

- 11

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

Ю.М. Казаринов, В.С. Киселев, В.И. Сатаров

P-1378

ЭНЕРГЕТИЧЕСКАЯ ЗАВИСИМОСТЬ ФАЗОВЫХ СДВИГОВ ПРИ РАССЕЯНИИ НУКЛОНОВ НУКЛОНАМИ В ОБЛАСТИ ЭНЕРГИЙ 23-126 МЭВ

OLETTO, 1964, THE, 63, C920-925-

Казаринов Ю.М., Киселев В.С., Сатаров В.И.

Энергетическая зависимость фазовых сдвигов при рассеянии нуклонов нуклонами в области энергий 23-128 Мэв.

С целью изучения энергетической зависимости фазовых сдвигов выполнен фазовый анализ при энергиях 52 и 128 Мэв и прослежен энергетический ход фазовых сдвигов набора 1 при энергиях 23,1 и 66 Мэв.

Препринт Объединенного института ядерных исследований. Дубна,1963.

P-1376

P-1376

Kasarinov Yu.M., Kiselev V.S., Satarov V.I.

Energy Dependence of Phase Shifts in Nucleon -Nucleon Scattering in the Energy Region 23-126 MeV

To obtain the phase shift energy dependence the phase shift analysis has been made at 52 and 126 MeV and the energy dependence of set 1 was investigated at 23,1 and 66 MeV also.

> Preprint, Joint Institute for Nuclear Research. Dubna, 1963.

Ю.М. Казаринов, В.С. Киселев, В.И. Сатаров

P-1376

ЭНЕРГЕТИЧЕСКАЯ ЗАВИСИМОСТЬ ФАЗОВЫХ СДВИГОВ ПРИ РАССЕЯНИИ НУКЛОНОВ НУКЛОНАМИ В ОБЛАСТИ ЭНЕРГИЙ 23-126 МЭВ

Направлено в ЖЭТФ

объединенный институт влерных исследования БИБЛИОТЕКА

Дубна 1963

2063/2 20

В настоящее время можно считать, что амплитуда нуклон-нуклонного рассеяния восстановлена по известным экспериментальным данным достаточно однозначно при энергиях 147 и 210 Мэв^(1,2,3). Фазовый анализ для энергия 310 Мэв дает два решения, примерно равновероятных по χ^2 критерню⁽²⁾. При меньших энергиях положение заметно менее благоприятно. Экстраполяционная процедура, примененная Брайтом и др.⁽⁴⁾ для определения энергетической зависимости фазовых сдвигов в интервале 10-310 Мэв, как показывает сравнение с данными фазового анализа^(5,6), а также прямое сравнение с экспериментом⁽⁷⁷⁾, дает не совсем удовлетворительные результаты. Это,в известной степени, и не удивительно. При использовании метода наименьщих квадратов в случае бедной экспериментальной информации минимизируемый функционал в пространстве искомых параметров имеет вид весьма сложной поверхности, и вероитность попасть в ложный минимум по одному или нескольким параметрам относительно велика. В этом случае целесообразно, по-видимому, проведение нормального фазового анализа с поиском решений со случайных начальных значений, с дальнейшим отбором наиболее вероятных решений из условия мокотонной зависимости фазовых сдвигов от энергия.

Ниже приводятся результаты фазового анализа данных по рассеянию нуклонов нуклонами в условиях, когда экспериментальных данных явно недостаточно для получения однозначного решения. Нормальная программа фазового анализа с поиском решений со случайных начальных значений выполнена при двух энергиях: 52 и 126 Мэв. В работе прослежен также ход энергетической зависимости фазовых сдвигов при энергиях 23,1 и 66 Мэв. Для этого проделано уточнение интерполированных значений фазовых сдвигов по существующим экспериментальным данным.

Программа фазового анализа аналогична использованной ранее в работах^{/1,2/} и поэтому подробно не описывается "Обработанные экспериментальные данные приведены в таблице 1. Результаты поиска решений даны в таблице 2.

Результаты

Результаты анализа показывают, что при энергии 23,1 Мэв нуклон-нуклонное взаимодействие происходит в основном в S -состоянии. Это, в частности, экспериментально подтверждается также результатами измерения С^{PP} при энергии 20 Мэв ^{/24/}.

При энергии 52 Мэв всего было найдено семь решений с $\chi^2 < 1,5$ χ^2 . Из них сразу же были отброшены три решении с отрицательными значениями фазового сдвига

 δ_{I_5} в одно с малым значением константы связи. Из оставшихся трех решений /таблица 3/ набор 2 был отброшен позднее, как только стали известны результаты измерений C_{nn}^{PP} на угле 90° /с.ц.м./. Оставшиеся два набора / 1 и 3/ хорошо удовлетворяют измеренной величине $C_{nn}^{PP}(90^{\circ}) = -0.035 \pm 0.095$ /рис. 4/25/.

Таблица 2

Таблица 1

Эффективная энергия, Мэв	Измеренная величина	Число точек	Энергия, при ко- торой велись из- мерения	Литер. источник
	σ. pp	II	25,63 испр.	8
23. T	P _{pp}	I	27,4	9
2.79 2	σ _{np}	23	22,5-27,5 интер.	10
	P _{np}	6	23, I	II
	σ _{pp}	18	51,5-51,8	I2
	Ppp	3	52,5	13
	C ^{pp} _{kp}	I	52,0	I4
52	D _{pp}	I	50,0	15
	(The second seco	23	52,5	16
	Pnp	6	52,0	17
	σ _{pp}	II	66	18
66	Ppp	II	66	18
00	σ _{np}	23	62,5-70 MHTep	IS
	Pnp	6	66	17
126	σ	16	127	18
	P _{pp}	17	127	18
	O'np	18	126	19
	Pnp	16	128	19,20
	Dnp	5	126	21
	1			

Обозначения:

интер.- использованы интерполированные значения сечений;

испр. - исправлено по отношению сечений на угле 90⁰ на основании данных при Т. = 25,63 и 21,9 Мев.

4

Эффектив- ная энер- гия, Мэв	l	x 2	Число поисков со случ. точек	Номер реше- ния	x ²	Примечание
23, I	2	29	-	I	24,2	Решение найдено с интерполированных значений фазовых сдвигов
52,0	2	40	54	I 2 3 4	44,0 43,0 44,0 84,7	Решение с фиксирован- ным значением f ² =0,00 и одномезонными 2,32 32,-фазовыми сдвигами.
66,0	2	39	-	I	24,8	Решение найдено с интерполированных значений фазовых сди гов
126,0	3	55	45	I 2 3 4	72,6 75,7 79,4 60,4	

Примечание 1/ Начиная с моментов $\ell > \ell_{max}$ амплитуда рассеяния бралась в одномезонном приближении.

> 2/ Поиск решений со случайных начальных значений проводился до тех пор, пока решения не начинали повторяться.

При этом набор 3 заметно отличается от набора 1 только средням значением ϵ_i и δ_{j} и после соответствующих преобразований ^{X/} переходит в набор с отрицательным значением $\delta_{j_{3_i}}$, а следовательно, может быть отброшен, если считать, что энергетическая зависимость $\delta(T)$ монотонна. Кроме того, этот набор дает угловые зависимости поляризации, параметров тройного рассеяния и коэффициента корреляции поляризаций $C_{nn}^{\mu\nu}$, которые плохо согласуются с зависимостями для соседних энергий 40 и 95 Мэв^{/23/}.

Интересно отметить, что при энергии 52 Мэв одномезонное приближение для ¹ D₂ и ³ D_{2,3} фазовых сдвигов плохо удовлетворяет эксперименту /решение 4, таблица 2/. Набор фазовых сдвигов при энергии 50 Мэв, полученный Брайтом и др.^{/4/}, после уточнения по существующим экспериментальным данным переходит в набор, в пределах ошибок совпадающий с отброшенным набором 2.

Следует заметить, что экспериментальных данных при энергии 52 Мэв далеко недостаточно для точного определения лараметра смешивания с и фазовых сдвигов ³D -волны. Планирование эксперимента, выполненное методом Соколова⁽²⁸⁾, показывает, что для уточнения этих параметров весьма полезно измерение С по и проведение любого из экспериментов по тройному пр -рассеянию.

Результаты, полученные для энергии 66 Мэв, хорошо подтверждают предположение о монотонной зависимости фазовых сдвигов от энергии. Зависимости экспериментально наблюдаемых величии от угла рассеяния, рассчитанные по найденным фазовым сдвигам, вполне удовлетворительно согласуются с соответствующими зависимостями на близких анергиях 40.52 и 85 Мэв^{/23/}/рис. 9-12/.

Из общего числа решений /7 решений/ с $\chi^{2} < 1.5 \ \overline{\chi^{-2}}$, найденных при энергии 126 Мэв в результате поиска со случайных начальных условий, набор 1 /таблица 4/ нанлучшим образом соответствует решениям, полученным на близких энергиях. Наборы 3 и 4 /таблица 4/ отбрасываются при сравнении с набором, полученным для энергии 147 Мэв ^{/5,6/}. Набор 2 соответствует решению второго типа, полученному ранее при фазовом анализе *pp* -данных для T = 310 Мэв. Относительно высокое эначение отношения $\frac{\chi^2}{\overline{\chi^2}}$ = 1,3 для набора 1, возможно, указывает на то, что при этой энергии, также как и при энергии 147 Мэв ^{/6/}, одномезонным приближением следует воспользоваться для моментов $\ell = 5$ и выше / $\ell_{max} = 4/$. В таблице 5 приведено решение, найденное при уточнение фазовых сдвигов, полученных в работе Брайта и др. ^{/4/}, по экспериментальным даяным, использованным в данной работе. Найденное при этом решение похоже на набор 3 /таблица 4/.

Полученная энергетическая зависимость фазовых сдвигов показана на рис. 17. В пределах ошибок она удовлетворительно согласуется с результатами, полученными ранее в. работе^{/2/}. Фазовые сдвиги воли с изотопическим спином r = 1 при энергии 52 Мэв хорошо согласуются со сдвигами, полученными при фазовом анализе *pp* -данных для энергий 52^{/27/} и 51.6^{/28/} Мэв.

Авторы благодарны И.Н. Силину и Л.И. Лапидусу за многочисленные обсуждения; А. Кэроллу за сообщение данных по пр -рассеннию при энергии 126 Мэв и полезные замечания; В. Розе за сообщение результатов фазового анализа рр -данных, выполненного И.К. Перрингом.

х/ S -матрица в параметризации Стапла и др. /22/ инвариантна относительно замены $\delta_{l,l+1} = \delta_{l,l+1} + \frac{\pi}{2}; \delta_{l,l-1} = \delta_{l,l-1} + \frac{\pi}{2} \epsilon_1 = -(\epsilon_1 \pm \frac{\pi}{2})$

		фазовые сд	виги в градусах (п	араметризация Ст	алпа и др.)
ем	¹ , 23, I	66;0	52,0	52,0	52,0
	Набор I	Hadop I	Hadop I	Набор 2	Набор З
e 1	0,19±0,06	0,06±0,04	0,12±0,04	0,11±0,03	0,13±0,03
1 S 0	52,81±0,30	35,88±2,11	35,52±1,53	35,91±1,37	35,37±1,39
s,	76,06±2,89	55,58+2,24	65,11+4,08	55,83±4,23	72,89+9,28
d's	2,83±0,62	7,65±9,23	16,43±2,39	16,17±2,43	15,72±2,32
	0,75+0,88	-2,14+4,48	-4,06+4,49	-4,18+1,89	-0,32+3,60
. A. T	2,55±0,47	-10,68+2,00	-6,96±0,53	-6,99+0,49	-6,80±0,52
	0,24±0,34	8,30+1,39	5,51±0,63	5,47±0,54	5,80±0,51
د 1	-5,05+2,67	-14,40±7,05	-2,44+29,4	9,83+4,92	53,80±0,73
³ D ₁	-6,36±0,68	1,50±4,50	-2,82+9,48	-10,94±2,23	-110,03+11,10
¹ D ₂		2,20+0,96	2,46±1,59	2,33±0,47	2,65±0,42
, D ,	у одномез.	4,43±3,01	5,61±12,46	15,13±3,17	12,40+3,44
, D ,		3,93±1,59	3,74±4,62	-1,07±1,48	-4,73±1,78
×	24,2	24,8	44,0	43,0	44,0

Таблица 4

Фазовые сдвиги воли в градусах (параметризация Стаппа)

Энергия, Мэв		126,0		
	Hadop I	Hadop 2	Набор 3	Набор 4
f ²	0,062+0,02	0,097±0,012	0,080±0,019	0,064 <u>+</u> 0,015
¹ S _o	22,96 <u>+</u> 8,73	-20, 19 17,86	19,23 ±4,32	-3, 18 ±7, 26
³ S ₁	27,64 ±1,77	20,00 ±5,29	20,32 ±1,44	49,38 ±3,80
3Po	-5,92 ±5,82	-35,56 <u>+</u> 6,40	36,60 <u>+</u> 3,77	16,84 <u>+</u> 4,91
¹ P ₁	-13,36 ±10,26	10,04 <u>+</u> 4,04	-19,08 <u>+</u> 3,04	-18,62 <u>+</u> 7,83
³ P ₁	-19,40 <u>+</u> 3,93	6, I0 <u>+</u> 3,70	6,27 ±1,83	17,53 <u>+</u> 2,23
³ P ₂	7,4I <u>+</u> 0,78	6,52 ±1,81	0,06 ±1,17	II, 17 <u>+</u> 0,94
¢1	2,79 ±3,20	27,70 ±2,25	-16,34 ±2,20	74,97 <u>+</u> 7,21
° D 1	-II,30 ±0,8I	4,51 <u>+</u> 2,88	-33,89 <u>+</u> I,7I	77, 18+4, 45
"D 2	- I,06 ±2,18	2,36 <u>+</u> 2,78	-I, I2 <u>+</u> 0, 79	3,47 <u>+</u> I,50
³ D ₂	28,58 <u>+</u> 2,52	17,18 ±1,63	-5,31 <u>+</u> 0,97	2, 16 <u>+</u> 7, 05
³ D ₃	4,52 ±2,07	-0,02 <u>+</u> 6,94	I,03 <u>±</u> 0,7I	5,60 <u>+</u> 1,24
€ 2	I,94 <u>+</u> 0,76	-I,44 ±I,35	5,35 <u>+</u> I,74	-1,60 <u>+</u> 0,63
³ F ₂	0,91 ±0,84	I,89 ±7,83	-3,64+ 0,74	2, 16 <u>+</u> 0, 52
¹ F ₃	4,29 ±2,15	2,02 <u>+</u> I,II	-7,63 <u>+</u> 0,82	-7,68 <u>+</u> 1,32
³ F ₃	0,28 ±0,67	-2,36 ±0,98	3,07 <u>+</u> 0,68	3,03 <u>+</u> 0,69
s _F	0,35 <u>+</u> 0,31	0,66 <u>+</u> 0,12	0,56± 0,19	· 0,68 <u>+</u> 0,25
X ²	72,6	75,7	79,44	60,41

8

Таблица 5

Фазовые сдвиги в градусах, полученные уточнением результатов Брайта и др. /4/ (параметризация Стапла и др. /22

Энергия, Мэв	126	52
f ²	0,08	0,08
'S _o	7,22 ± 10,0	37,06 ± 0,93
° S 1	27,91 ± 1,77	56,24 ± 4,49
3 Po	8,65 ± 3,82	16,03 ± 2,61
¹ P ₁	-17,40 ± 3,28	-3,51 ± 3,72
³ P ₁	-21,61 ± 1,43	-7,05 ± 5,01
* P 2	8,32 ± 0,65	5, 15 ± 0,53
€ 1	5,52 ± 1,24	6,31 ± 4,92
³ D ₁	12,38 ± 0,90	$-11,43 \pm 3,40$
¹ D ₂	5,24 ± 0,91	$I,73 \pm 0,10$
³ D ₂	26,09 ± 1,68	15,87 ± 3,65
D ₃	2,49 ± 0,68	-0,85 ± 1,75
£ 2	-I,50 ± 0,63	
³ F ₂	0,40 ± 0,95	
¹ F ₃	-0,67 ± 1,00	
^S F ₃	0,16 ± 1,65	
³ F 4	0,58 ± 0,19	
× 2	63,8	44,5
Have Abhoe Shavenne	444,7	184,7

- 1. Ю.М. Казаринов, И.Н. Силин. ЖЭТФ, <u>43</u>, 692 (1962).
- 2. Ю.М. Казаринов, И.Н. Силин. ЖЭТФ, <u>43</u>, 1385 (1962).
- 3. K.Gotov, F.Lobkowicz, E.Heer. Phys. Rev. 127, 2206 (1962).
- 4.-C.Breit, M.H.Hull, J.K.E.Lassile, K.D.Pyatt, H.M.Puppel. Phys. Rev., <u>128</u>, 826 (1962); M.H.Hull, J.K.E.Lassile, H.M.Puppel, F.A.McDonald, G.Breit. Phys. Rev., <u>128</u>, 830 (1963).
- 5. J.K.Perring. Nucl. Phys., 42, 306 (1963).
- Ю.М. Казаринов, В.С. Киселев, И.Н. Силин, Препринт ОИЯИ Р-1206, Дубна (1963).
 ЖЭТФ /в печати/.
- 7. P.Signell, N.R.Yoder, Bull. Am. Phys. Sco., 8, 368 (1963).
- 8. T.H.Jeong, L.H.Jonston, D.E.Young, C.N.Waddel, Phys. Rev. 118, 1080 (1960).
- 9. P. Christmas, A.E. Taylor. Nucl. Phys., 41, 388 (1963).
- 10. J.P.Scanlon, G.H.Stafford, T.T.Thresher, P.H.Bowen, A.Langsford, Nucl. Phys. Rev., 41, 401 (1963).
- 11. R.B.Perkins, J.E.Simmons, Phys. Rev. 130, 272(1963).
- K.Nisimura, J.Sanada, I.Hayashi, S.Kobayashi, D.C.Worth, H.Imada, N.Ryu, K.Fukunaga, H.Hasai, Sung Baik Nung, Y.Hirandata, Preprint INSJ - 45, Tokyo (1961).
- 13. P.Christmas, A.E.Taylor. Nucl. Phys., 41, 388 (1963).
- K.Nisimura, J.Sanada, S.Kobayashi, K.Fukunaga, N.Ryu, H.Hasiai, D.S.Worth, H.Imada, Y.Hiradate, Hasegawa (private communication).
- 15. T.C.Griffith, D.C.Imrie, G.J.Lunch, A.J.Wetheringham. Phys. Rev. Lett., 10, 444 (1963).
- 16, J.P. Scanlon, G.H. Stafford, J.J. Thresher, P.H. Bowen, A. Langsford, Nucl. Phys., 41, 401 (1963).
- 17. B.Rose, Proc. 1960 Ann. Intern. Conf. at Rochester, p. 100 (1960).
- 18. J.N.Palmieri, A.M.Cormack, N.F.Ramsey, R.Wilson. Ann. Phys., 5, 299 (1958).
- 19. P.K. Hobby, D.Miller. Phys. Rev., 120, 2201 (1961).
- 20. A.Carrol (private communication).
- 21. P.M.Patel, A.Carroll, N.Strax, D.Miller, Phys. Rev. Lett., 8, 491 (1962).
- 22. H.P.Stapp, T.I.Ypsilantis, N.Metropolis. Phys. Rev., 105, 302 (1957).
- 23. Ю.М. Кезеринов, И.Н. Силин. Препринт ОИЯИ Р-1101 /1957/. Дубна (1962).
- 24. A.Abragam, M.Borghim, P.Catillon, J.Coustham, P.Roubeau, J.Thirion. Phys. Rev. Lett., 2, 310 (1962).
- 25. K.Nisimura (private communication).
- 26. С.Н. Соколов. Препринт ОИЯИ Д-573, Дубна (1960).
- 27. N.Hoshizaki, S.Otsuki, R. Tamagaki, W. Watari. Preprint RIFP-25 (1963).
- 28. J.K.Perring (private communication).

Рис. І. Т = 23 Мэв.] - экспериментальные точки,] - коридор ошибок.

.

11

23 Mas.

23Мэв.

12

Рис. 2. Т = 23 Мав.

23 Мэв.

Рис. 3. Т = 23 Мэв. 🛔 - экспериментальные точки. 🛔 - коридор ошибок.

23 Мэв.

Ряс. 4. Т = 23 Мэв.

52 M36

52 M3B

Ряс. 6. Т = 52 Мэв.

52 M36

52 Mal.

Рис. 8. Т = 52 Мав.

66мэв

Рис. 9. Т = 66 Мэв. - экспериментальные точки, С-корядор ошибок.

66M3B

Рис. 10. Т = 66 Мэв.

66M3B

66 M36

Рис. 12. Т = 66 Мэв.

126M38

Рис. 13. Т = 126 Мав.

-экспериментальные точкя,

-корядор ошибок.

126 мэб

•

Ряс. 15. Т

15. Т = 128 Мов. - экспериментальные точки,

-коридор ошибок.

126 M3B

Ряс. 16. Т = 126 Мэв.

Р в с. 17. Энергетическая зависямость фазовых сдвегов.