

K-20

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Лаборатория ядерных реакций

А. Капусцик, В.П. Перелыгин, С.П. Третьякова

P-1433

ЭФФЕКТИВНОСТЬ РЕГИСТРАЦИИ АКТОВ ДЕЛЕНИЯ ЯДЕР С ПОМОЩЬЮ СТЕКЛА И СЛЮДЫ

А. Капусцик, В.П. Перелыгин, С.П. Третьякова

P~ 1483

ЭФФЕКТИВНОСТЬ РЕГИСТРАЦИИ АКТОВ ДЕЛЕНИЯ ЯДЕР С ПОМОЩЬЮ СТЕКЛА И СЛЮДЫ

Направлено в ПТЭ

UGSCANNCHHMR HHCTHTY ядерных исследования **БИЕЛИОТЕНА**

Дубна 1963

2126/, yg.

Методика регистрации следов осколков деления ядер в слюде с помощью электронного микроскопа была впервые предложена Силком и Барисом в 1959 году^{/1/}.

 \mathbf{b}

В 1962 году Прайс и Уокер^{/2,3/} разработали методику усиления каналов, образованных осколками деления в слюде, с помощью плавиковой кислоты. После травления в плавиковой кислоте следы осколков деления могут наблюдаться с помощью обычного оптического микроскопа.

В предыдущей работе⁴⁴ для регистрации актов деления ядер предлагалось использовать стекло и другие аморфные среды, содержащие SiO₂. Преимуществами таких сред по сравнению с природной слюдой является малый собственный фои и возможность производить поиски следов осколков деления со скоростью в несколько раз большей, чем на слюде или фотоэмульсии (5).

Настоящие опыты были предприняты с целью надежного определения эффективности данного метода, а также порога регистрации осколков деления для обычного стекла.

Эффективность регистрации актов деления ядер в зависимости от угла между траекторией осколка и поверхностью определялась нами для фотостекла (ГОСТ 683-52), фосфатного стекла и синтетической слюды. В качестве источника осколков использова лись препараты кюрия с активностью (1,2-1,5) · 10³ спонтанных делений в час. Препараты имели днаметр 5-6 мм и толщину 100 мкг/см². При определения эффективности препарат кюрия располагался на определенном расстоянии над детектором. Препарат обычно закреплялся на расстоянии 2 см от поверхности, геометрия расположения задавала угол вхождения осколков деления в регистрирующую среду.

Облучения производились в вакууме, время экспозиции составляло от 30 до 150 часов.

Для образцов фосфатного стекла и слюды геометрия изменялась с тем, чтобы охватить углы погружения осколков в среде вплоть до 8⁰. Режимы обработки образцов приведены в таблице 1.

		% HF	<i>t</i> мин.	t° C	
1	Фотостекло	2,5%	23	19	
2	Фосфатное стекло	40 %	90	20	
3	Синтетическая слюда	20%	10	20	

Таблица 1

Образцы фосфатного стекла имели скорость травления с поверхности 0,4 микрона/ час в 40% *НF* при 20⁰C. После травления образцы промывались в горячей и холодной дистиллированной воде и сущились на воздухе. Затем эти образцы просматривались по площади на микроскопе при увеличении 150 х (стекла) или 300 х (слюда).

Регистрировались координаты всех обнаруженных следов осколков деления, и, исходя из известной геометрии, находились зависимости числа следов от угла погружения *θ* осколка в среде.

Результаты этих опытов представлены на рис. 1, 2, 3. Точками обозначены числа зарегистрированных следов осколков, нормировка сплошных кривых производилась в области надежной регистрации этих осколков.

Эффективность регистрации для обычного фотостекла, согласно рис. 1, составляет (42 ± 4) %, что соответствует углам погружения осколков около 35° . Более пологие треки не регистрируются, так как одновременно с травлением вдоль каналов следов идет быстрое травление поверхностного слоя, содержащего эти каналы. В фосфатном стекле надежно регистрируются треки вплоть до углов $20-25^{\circ}$, и эффективность достигает (67 ± 5) % от полного телесного угла (рис. 2). Как следует из рис. 2, в фосфатном стекле регистрируются более пологие следы, чем в обычном, что обусловлено существенно меньшей скоростью травления этого стекла с поверхности.

В синтетической слюде надежно регистрируются треки вплоть до угла 10⁰ (рис.3). Более пологие треки трудно отличить от повреждений поверхности слюды, так как они имеют вид открытых сверху каналов.

-. Эффективность надежиой регистрации актов деления ядер с помощью синтетической слюды достигает (83±5)%.

Измеренные для фотостекла, фосфатного стекла и синтетической слюды эффективности могут быть использованы при различных количественных измерениях.

Производилось также измерение эффективности регистрации актов деления ядер в зависимости от толщины поглотителя, помещавшегося между препаратом и детектором. Детектором в этих опытах служило фотостекло, в качестве поглотителя использовались алюминиевые фольги разной толщины. Между препаратом и стеклянной пластинкой помещался полый цилиндр длиной 12,5 мм и диаметром 10 мм, который ограничивал углы вхождения осколков в стекло в интервале от 90° до 60°. Облучения производились в вакууме в течение 3-20 часов в зависимости от толщины алюминиевой фольги.

После экспозиции пластинки обрабатывались указанным выше способом и просматривались на микроскопе.

На рис. 4А и 4Б представлено число зарегистрированных осколков деления при различных толщинах поглощающих фольг для двух преператов кюрия. Как следует из рис. 4, при толщинах алюминиевой фольги до 4-5 µ не происходит существенного уменьшения эффективности регистрации осколков деления. Это обстоятельство позволяет использовать препараты делящихся веществ, имеющие большие толщины.

При дальнейшем увеличении слоя поглотителя число зарегистрированных следов плавно уменьшается, однако даже при толщине фольги 11-12 мк следы от осколков деления четко различаются. Из экспериментального соотношения "пробег-энергия" для осколков в алюминии^{/6/} можно оценить пороговое значение энергии осколков, регистрируемых в фотостекле. Оно равно = 15 - 20 Мэв. При толщинах алюминия свыше 12 мк следы от осколков деления трудно отличить от механических повреждений стекла.

Итак, методика регистрации актов деления ядер с помощью стекол и слюды имеет высокую эффективность, отличается простотой и доступностью. Данная методика позволяет использовать при регистрации споитанного и вынужденного деления препараты большой толщины.

Методика может быть полезна при измерении периодов спонтанного деления нечетных ядер, когда иеобходимы длительные экспозиции, при измерении угловых распределений и сечений деления тяжелых ядер различными частицами, при измерении потоков тепловых и быстрых иейтронов.

В заключение авторы выражают глубокую благодариость члену-корреспонденту АН СССР Г.Н. Флерову за постоянный интерес и внимание к данной работе.

Авторы выражают глубокую признательность также М.С. Лейзерзону, З.М. Сырицкой и В.В.Якубик за предоставленные в наше распоряжение образцы искусственной слюды и набор специальных фосфатных стекол.

Литература

1. E.C.Silk, R.S.Barnes. Phil. Mag, V. 4 N 44, 970 (1959).

- 2. P.B.Price, R.M.Walker. Phys. Rev. Letters, V.8, 217 (1962).
- 3. P.B.Price, R.M.Walker. Physics Letters, V.3, 113, (1962).
- 4. В.П. Перелыгин, С.П. Третьякова, И.Звара. Препринт ОИЯИ Р-1323, Дубна, 1963; ПТЭ (в печати).
- 5. С.П. Алмазова, В.П. Перелыгин. ПТЭ, № 2, стр. 63 (1963).
- 6, C.B.Fulmer. Phys. Rev., V.108, 1115 (1957).

Рукопись поступила в издательский отдел 9 октября 1963 г.

. 8

.