЯХ ПРИ 7 ГЭВ

2169/1 mg

Направлено в Nuclear Physics,

Объединенино виститата идерных неследоване БИБЛИОТЕНА

х) Постоянный адрес: Институт физики, Прага.

Для описания неупругих взаимодействий частиц при больших энергиях (T>1 Гэв)в настоящее время широко используется одномезонная полюсная теория. Эта теория пришла на смену статистической теории Ферми после того, как экспериментаторы обнаружили асимметрию угловых распределений рождающихся частиц. Для дальнейшего развития теории, в свою очередь, было чрезвычайно важно установить, где одномезонное приближение противоречит опыту. Однако, несмотря на грубость, это приближение в области ускорительных энергий согласуется со всемн известными экспериментальными данными.

Первое указание на возможное расхождение эксперимента и теории было получено в работе группы Векслера¹¹. В этой работе было впервые надежно установлено, существование двух максимумов в импульсных спектрах Λ -гиперонов, образующихся в π^--p взаимодействиях при T = 7 Гэв. Однако в нащих работах^{2,3} показано, что в пределах экспериментальных ошибок такой характер спектров Λ -гиперонов можно объяснить резонансами в периферических $\pi - k$ взаимодействиях.

Почти одновременно в работе^{/4/} дополнительные максимумы были обнаружены и в спектрах протонов отдачи. По сравнению со спектром [^] – гиперонов анализ протонных спектров более прост, так как в этом случае надо учитывать всего лищь две одномезонные диаграммы, причем одна из них дает значительно_меньший вклад, чем другая^{/5/} (см. рис. 1).

На рис. 2 результаты теоретического расчета импульсного спектра протонов сравниваются с экспериментальной гистограммой из работы¹⁴¹. На этом рисунке приведен нормированный на единицу суммарный теоретический спектр

$$W(p) \equiv W_1(p) + W_2(p) = \frac{\left(\frac{d\sigma_{in}}{n} / dp\right)}{\pi N}$$

 $\sigma_{ln}^{\pi N} = \int \left(\frac{d\sigma}{d} \right) d\rho + \int \left(\frac{d\sigma}{d} \right) d\rho = 0.04g^2 \quad \overline{\sigma}_{\pi NN}^{\pi \pi} + 0.26\overline{\sigma}_{t}^{\pi}$

где

- полное сечение неупругих $\pi^- p$ взаимодействий, $\tilde{\sigma}_{t}^{\pi\pi}$ - средняя величина полного сечения $\pi - \pi$ взаимодействий, $g^2 \equiv 15$ - постоянная пион-нуклонного взаимодействия. Этот слектр вычислен тем же методом, что и снектр Λ -частиц в работах^{2,3/} Приведены также парциальные спектры

(*)

$$W_{i}(p) = \frac{(d\sigma_{i}/dp)}{\sigma^{\pi_{N}}}$$

соответствующие одномезонным диаграммам М, и М .

3

Существенно, что первая из этих диаграмм дает спектр, пропорциональный сечению $\pi - \pi$ взаимодействий $\sigma^{\pi\pi}(\omega)$, в то время как спектр, соответствующий диаграмме M_2 , зависит лишь от среднего значения $\overline{\sigma}_{t}^{\pi\pi}$, так как сечение $\pi - \pi$. взаимодействий в этом случае входит под знаком интеграла (ср. формулы (1) и (2) в работе $\binom{3}{2}$.

Спектры на рис. 2 вычислены в предположении, что в наиболее существенной области энергий $\omega \approx 0.5-3$ Гэв сечение $\sigma_{t}^{\pi\pi}(\omega)$ очень мало отличается от среднего значения $\sigma_{t}^{\pi\pi\pi}$. Как видно, при этом условии нельзя получить спектр с двумя максимумами.

Расчеты показывают, что образование передачи четырехмерного импульса промежуточного π -мезона ($\Delta \leq \Delta^*$) оставляет почти неизменным положение максимума в спектре $W_{2}(p)$ и сдвигает его в спектре $W_{1}(p)$ (см. рис. 1). При соответствующем подборе величины Δ^* можно получить спектр W(p) с двумя максимумами. Однако теоретическое сечение $\sigma_{In}^{\pi N}$ в этом случае оказывается намного меньше экспериментального (если только не предполагать, что сечение $\sigma_{I}^{\pi \pi}$ на несколько порядков превосходит сечение $\pi - N$ взаимодействий, что противоречит другим оценкам (см. $^{(6)}$)

В рамках одномезонной теории согласие экспериментальных и теоретических спектров протонов можно получить лишь при учете энергетической зависимости сечения *п*-*п*взаимодействий.

На рис. З приведена величина отношения $\sigma_{t}^{\pi\pi}(\omega)/\overline{\sigma}_{t}^{\pi\pi}$, полученная из условия, чтобы теоретический спектр W(p) на рис. 1 наилучшим образом согласовался с экспериментальной гистограммой. Вполне отчетливо проявляются три пика. Если учесть размазку энергии пучка первичных π^{-} -мезонов $\Delta T^{\Xi} \pm 1$ Гэв, то энергия двухмезонной системы, соответствующая этим пикам, $\omega \approx 2,5-3$; 1,5-2,5 и 0,2-0,9 Гэв.

В области ω 🛥 0,2-0,9 Гэв хорошо известны π - π резонансы ρ и ξ xx).

Пик при ω н 1,5-2,5 Гэв является не очень достоверным, так как соответствующий ему максимум в экспериментальной гистограмме при р = 1,1 Гэв совпадает с максимумом в спектре W (р) и расхождение между экспериментальной и теоретической кривыми в этом интервале импульсов в эначительной степени может быть обусловлено ощибками измерений ^{XXX}.

(xx) Эти резонансы играют основную роль, когда энергия первичных π -мезонов T < 5 Гэв; с ростом энергии T увеличивается относительный вклад $\pi - \pi$ взаимодействий при больших значениях ω .

ххх) Вместе с тем следует отметить, что из анализа взаимодействий космических лучей очень большой энергии недавно были получены указания о существовании короткоживущей бозонной частицы с нулевым барионным числом и массой, несколько большей массы двух нуклонов/7/. Если такая частица действительно существует, она должна давать вклад во второй пик на рис. 3. Что касается пика при ω № 2,5-3 Гэв, то никаких указаний на существолание п-п резонанса в этой области энергий в настоящее время не имеется. Возможно, это связано с тем, что эффективные массы пионных систем в области и ≥ 2 Гэв практически еще не исследованы. Однако имеется и другая возможность, заключающаяся в том, что расхождение экспериментальных и теоретических спектров может быть обусловлено неприменимостью самой одномезонной теории.

Дальнейшее исследование этого вопроса представляет первостепенный интерес.

В частности, если дополнительные максимумы в спектре протонов отдачи обусловлены $\pi - \pi$ резонансами, то по мере увеличения энергии пучка первичных π -мезонов, эти максимумы должны сдвигаться в оторону больших импульсов. Так максимум, который при T = 7 Гэв расположен в области $p \equiv 0,3-0,4$ Гэв/с, при T = 10 и 16 Гэв будет наблюдаться соответственно при $p \approx 1$ и 2 Гэв/с.

Импульсный спектр протонов отдачи в неупругих *т* – *р* взаимодействиях при *T* =16 Гэв исследовался в работе^{/8/}. Результаты измерений приведены на рис. 4. Как видно из сравнения с рис.2, максимумы в спектре действительно сдвинулись в область больших импульсов. Однако статистика проанализированных протонов очень мала и более определенных заключений сделать пока еще нельзя.

Так как структура протонных спектров наблюдается как в звездах с малым числом лучей, так и в многолучевых звездах $^{/4/}$, следует ожидать, что соответствующие им резонансные $\pi - \pi$ состояния, если они действительно существуют, с большой вероятностью распадаются на четыре и большее число мезонов; изотопический спин этих состояний I > 1.

В заключение отметим, что из сравнения теоретического сечения $\pi - N$ взаимодействия с его экспериментальным значением $\sigma_{in}^{\pi N} \cong 24$ мб следует, что в области порядка нескольких Гэв средняя величина сечения $\pi - \pi$ взаимодействия $\overline{\sigma}_{i}^{\pi \pi} \equiv 30$ мб. Эта величина приблизительно в два раза превосходит асимптотическое значение $\sigma_{i}^{\pi \pi} \equiv 15$ мб, полученное из квазиклассических соображений и на основе полюсов Редже $f_{0,9/}^{(6,9/2)}$.

Один из авторов (В.С.Б.) благодарит за гостеприимство дирекцию Института физики и математики Молдавской Академии наук, где частично была выполнена настоящая работа.

Литература

 V.A.Belyakov, Wang Yung chang, V.I.Veksler, N.M.Viryasov, I.Vrana, Du Yuan-cai, Kim Hi In, E.N.Kladnitskaya, A.A.Kuznetsov, A.Mihul, Nguyen Dinh Tu, I.Patera, V.N.Penev, E.S.Sokolova, M.I.Soloviev, T.Hofmokl, Tshen Lin yen, M.Schneeberger. Proc. of the 11-th Intern. Conference on High Energy Phys., CERN, 1962, p.252.

x) $\omega = \omega(T,p)$ -полная энергия частиц в верхнем вертексе диаграммы M_1 (в системе их центра масс).

- 2. V.S. Barashenkov, D.I. Blokhintsev, E.K. Mihul, O.Patera, G.L. Semashko. Nucl. Phys.
- 3. В.С.Барашенков, Д.И.Блохинцев, Э.К. Михул, И.Патера, Г.Л.Семашко. ЖЭТФ, <u>45</u>, 381 (1963).
- 4. K.Lanius, Proc. of the 11-th Intern. Confer. on Iligh Energy Phys. CEllN, 1962, p. 617.
- 5. Д.И.Блохинцев, В.С.Барашенков, Ван Жун, Э.К. Михул, Хуан Цзу-чжань, Ху Ши-кэ. ЖЭТФ, 42, 217 (1962).
- 6. V.S.Barashenkov, Fortschritte d. Phys. (в печати).
- 7. S.Hasegawa, Prog. Theor. Phys. 29, 128 (1963).

M

- 8. S. J. Goldsack, L. Riddiford, B. Tallini, B.R. French, W. W. Neale, J.R. Norbury, I.O. Skillicorn, W. T. Davies,
- M.Derrick, J.H.Mulvey, D.Radojicic, Nuovo Cim. 23, 941 (1942).
- 9. V.S.Barashenkov, V.M.Maltsev, Fortschritte d. Phys. 9, 549 (1962).

Рукопись поступила в издательский отдел 19 ноября 1963 г.

Рис. 1. Одномезонные диаграммы неупругих $\pi - N$ взаимодействий. В нашей работе^{/5/} уже отмечался преобладающий вклад днаграммы M. Из формулы (*) видно, что этот вклад более чем вдвое превышает вклад диаграммы M; $\sigma = 2\sigma$.

19

Рис. 4. Импульсный спектр протонов отдачи в неупругих взаимодействиях при 7 = 16 Гэв, полученный суммированием экспериментальных данных из работы/9/. Ошибки среднестатические. Система центра масс.