

- 51

0

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАВОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

Э.О. Оконов

P- 1423

о среднем времени жизни долгоживущего к^о-мезона

Дубна 1963

P - 1423

r

о среднем времени жизни долгоживущего к^о-мезона

}

2141/3 29

]o

В настоящее время точное измерение среднего времени жизни долгоживущего K^{o} -мезона (r_{2}) является одной из первостепенных экспериментальных задач. Как известно, правило отбора $\Delta I = \frac{1}{2}$ для лелтонных и иелептонных распадов К - частиц связывает определенными соотношениями абсолютные вероятности различных типов распадов K^{+} и K_{2}^{o} -мезонов. Используя эти соотношения и экспериментальные данные о распадных свойствах K^{+} -мезона, можно вычислить среднее время жизни K_{2}^{o} -мезона, которое при этих предположениях оказывается равным $r_{2} \sim 5 \cdot 10^{-8}$ сек. Представляет интерес сравнить это предсказание правила отбора $\Delta I = \frac{1}{2}$ с экспериментальным значением r_{2} .

Точное измеренне r_2 и относительной вероятности различных типов K_2^0 -распада позволяет также проверить следствия правила отбора $\Delta I = \frac{1}{2}$ для отдельных распадных каналов (как лептонных, так и нелептонных).

К сожалению, имеющиеся в настоящее время экспериментальные данные относительно г₂ немногочисленны и статистически плохо обеспечены. Причины этого - в серьезных экспериментальных трудностях решения рассматриваемой проблемы.

Действительно, средний распадный пробег К₂^о-мезонов довольно велик (несколько метров), а потому трудно в пределах одного детектора заметить уменьшение числа К₂^о-мезонов за счет распада (как это сделано было, например, для К₁^о-мезонов).

С другой стороны, отсутствие заряда у К⁰-мезона затрудняет создание моноэнергетических пучков этих частиц и их регистрацию до распада. Поэтому в данном случае нельзя применить ни один из вариантов опытов, использованных для измерения среднего времени жизни К⁺-мезонов.

Для определения 7, сушествуют в принципе два различных экспериментальных подхода:

1) измерение убывания числа K_2° -мезонов по их распадам с помощью двух деттекторов (или одного детектора в двух экспозициях) на различных расстояниях от источника K_2° -мезонов;

2) определение абсолютной вероятности К⁰₂-распада путем одновременной регистрации рождения и распада К⁰₂-частиц.

Каковы экспериментальные особенности этих двух методов? Первый из них требует моноэнергетический пучок К^о-мезонов или, по крайней мере, пучок с известным энергетическим спектром. В литературе сообщалось о создании не очень интенсивных

3

пучков К2 -мезонов с довольно узким импульсным интервалом 13/. В качестве источника Ко-частиц использовалась водородиая (или водородосодержащая)мишень, которая облучалась в пучке моноэнергетических "-мезонов. При этом Ко-мезоны, рожденные в реакции $\pi^{-} + p \rightarrow \Lambda^{0} + K^{0}$, отбирались детектором под определенным углом к направлению 🚛 - мезона, чем и обеспечивалась моноэнергетичность регистрируемых K_0° -частиц. "Размытие" в энергии возникает при этом за счет реакций $\pi^{-} + p \rightarrow \Sigma^{\circ} + K^{\circ}$ а также в результате рождения К⁰-мезонов на нуклонах ядра в стенках и в мишени (если она не чисто водородная). К сожалению, до настоящего времени пучки моноэнергетических Ко -мезонов не использовались для определения среднего времени жизни долгоживущих Ко-частиц.

Вообще говоря, для измерения г, может быть использован также пучок с известным энергетическим спектром. При этом, однако, возникает необходимость определения этого спектра, что само по себе представляет доволько трудную задачу. Для определения энергии распавшегося К2- мезона необходимо идентифицировать заряженные продукты распада и измерить их импульсы. Даже при этом условии не удается избежать возникающей при расчете двузначности в значении энергии х). Эту двузначность можно устранить, если измерять r_2 по распаду $K_2^{\circ} + \pi^+ \pi^- \pi^0$ и при этом регистрировать (помимо "" н ") один или оба у -кванта от "-распада (например, с помощью пузыръковой камеры с тяжелым наполнителем) или отбирая случаи, когда " - мезон распадается через пару Далитца . Аналогичным образом можно было бы регистрировать до сих пор ие наблюдавшийся распад $K^{\circ}_{o} \rightarrow 2y$, ожидаемая вероятность которого не очень мала /5,6/

Имеется возможность определить энергетический спектр Ко-мезонов из кинематического анализа реакции $\vec{K} + p \rightarrow \Lambda + \pi - ,$ наблюдаемой в камере, или анализируя распады К₁-мезонов, возникающих при когерентной регенерации в пучке К₂-мезонов. Однако в обоих случаях возникает необходимость учитывать энергетический ход упомянутых процессов, который в настоящее время изучен очень плохо.

Другой серьезной проблемой в рассматриваемом методе измерения г, является мониторирование, совершенно необходимое при двух экспозициях одного детектора на разных расстояниях от источника Ко-мезонов. При одновременной экспознции двух детекторов мониторирование также крайне желательно, хотя соответствующие поправки в принципе можно рассчитать. Для мониторирования могут быть использованы содержащиеся в нейтральном пучке вместе с Ко-мезонами У -кванты и нейтроны, которые в результате взаимодействия в детекторе могут дать заряженные (регистрируемые) продукты.

х) Статистический метод определения спектра Ко-тмезонов по идентифицированным распадам предложен Г. Тахтамышевым (частное сообщение).

Рассмотрим для простоты случай экспозиции в моноэнергетическом пучке Ко-мезонов с импульсом Р. Нетрудно убедиться, что в этом случае среднее время жизни может быть в принципе определено из соотношения:

 $\frac{l/r = \frac{Pc}{m_{\chi^0}(\ell_2 - \ell_1)} \ln \frac{N_1}{N_2}$, где ℓ_1 и ℓ_2 - расстояния детектора от источника K_2^0 -мезонов при двух положениях детектора, N₁ и N₂ - приведенные интенсивности K₂⁰ -частиц, которые могут быть най дены из соотношений:

$$\begin{split} n_{1} &= N_{1} f (\Omega_{1}) \Delta \Omega_{1} \Delta t_{1}, \\ & \\ n_{2} &= N_{2} f (\Omega_{2}) \Delta \Omega_{2} \Delta t_{2}. \end{split}$$

Здесь *п* - число зарегистрированных К⁰₂-частиц, *f*(Ω) - функция углового распределения рожденных Ко-мезонов, усредненная внутри телесного угла $\Delta \Omega$; a Δt фактор, учитывающий время экспозиции и возможные изменения интенсивности во времени.

Аналогичным образом число зарегистрированных "мониторных" частиц ДЛЯ двух экспозиций будет:

$$\begin{split} \mathbf{m}_{i} &= \ \mathbf{M}_{1} \ \mathbf{g} \ (\Omega_{1}) \ \Delta \Omega_{1} \ \Delta t_{1} \ , \\ \mathbf{m}_{2} &= \ \mathbf{M}_{2} \ \mathbf{g} \ (\Omega_{2}) \ \Delta \Omega_{2} \ \Delta t_{2} \ , \end{split}$$

причем здесь приведенные интенсивности одинаковы И на (ослабления за счет распада нет).

Тогда

地方小学学校

$$1/\tau_{2} = \frac{\mathfrak{o}_{C}}{\mathfrak{m}_{K} \mathfrak{o}(\ell_{2} - \ell_{1})} \quad \ell n \quad \frac{n_{1} \quad f(\Omega_{1})}{n_{2} \quad f(\Omega_{1})} \quad \frac{\mathfrak{m}_{2} \quad g(\Omega_{1})}{\mathfrak{m}_{1} \quad g(\Omega_{2})} \quad (1)$$

Для того, чтобы исключить из рассмотрения угловые распределения, необходимо, чтобы обе экспозиции осуществлялись на достаточно больших расстояниях (*l*>> размеров детектора) под одним и тем же углом к источнику Ко-мезонов. В этом случае $f(\Omega_1) = f(\Omega_2)$ и $g(\Omega_2) = g(\Omega_2)$. Работа с немонознергетическим пучком K_2^{o} -мезонов требует интегрирования соотношения типа (1) по всему спектру Ко-мезонов.

Первая оценка г, была сделана описанным выше методом с помощью камеры Вильсона, экспонированной на различных расстояниях от мишени. Моннторирование, проводилось путем регистрации (наряду с Ко-распадами) звезд, образованных в газе камеры нейтронами. В результате было получено $r_2 = (8, 1 + 3, 3) \cdot 10^{-8} \text{сек}^{/7/}$. Существенным недостатвом этого опыта является отсутствие прямых экспериментальных данных о спектре Ко-мезонов. Для оценки ', использовались расчетные энергетические распределения, полученные из статистической теории при весьма произвольных предположениях.

Другой способ определения r_{2} состоит, как уже упоминалось, в измерении абсолютной вероятности K_{2}^{o} -распада. Для этого необходимо осуществить такие экспериментальные условия, при которых можно было бы определить число рожденных K_{2}^{o} -мезонов (например, регистрируя в большой камере одновременно рождение и распад долгоживущих K^{o} -частиц). Наиболее привлекательной для этой цели оказывается реакция совместного рождения $\pi^{-}+p + \Lambda^{o} + K^{o} = x^{3}$, в которой число рожденных K^{o} -мезонов можно определить по числу Λ^{o} -распадов. При этом встает задача оценить относительное число таких случаев, которые сопровождаются K_{2}^{o} -распадами. Кинематический анализ реакции рождения лозволяет однозначно определить направление вылета рожденного K^{o} -мезона и его энергию. Это обстоятельство сушественио облегчает поиски и идентификацию K_{2}^{o} -частиц, распадающихся, как известно, по трехчастичным схемам. Эти распады необходимо выделить из числа аналогичных распадов K_{1}^{o} -мезонов.

Распределение числа трехчастичных распадов (если пренебречь распадным ослаблением К⁰₂-мезонов) будет определяться соотношением:

 $dn = \frac{1}{2} N(\Lambda^{\circ}) \cdot e(t) \{ \Gamma_{1}(3) \exp(-\frac{1}{2}t/r_{1}) + \Gamma_{2}(3) \} dt,$

где $N(\Lambda^{\circ})$ - число видимых Λ° -распадов; $\Gamma_{I}(3)$ и $\Gamma_{2}(3)$ -вероятности 3-частичных распадов K_{1}° и K_{2}° -мезонов, а $\epsilon(t)$ - эффективность регистрации этих распадов, зависяшая в основном от геометрических факторов, которые сравнительно легко оцениваются или определяются непосредственно из угловых и энергетических распределений K_{1}° -мезонов (по распадам $K_{I}^{\circ} + \pi^{+} \pi^{-}$). Если использовать достаточно большой детектор и ограничиться областью $t >> r_{I}$, то первым членом можно пренебречь, и тогда обшее число зарегистрированных K_{2}° -распадов будет:

 $n = \frac{1}{2} N \left(\Lambda^{\circ} \right)_{t} \quad \Gamma_{2} \left(3 \right) \quad < t > . \tag{3}$

(2)

Что известно об экспериментах, в которых использовался описанный выше метод? Первая попытка оценить таким способом r_2 была сделана Берклиевской группой с помощью малой водородной пузырьковой камеры⁽⁸⁾. К сожалению, небольшое число зарегистрированных случаев и малые размеры камеры (=3 средних пробега K_1° -мезона) не позволили для определения r_2 воспользоваться соотношением (3). Поэтому авторы в соответствии с правилом отбора $\Delta Q = \Delta S$ предполагают в своих расчетах $\Gamma_1(3) = \Gamma_2(3)$, что не согласуется с полученными недавно экспериментальными данными: $\Gamma_1(3) / \Gamma_{1(3)} = 6 \div 12^{-11,9/2}$. В свете этих данных все 9 зарегистрированных в работе⁽⁸⁾ трехчастичных распадов являются скорее всего K_1° -распадами, что, вообще говоря, не противоречит полученному распределению по t.

Таким образом, полученная в этой работе величина $r_2 = (3, 6^{+1,4}_{-1,0}) \cdot 10^{-8}$ является ошибочной, так же как и обычно используемое значение $r_2 = (6, 1^{+1,6}_{-1,0}) \cdot 10^{-8}$ сек, которое представляет собой средневзвешенное результатов работ

х) Можно в принципе использовать также и другие процессы, испример, реакцию перезарядки К⁴+ п + р + К В работе^{/10/} экспонировалась большая пузырьковая камера с тяжелым наполнителем, что давало возможность наряду с "заряженными" K_2^{o} -распадами регистрировать у -кванты от распада $K_2^{o} + 3\pi^{o}$. Большие размеры камеры позволяли исключить из рассмотрения трехчастичные распады K_1^{o} -мезона. Слабой стороной этого эксперимента является относительно большое число фоновых V°-событий, которые имитируют K_2^{o} -распады. Основная причина этого, по-видимому, в том, что рождение Λ^{o} и K^{o} -мезона происходит, как правило, на протоне, связанном в ядре. При этом из-за фермистского движения существенно "портится" кинематика, что создает некоторую неопределенность энергии родившегося K^{o} -мезона и направления его вылета.

Таким образом, критерии отбора K_2° -распадов становятся менее жесткими, и число фоновых V° -событий, имитирующих K_2° -распады, увеличивается. Согласно оценке авторов, из 22 "кандидатов" в K_2° -распады 9 составляют "фон", что дает в результате $r_2 = (5,1,1,3) \cdot 10^{-8}$ сех. Очевидно, что для того, чтобы в таких условиях избежать систематической ошибки, необходима особая тщательность при оценке фоновых условий. С этой точки зрения результат, полученный в работе $^{/1/}$ с помощью двухметровой жидководородной камеры, заслуживает большего доверия. Однако в даняюм случае измерялась абсолютная вероятность только "заряженных" K_2° -распадов $\Gamma_2(\pm) =$ $= (12,0\pm2,8) \cdot 10^6$ сек⁻¹, поскольку эффективность регистрации распада $K_2^{\circ} + 3\pi^{\circ}$ в такой камере очень мала. Для получения величины r_2 авторы использовали теоретическое значение относительной вероятности этого типа распада, которая ожидается на основании правила отбора $\Delta I = \frac{4}{3}$.

Недавно на синхрофазотроне ОИЯИ была сделана экспериментальная оценка⁽²⁾, согласно которой $R = \frac{\Psi(K_2^\circ + 3\pi^\circ)}{\Psi(K_2^\circ + 3\pi^\circ)} = 0.24 \pm 0.08$. Это дает возможность определить r_2 используя только экспериментальные величины. В результате получаем:

$$r_{2,i} = (6,8^{+2,7}_{-1,7}) \cdot 10^{-8} \text{cex}$$
 (4)

Возможны ли какие-либо другие, до сих пор не обнаруженные, нейтральные моды K_2^0 -распады, которые должны быть также учтены при оценке r_2 ?

1) Распад $K^{\circ} \rightarrow 2_{Y}$ может происходить через виртуальные η_{P}° и π° -мезо-

х) В предварительном сообщении, сделанном на Женевской конференции /11/, была дана завышенная оценка для R. Использование этого ошибочного значения для получения величины г явилось причиной еще одного неверного результата 12/, кото рый по случайным обстоятельствам совпадает с (4). Как показывают оценки возможного вклада диаграммы (а), относительная вероятность распада $K_2^{o} \rightarrow 2\gamma$ составляет 0.02. Если же преобладает диаграмма (б), то эта вероятность примерно на порядок меньше. Таким образом, поправка, связанная с этим распадом, может привести к уменьшению полученной величины r_2 не более чем на 2%.

К°₂ + 2 π° + γ
согласно имеющимся теоретическим оценкам, составляет
не более 1%. Его также можно не принимать во внимание.

- 3) K^o₂ → 2π^o запрещен CP инвариантностью /13/.
- 4) К°→π°+у запрешен как "0-0" переход.

5) $K_2^{o} \rightarrow \nu + \overline{\nu}$ запрещен "дважды": в силу продольности нейтрино и как процесс, содержащий нейтральный лептонный ток ($\nu \overline{\nu}$).

Таким образом, ожидаемая вероятность других возможных нейтральных К⁰₂-распадов пренебрежимо мала по сравнению с $W(K_2^o \rightarrow 3 \pi^o)$. Приведенная выше оценка (4) дает одно из наиболее достоверных значений r_2 . Однако статистическая обеспеченность этого результата явно недостаточна.

Литература

1. G.Alexander, S.Almeida, F.Grawford. Phys. Rev. Lett., 9, 69 (1962).

- М.Аникина, М.Журавлева, Д.Котляревский, З. Манджавидзе, А.Местиришвили, Д.Нягу, Э.Оконов, Н.Петров, В.Русаков, Г. Тахтамышев, Л. Чхандзе, У Цзун-фань, Препринт ОИЯИ Р-1332, Дубна, 1963.
- 3. R.Good, R.Matsen, F.Muller, O.Piccoini, W.Powell, H.White, W.Fowler, R.Birge. Phys. Rev., 124, 1233 (1961).
- 4. Э.Оконов, Н.Петров, В.Русаков, А.Розанова. ЖЭТФ, 39, 67 (1960).
- 5. C.Bouchiat, J.Neyts, J.Prentki. Physics Lett., 3, 156 (1963).
- 6. J.Dreitlein, H.Premakoff. Phys. Rev., 124, 268 (1961).
- 7. M.Bardon. Ann. Phys., 5, 156 (1958).
- 8. F. Grawford, M. Cresti, R. Dauglass, M. Good, G. Kalbenfleisch, L. Stevenson. Phys. Rev. Lett., 2, 361 (1959).
- 9. R.Fly, W.Powell, H.White, M.Baldo-Coolin, E.Filippi, H.Huzita, G.Miari, U.Camerini, W.Fry, S.Natali. Phys. Rev. Let., 8, 132 (1961).

10. J.Darmon, A.Ronsset, J.Sik. Physics Lett., 3, 57 (1962).

- А.Аникина, М.Журавлева, Д.Котляревский, З. Манджавидзе, А. Мествиришвили, Д. Нягу, Э.Оконов, Н.: Істров, В.Русаков, Г. Тахтамышев, Л. Чхаидзе, У Цзун-фань. 1962 Int. Conf. High Energy Phys. at CERN, p. 452.
- F. Grawford. 1962 Int Conf. High Energy Phys. at CERN, p. 827.
- 13. М.Аникина, Д.Нягу, Э.Оконов, Н.Петров, А.Розанова, В.Русаков, ЖЭТФ, 42.130 (1982).

Рукопись поступила в надательский отдел 4 октября 1963 г.