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I N T R O D U C T I O N 

The purpose of the present paper is to determine the capture region for the equation 

of the following form: 

d1 (m(£
1
t)x}+1<(£,t)p

1

CxJ=tf(E,t,x,x)x, 

where E is a small parameter, which may be considered not negative whereas the functions 

m(E-,t) and l<(E..,t) if E = 0 are independent of t . Let Xe be the equilibrium position 

for the equation/~. Then the capture region for a given moment of time t
0 

and for a 

given equilibrium position Xe is understood here as the sets of the values of the initial 

conditions ( x. , x0 ) , such that the solut1on5 of the equat1°on ;~; determined by them will 

steadily oscillate with respect to Xe • The problems of finding the capture regions arise 

in the calculations of the charged particle accelerators of different types from where 

the term "capture region" is taken. The thing is that the particles accelerated in any 

resonance accelerator undergo the so-called 11 phase oscillations" de.scribed by a certain 

non-linear equation, and the capture region for this equation determines the number of 

particles captured into the acceleration regime. The equation for phase oscillations 

itself may be interpreted as an equation of type/*/by introducting the small parameter in 

a natural way. Thus, the analysis of the equation/*/ may be used for still more exact 

determination of the capture region in the acceleratorx/. From a mathematical point of 

view a certain analog of the separatrisses is introduced in this paper which makes it 

possible to separate the motions of different types and the method for the practical de

termination of these separatrisses is given. 

The method applied by the physicists for the solution of this task /see, e.g. ,lI] '[2],[J]I 

for case j(E-,t,x,x):O consisted in the following: since E is small then the change 

of the functions rn(€-,t1 and k(E-,t) for the time of one period of phase oscillations which 

is o:r the order. t, T ( T is the period of pha-3e oscillations) is also small and the time 

dependence was neglected. In such a case the energy integral may be found, with the help 
I 

of which the capture region may be also easily found. However, since p (x) is_ a non-line.ir 

function, T depends both upon x 0 and XO and infinitely increases when Xo and X 0 

approach the boundary of the capture region. Thus E, T becomes at any fixed E. -:f: o whatever 

great. Therefore, the main premise for the speculations of such.a kind 1s~not correct. 

x/ One can acquaint oneself with such a calculation in the note written together with 
Yu.·s. Sajaaov. This note will be published in JTP. 
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One may add also that the capture regions for the equation/~if E = 0 and if E f O are 

essentially different: in the first case it is, generally !peaking, limited, in the second 

it is n~t. 

Yu. s. Sajasov determined the capt_ure region by means of the 1'.lumerical integration of 

equation/'lt-/, He has obtained an appreciable increase of the capture regi:on and set a problem 

of determining the capture region using the analtic method, 

The equation l*I may be interpreted from a mechanical standpoint as an equation des

cribing the motion of the matarial p1hnt of a variable mass under the action of the non

linear elestic force weakly time dependent and the small force of friction, Therefore, the 

class of physical problems described·by the equation is very wide, To make this method 

applicable it is only necess~ry that in the fulfillment of certain natural limitations the 

parameter E characterizing the closeness of the equation l*I to the conserved would be 

small, 

In•conclusion I take the opportunity to express my gratitude to Yu, S, Sajasov who is 

the chief of this work, to S,V. Fomin and L,A. Chudov for their critical remarks. I am 

grateful also to V,V, Nemytsky and to the members of his seminar for some useful remarks, 
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Let us make some remarks concerning the equation l*I . First of all e:Mrywhere further 

we shall consider that the functions tn(E.,t), l<(t., t) ,- p'(xJ and /(t,t,x,x) are continuous and 

possess the continuous particular derivatives over all the variables in the necessary regior. 

of change E, x, x, t up to the necessary order. In particular, we sh.~11 suppose that 

the theorem of the existence and uniqueness of the· solution determined by the initial o_on-

diti.ons: Xe,(t0 ): Xo 

be assumed positive. 

and is correct. The functions m(t,t) and k'(£,t) will 

It is clear from the kind of the equation l*I that the nulls of the functior. p'(x) and 

only they are the equilibrium position. Further we shall suppose that. all the nulls of the 
I I II 

function p(x) are simple, i.e., if P(Xe)=O then P(Xe}f:O. It follows from here ,;mmediately 
" that all the equilibrium positions are isolated. On depending upon the sigr, o! p(Xe) 

we shall speak that Xe 'is the equilibrium position of the saddle type- if p11
(Xq, )<- o , and 

Xe 1:, the equilibrium position of the focus type if p"(xe) > O For the first cas·e we 

introduce the notation x 5 , for the second Xf • The equilibrium positio:qs of the sad11le 

type take turns in one with the equllibrium positions of the focus type. Further it would 

be very convenient to interpret any solution of the equation as a curve of the parameter t 
on the plane / X

1 
X /. Let us make some remarks about th,is interpretation! Let Xe, (t) 

• • I 

be a certain solution of the equation /¾ff. We shall state that X is a rP.turn poj_nt of the 

. t' solution XE(t), if there be found such a moment of time that x£(t
1)=X

1 
for all t suffic.l ent• 

ly close to t' , the difference XE(t) -x' conserves the constant sign. ·one may obtain 

from here that Xf (t') = 0 Thus, the vanishing of the first derivative is the necf-.i;sary 

condition of the return point, One can easily see that it is also sufficient. Really, if 

xe.(t') = o then X~ (t') i: O otherwise X£ (t') would be an equilibrium position and we have 

the solution entering into the finite moment of time into the equilibrium position that 

is impossible according to the theorem about the uniqueness of the solution. Thus, the 

sufficient exctremum condition turns out to pe fulfilled. One can draw a certain conclusion 

about the behaviour of the solutions on the phase plane, Namely: if the soluti,on XE. (t) 

in the finite moment of time t' met the straight line x,. o then it inevitably passes from 

the half-plane x > o to the half-plane X < O and vice versa. The latter circumstance derends 

upon, the sign Ph(t')). Namely, if p1

(Xe. (t 1)) > 0 then the solution passes from the upper ha'u-

plane to the lower one, if p1
(Xf.(t 1

)} 4 0 it is vice versa. 

It follows immediately between two subsequent return points of the arbitrary soluti<m 

XE(f:) from here that there is an odd number of changes of the function sign p1

(X) Le•, 
I 

the odd number of equilibrium positions. The equilibrium positions of the focus.type will be 

always by one more than the positions of the saddle type. The solution XE (t) of the 
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equation f*I is caJled ·w -oscillating if it has infinitely many return points 1f t > o. 
It is easily seen that the moments of time on the axis when the return of motion occurs 

ha_ve no limiting points. Indeed, let us suppose contrary: let ti< be the moment of time in 
• I 

which the K -return of motion of a· certain solution xt (t) occurs and ti< .... t at k ...... oo. 

Then there is tr least one equilibrium position between X£ (tK) and XE (tk+iJ and with k suf

ficiently great -only one. Let it be Xe .• Then it follows from the continuity of the 

solution that X£(t')=Xe that contradicts the theorem about the uniqueness of the solution. 

We shall speak that the solution X£(t) oscillates steadily if any its three return points 

following one another X€(t,), XE (t,.) and XE(t3) (t
1

.: t,. ~t3 ) satisfy the following condition; 

the number of the equilibrium positions Of the equation which are found between X£(t,.) 
• and XE (t3 ) does not exceed that of the equilibrium positions between XE(t 1 ) and XE(tz_) • We 

shallspeak about the W-oscillating solution of the equation/¾£-/ that it oscillates with . 
respect to the equilibrium position Xe , if one of any its two success1.ve return points 

is situated to the right from Xe and the other to the left. We shall speak that the solut

ion x£ (t) tends to the point X , if sup/Xf('C) -xf- O with t -oo. It easily follows 
't">,t 

from the above mentioned statements that w- oscillating solutions may tend only to the 

equilibrium position of the focus type. Thus, in the equilibrium position of the saddle type 

the solution may enter only monotonously
1
i.e. so that from a certain moment of time/Xe(t)/>0. 

In ~his paper we shall always suppose that the solution may tend monotonously only to the 

equilibrium position of the saddle type. It means first of all that the solution cannot 

monotonously tend to the point which is not an equilibrium position, secondly, it cannot tend 

to the equilibrium position of the focus type. The second limitation_ implies that we exclude 

the-cases of great friction. It is clear that this limitation is not quite natural, however, 

its neglect cons'iderably changes the results. We intend to devote a separate paper to the 

consideration of this case. 

The first limitation will hold since the cases when it is not valid seem to be of no 

interest. Now we shall formulate the sufficient conditions for performing the first limitat

ion. These conditions are obtained from the comparison with the analogous conditions for 

the equation X
11

(t)-1<(t),'((t)=O) where k(t)>,O • The divergence of the integra1jtk(t)dt 
t., 

is the necessary and sufficient condition that there exist no solutions tending to the 

fin1 te limit different from zero (see, [4}). One may reduce the equation 
d d~ 

d
-[m(t)x]-k(t)x =O( (m(tJ,o)to the form -ri:-m(t(S))J.<(t(sJ)x=o by the substitution 
t ,t. , .,., d s 

5=J ~~l and if the integral f m(~l is divergent then the divergence of the integral 
do to \o S 5111 (t (S))k'(t (S))d& 1s the necessary and sufficient condition for performing the first 
0 

limitation. This is equal to the divergence of the integral 
00 t 

f 1<(t)(f ~;-c,)dt 
In case when the 

integral 

t lo 
0 00 

integral J ~, is convergent as 1s 
rn('t 

to "" t · 

shown in / 6/ the divergence of the 

J m;t! ( J k (t:J dr) d t 
to t

0 
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is the necessary and sufficient condition for perfo:r,ming the first limitation. 

Summing up all what was said we can state that in ord'et the eqt?ationdi [~(t) i<] - K(i) X = O 

would satisfy the first limitation it is necessary and ·sufficient that both integrals 
oO 00 t 

jk(t)(J !rt,)dt and f rnlt)(J l<(t)dt)dt would be divergent simultaneously. 
to to to to d -

Comparing the equation/'7'with the equation dt (m(t)x )- I< (t)x:: o we may obtain the 

sufficient conditions that the equations/¥would satisfy the first limitation. On the basis 

of the mean-value theorem one may write 

d ( ·) I ii ( ,\ ~ ,m(£,t)x + I<(£, t)P (X 5 + 0(t) _x(t)- x 5 );-

t t: (c,t,xs +8(t)(X(t)-X5), 0(t)x(tJ)9(t)x(t)j(x(t)-X5 )= 

"'C, [ 1; (E-, t, Xs + S(t)(x(t)-Xs), 0(t)x(t))8(t)x(t) + 

+ t(€-
1
t,x5 + 8(tJ(X(tJ-X5)

1 
0(t)X(tJj,~(tJ 

where o < 0 (t) ~ 1 • Let for any c > o and for the sufficiently small fixed h
0 

> O 

there exist the functions [CE-,t), fc(f-,t) and k',(f-,t)< O such that 

and /x/ ❖ C 

and 

is divergent if 

t 

h c ( €, , t ) = exp ( - E. J f c ( f, , t ) d t ) and 
to 

h c. ( £, t) -= exp ( - E, ( /c ( f., t) d t) . 

These c~nditions are sufficient for the equation/*/to satisfy the first limitation/cf./5/ /, 

Further everywhere we shall consider them to be performed and call them the conditions/ o.: /. 

Let us denote by E5 . the sets of the equilibrium positions of the .saddle type of the 

equationfa/For every x5 EEs let us take all the solutions xE.(t) of the equation satiDfying 

the condition xf. (t)-Xs with t - 00 ,the existence ·of such solutions w~ll be proved further} 

It follows from the fact that the solution may enter only monotonously into the equilibrium 

position of the saddle, type that for such solutions XE (t)- 0 with t - "'° • Let us 

draw the curve x =Xf. (t), X=xf. (t) on the plane (X, x) for every such solution. We obtain 

a certain family of curves which are, generally speaking, crossing. For a certain fixed 

llloment of time to on each curve of our family we take the point (x=Xf.(to), X e:xf.(t.)). 



Thus we obtain a certain set f(t0 ) • If time does not explicitly enter into :p;q./*(then r(t 0 ) con

sists of the whole trajectories and is independent oft •• Otherwise it is wrong, The role of -r(t
0

) will be clear from the following Theorem. 

~ i ~ Z, • 
Theorem I. Let Ll " E '- r (to) , where E is the plane (x, x) , from which the points 

of type (Xe,O) are taken away. Then there exists the unique representation ti=Y .1"' where 

each Ll"' is a linearly connected set open in Ll and Llo(/\Llo<'"o ,-with,,(. ef:o<' • 

Suppose that there exis~s the point (x
0
x0 )£.1o< 0 such that the solution of the equation f*I 

I 

beginning there at the moment of time to steadily oscillates with respect to Ll"' 0 /not with 

standing to what type of equilibrium positions Xe belongs). Then any other solution of the 

equation beginning at the moment of time to from an arbitrary point belonging to A~ 0 will 

steadily oscillate with respect to Xe 

To prove this Theorem the following Lemmas are hecessary. 

Lemma I. Let r: c:: 4 be a connected set not crossing with the straight line X =0 

and let x' be the first return point with t ,. to of a certain solution XE (t) of the equat

ion f*I beginning at the moment of time t 0 from the point (x 0 ,.><
0

) E. L . Then the first with 

t > to return point of the arbitrary solution XE(t) of the equation /~/-beginning at the 

moment of time to from an arbitrary point belonging to C is situated 'between X~ and 
I I ,, 

Xe , where Xe is the first equilibriUIII position to the left from X , and x" e is the 

first from the right. 

Proof: 

Consider the case when L lies in the half-plane x > O • The case when t: 1ies in the 

half-plane X < O is considered analogously. 

It follows from the definition of the-set L that any solution XE (t) beginning at the 

moment of time to from the point ( X0 X0 )"€, L. , , 
either has the return point at t > to or 

I I 

goes over into the plus infinity. Really, if XE (t} vanishes at t >to then Xe(t) is a 

return point, if the XE (t
0

) does not vanish then XE(t') monotonously goes over into plus infi

nity. Xt (t) cannot tend to some finite value under the assumptions about the behaviour of 

the solutions of the equation l*I and in virtue of the choice of the set t: . ~et us denote 

by r:' the set of points {cr € E J such that in the solutions emerging from them at the moment 

of time to I 

the first at t "7 to return point lies to the left from Xe , by L" the set of 

points such that in the solutions determined by them the first at t > to return point lies 

between x~ and x; , by 'E:
111 

such that either in the solutions determined by them the first 

at t > t 0 return point lies to the right from X~ or the solution goes over into plus infini

ty. The latter set may be determined as a set of such I G" E r:} that every of the solutions 

determined by them passes at a finite moment of time t~ 
. . ,, 

a certain point x <S > x e with the 

velocity different from zero. It follows £rom the theorem of the continuous dependence 
I II 

of the solution upon the initial conditions for a finite interval of the values t that L, L 

and L "' are open sets. 

On the other hand, L
11 n(l:

1

U t:"') : 0 and L ·uo: 'u c'") ,: L • According to the definit-

.i.., 

j 
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ion of the connected set it is possible only when either L 11 or (L'.'Ut''') are emply sets, 

Since L" =/= 0 then n: 'u [ ') = 0 , thus L" = [ , Thereby the' Lemma is proved. 

Lemma· 2, Let the connected set k lie on the straight line x = O and involve no 
I 

equilibrium position and let t
0 

(I<) is a continuous function for K • Let X be the first 

at t > t
0 

(k
0

) return point of a certain solution Xe (t) beginning at the moment of time 

t
0

(!<0 ) from the point 1<0 E: I< , Then the first with t >t 0 (k) return point of the arbitrary 

solution XE (t) beginning at the moment of time t.,(k) from the point k E- k is situated between 
I ti I 

Xe and Xe , where Xe is the first to the left from X '·equilibrium pos:i.tiont whereas x; 
is the first one to the right, 

The proof of this Lemma is analogous to that of the preceding one and therefore it is 

omitted, 

The proof ,of the Theorem, 

Let { X 1 , X1 ) be an arbitrary point belonging to Lie< 
0 

, Denote by f n) = {x = f
1 
(r) , 

x = fz n>} mapping the continuous of the segme~t [D,I] into the ·set Ao<., such tha.t}(o)=(x.,,x
0

) 

and /UJ=(x1,t1 ), Denote by G • the set /~E[o,1J} such that the solution of the equation /ff/ 

beginning at the moment of time to in the point ! en will steadily oscillate with respect to 

Xe . We shall show that G is open in the segment [o,I]. Let V be an arbitrary point 

beloning to G Let further f C()=(x:X'J , 
•I 

If X -:/= 0 then take J > 0 so small that the 

image of the interva1(t~J
1 

~'+J) in the mapping would not cross with the straight line 

X = 0 , It can be done in virtue of the continuity of !OJ , If x' = 0 then denoting by t{ 

the moment of time at which there occurs the first at t > t 0 return of motion of the solution 

X £ (t) beginning in the point f n) 
greater than t 0 , Then Xf.(t:) -:/= 0 

I 

at the moment of time t 0 let us take t 0 < t 1 , but 

, According to the Theorem about the continuous depen-

d!!nce of the solution upon the initial conditions for the finite inte;val of values t one 
I I 

may choose £ > O so small that the sign of the first der_ivative in the point to of any 

solution beginning at the moment of time to from an arbitrary point belonging to 

f(n'-J:(•6)) would coincide with the sign ,i-£(t:), Then the case x' = 0 will be reduced 

to the case x' -:/= o if substitute t 0 

I 

for t 0 , Applying Lemma I we obtain that the 

first at t > t 0 return point of any solution beginning at the moment of time t 0 from 

an arbitrary point of the set L = f((f-J, f '+ JJ) lies between the same two equilibrtum posit

ions as well as the first at t > t 0 return point of the solution beginning in the point f (f) , 

Let t 1 ( t) be equal to the moment of time at which there occurs the first at t > t 0 return ) C, 

of motion of the solution XE (t,}) beginning in the point In) where f E ((-J, f' _,. J) 

rt follows from the Theorem about the continuous dependence of the solution upon the initial 

conditions that t 1 nJ - is continuous, 

Thus, t 1(0 and 1<1 ={xe(t1 (P,0 1 OJ satisfy the- conditions of Lemma 2, Applying Lemma 2 

we may determine the continuous function tz(~) by putting it equal to the moment of time at 

which thez:e occurs the first at t > t 1 (P return of motion of the solution XE (t J tJ , and the 

set k'z ={xe(tz.(P, ~), o} , which, evidently, satisfy the conditions of Lemrua2 , How it 
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is clear how to determine f n .. 
1 

( () and I< n,. 1 if the function tn q ) and the sets Kn are 

available. Thus, we get the mutually-digit consistence between the return points of the 

solution Xdt, l') and any other solution Xf(t,p , where fE ((-J, t'+J) , such that the 

K-return point .of the arbitrary solution Xf(t, ~) lies between the same two equilibrium posit-· 

ions as well as the I< return point of the solution Xe, (t, r) . Since Xe (t, t'J, oscillates 

steadily with respect to X11, under the assumption, then Xf(t,n for fE-((J, f •J) will 

oscillate steadily, i,e., G- is open in [o,:J . As is known([BJ , page no), any .open_~et on 

the straight line is a combinaticr of not more than a numerable set of the noncrossing inter-
() 

vals by pairs, Thus, G is a combination of not more than a numerable set of the non-cross-

ing intervals by_ pairs and of not more than two half-intervals which have no common points 

either with the intervals or with each other, There are no segments among the components 

G since in this case G = [ o, 1] and everything is proved. To finish the proof we shall Show 

that boundary points belonging to any interval or half-interval entering into G also belong 

to G • Let ~~o be an arbitrary interval or half-interval entering into ~ and f o is one 

of its boundary points, for definiteness we shall consider it the left one. If it is necessaey 

one may chooseO).O so small by substitutingt0 fort>t.,_that firstly((.J/S)<5;.,_thatndly that the connected 

setr=fxect:,~),Xt(t~.\)} would not cross with the straight line,X•o,i.e, ,would lie either in the half-plane 
• • I s ' x "> o or in the half-plane x < o • Le·t us take ~ = t + 2 • Then !he solution x E (t, t ) will 

steadily oscillate with respect to X0 • Having repeated almost word for word the first part 

of the proof we can easily obtain that Xf(t,~
0

) oscillates steadily with respect to X~ 

Now it is not difficult to show that G = [0,1] • Suppose contrary: let G t[o,1J • Since 

G is open and (f=o) E: G then there exists the maximum half-interval i~
1 

containing the 

point n =O). 'J~
1 

=[o, U . Since togethez, with any half-interval ~/; G its boundary points 

belong to G then f oJJ c G • Therefore, T,: 1 • But since G is open in [o,r] then 

such J > 0 will be found that [o, f + J) c. G • Therefore, ~~ 1 is not the maximum half-interval 

containing the point (t=o). The obtained contradiction completes the proof of our Theorem. 

CHAPTER '-• 

After all wh~t was said we proceed to the finding of the way for calculating r(t
0

) • 

For this it is necessary to find the way for finding the solutions of the equation f*I satisfy• 

ing the condition XE(t)- x5 with t - 00 

We shall try to find such solutions expanding them in a series by the powers of the small 

parameter E Z, . 

Xf.(t)=x0 (t)+ EX1 (t) + ~! Xi(t) + 
/2.I/ 

The equality /2.I/ is, generally speaking, divergent. Besides, the calculation of Xk(t) is 

rather ~lumsy, and we may, in fact, calculate only a certain small number of the terms of a 

series /2,I/. Assuming 
(nJ n - El( 

Xe (t) = [. x" (tJ kl 
. k ■o • 

/2,2/ 
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we must evaluate 

1 wh e't e o < 0 < 1 

The. validity, of the expression /2.2/ for the calculations will follow from / Q,,(t,Q\£:Nn(tJt,":' .. 

it will be Shown further where /vn (t) is limited when·t ,., t
0 

and e~m Nn(t) = 0 • Therefore, 
t:: ➔ -

at the sufficiently small ~ the term IRn(t,E-J) may be made whatever small and, hence, ex-

pression /2. 2/ whatever slightly is different from the exact solution. In order to prove 

this fact we shall prove that there exist the derivatives overt up to the necessary order in the 

solutions satisfying the condition Xe(t) -x5 with t - co. We intend to evaluate their be

haviour for great t . For this it· is necessary to be able to distinguish the solutions of 

tha equatio~ending at t - oe to the same equilibrium position of the saddle type, i.e. to 

find the conditions of uniqueness. The following Theorem will present these conditions. 

Theorem 2. Let the expression J<(E.}1p"(xJ- E,f;(t,t,x, x) X < o with _ t -,, t. for - oo<. x <. + 00, 

06 f,:: t- 0 and (X-X0;,)~ h 0 • It ·can be easily seen that ho must be so small that the segment 

[xs~h
01

X5 +h
0
J would involve not a single equilibrium position different from~ , 

Then the solution of the equation/-JE-/satisfying the conditions Xt<t 0 ) =Xo where IX
0
-x5 /<h

01 

5i3nXE,(t) =5i3n(X5-X 0 ) 

Proof: 

Suppose contrary: let Xe, (t} and Xf.(t) be the solutions of the equation l*I satisfying the 

conal.tions of the Theorem, Then f(iJ=.X\(t)-,Xf (t} vanishes if t = to and tends to zero if 

t --- 00 , It follows from here that ~(t} in a certain point t 1 "lt 0 has either the positive 

maximum or the negative minimum, i.e., ~(t1 )=Xf.(i1 }-XE(t1 ) = O • Substituting first XE (t) 

then Xe,(t) into the equation l*I and subtracting the second expression from the first one 

we get at t = t 1 

m(E-, t1 ) ~ (t1 ) + [ k(E., t 1 J p"(xc (t1 J + 0f (t1 ))-

-e,f; (l1 t11 Xe,(t1 J+Gf(t1 J, x,ct1y:t£(t11}fct1J=0 1 . . 
where 0< 0, 1 Because sign Xe,(i) = SinfXe (t)=5ing(x5-X0 ) with t >1 to 

th'1.n IX5 - xf. (t,) - 0 ½ (t1JI < ho 
and, hence, k' (f., t

1 
J p"(Xf. (t 1 ) +el (t1 )) - • • 

·-tf;ci,t1 1 
xe.ct1 J+GHt,l, xEct1 vxE<t1J '- o 

Thus, we have 

~(t1J-Wt(t1H<t1)=0, /2,J/ 
t 

where W (t 1 ) > 0 and f (t1 ) t O From here we immediately pass to the contradiction since 

if ~ (t1 J > 0 , then ~(td~ 0 if f (t-1 ) < 0 then t(t1 )71 O • Both these possibilities con-

tradict equation /2,J/. The obtained contradiction proves our assertion. Everywhere further 

we shall consider that Theorem 2 is correct for any to , Now we shall be concerned with the 

problem about the existence of the solutions Xg,(t) satisfying the conditions Xi (i 0 )=X
01

Xe(t)-x5 
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if t - °'° and 5i~n Xf (t.)-:: Si3n(x5-x0 ) for t ,1 t 0 • We shall call these conditions /A/. 

~he problem about the existence of the solutions satisfying the conditions /A/ has been con

sidered in / 5/. However, we approach it from a different standpoint and the result whicn we 

shall obtain will be somewhat different from the result~ of 151. Taking the point 

X0 (/Xo -x5 /<:h0 )we denote byLo1. the· arc of the par~bola X ~o( Si~n (Xs -X0 )~/x-x0 f connecting the 

po1n~ (x =Xo 1 ~ = 0) _and ( X = X5, X :c(Si~n(Xs-Xo)J/x5-Xo/)by o< > 0 • 

Theorem J. In the set L"' there exists ·the point' from which t_he solution satisfying the 

ooriditione /A/ emerges when t = t 0 • 

Proof: Q 

Denote by L,
1 

rJ. the set of the points of the arc lr1-- such that 

The solutions beginning in them at t = to would cross the straight line X = x 5 making 
. . 

not a single return of motion ·before this at t ,, to • Denote by L"' the sete of points of the 

arc L~ such that ~he solutions beginning in them at t = to -, not reaching the straight line 

X•Xs at t ~to have the return point. It follows.from the theorem of continuous dependence 

of the solution upon the initial 

is empty /the point (X=x01 x'=o) 

I N 
conditions that L"' and L~ are open sets, neither of them 

belongs to L'~ , wh_ereas the point (x:x5 J<=o<5i~n(X5·Xo)~/x5-x0 1'J 
I 

belonge to L c< and their intersection is equal to zero. Therefore, if one assumes that 

L'"' u L'~ = l-o( , then we immediately obtain the oontradiotion with the connectedness of the 
I U 

segment. Therefore, there exists at least one point, which does not belong to L"' UL"' 
The solution emerging from it at t = t 0 must raonotously tend to a certain point confined 

between Xo and Xs • Since there are no equilibrium positions between Xo and x 5 and 

we assumed that there were no solutions entering monotonously into the point. different from 

the equilibrium position then our solution enters into X 5 

Further we shall lie in need of the following Lemma. 

Thereby the The.orem is proved. 

Lemma J. Let XE,(t) and,¾ (t) be two different solutions of the equation/t/satisfying 

the conditions (A) and let at t,1t 0 lxf(t) -x5 j~ h0 and/Xf (t)-x5 / ~ ho where h~ so 

small that at t "'1t0 the conditions of Theorem2 are fulfilled. Then at any t >ito the ex-

pression 
{xs(t)-,¼(t)}{xf. (t)-¾(t)} < 0 

12.4;· 

Proof: 

It follows from Theorem 2 that at any t ~ iotb.e expression XE. (t) - XE. (t) :/- 0 if at 

a certain t/~•-to Xr.C"f:.t)=i(~hen according to Theorem 2 and X,e,C"4) = Z(~Jthat contradicts 

our assumption that ~ ( t) and Xr. ( t) are different solutione since otherwise it would contra

dict the Theorem about the uniqueness of the solution. - Suppose now contrary : let at t = t' 
equation /2.4/ be not negative. Without restricting the community we shall consider that 

x,_(t') - ,Xi (t'J > 0 • Then xt (t') -~(t'J > ..... 0 • Let ua. consider the case Xi {t'~ -~ (t') = o 

Then with t >t' but sufficiently close'tot'~(t)-Xc(t)>Osince if ~(t)-Xt(tJ~o 

t(t) --~ (t) ~ O that contradicts equation /2.J//see, the proof of Theorem 2/. 

then 
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I 

Therefore, assuming fort 
. . 

somewhat later moment of, time we reduce the case XE (t')-Xe (t') = o 
' ...:._ I ,..:,.. 

to the case Xf.(t)-Xt(t') > O • We shall show that it is also impossible. Really, 

HtJ=X£(t)-Xg(t) satisfy the following conditions: Ht')>O) tct') >O and f(t)->-0 

at t -oo. Therefore, t(t) possess the positive maximum what is impossible. We could 

have already become convinced in this when proving Theorem 2. Thereby the Lemma is proved. 

Corollary I. Since any two points situating on the same arc L"' satisfy the oondition 

(X1-X1,J(X1 -x,)>0 at any o< >0 , then the set L.,/'-.(L;uL;) consists of the only point.at any 

to and at any °' > () • 

The following theorem will be useful .further. 

Theorem 4. .Let equation /'If/ if' Xo and t 0 are chosen possess the unique solution XE. (t) 

satisfying the conditions /A/. Then this solution is continuously dependent upon t , i.e., 

XE.(t)-xfo(t) and Xe(f.J-xf.o(t) at e,-Go \lniformly by t on every limited set of the valueo 

t • 
The following lemma is required to prove this theorem.· 

Lemma 4. Let equation l*I at the chosen Xo and to possess the unique solution Xc(i) 

satisfying the conditions /A/. Then. any solution¾ (t) of the equation f*I emerging at 

t·= t 0 from the point (Xo 1 X0 ) if x:(to> > 1 would cross the straight line X = x 5 

without making at t >✓ t0 a single return, whereas at 1;, ~ '> 0 , not reaching at t >1 t 0 x= Xs . ~f. Cto) 
the straight line""'lt will have a return point. 

Proof: 

Let us give the proof for case x:~to) > 1 • 

h 1 . Xo O d l l t l t x· ( Xo ' t) be T e case > Xf.(t.) :> is prove ana ogous y, Suppose oon ra.ry: e O Xe.(t.) 1 

found and such that the· oorresponding solution _r£ (t) not reaching at t ;,; t 0 the straight 

line X = x5 will have the 

X = o< Si8n(X5-Xo) ✓ lx-xol 

(X=Xo) X; o) • Let t'o( be 

return point. Let L"', as earlier be an aro of the para.bula 

which connects the points (X-= X 5 , x "'o< Si~n ( x s - x 0 )VIXs - x0 / 

the least .at t > t 0 moment of time, when the solution XE, (t) 

and 

would 
• cross L"' • It can be easily seen that taking "' > 0 sufficiently great one may get that 

k {;, at, t;[t 0 ">,t:) would be>I,whereas the solution XE. (t) satisfying the oon-
f. • ? 

ditions ~ , ( Xo )"' ~ , • 
XE.(t"')=Xo- -;;z- Si~n(X5-X0 ) 1 Xe,(to<)=Xo 

not reaching at t >1 t~ the straight line X•Xs will have a return point. Let L,~ be a 

part of the arc L"' , confined between the points (X=Xs,X=o<Slgn(X5-X0 )~IXs-x 0 1 and (X=Xo

-(i0f Sijn(X~-x0))'=X.,. It can be easily seen that the point (Xe,(t~) 1 XE (t~)) does not bnlong 

L' . L'-✓ to ~ ·• Applying the considerations of' Theorem J to ~ we may easily prove the existence 

of the solution x£ (t) satisfying the conditions /A/ and different from XE,(t) that contra

dicts Corollary I.The obtained contradiction proves the Lemma. 

Proof of the Theorem: 

For _proof it is suffuoient to prove that Xe. (to)-xeo(to) with €, - C-o , We shall try to 

prove it. Suppose the contrary: let /XE/t0 )-xe
0
(t 0 )/ remains more than a oerttlin '1 > 0 
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for a certain sequence S1<--£o with 
x (t ; · 

0< . E.., 0 < 1-J is proved in quite analogously./ 

Xt (t 0 ) _ L 
I<-- oo and -let K ~ 1 + LI ( ~ 7 o) · /the case when 

XE.., (to) 

Let x o be an arbitrary point, such that 
Xt,

0 
(t.,) 

1-i- 2i > ~ '7 1 • Denote by XE. (t) the solution of the equation with E, = f,k satisfying the 
. Xto(t.)_ ..:.. . I( -

cond1 tions Xf (t 0 )=X'0 , XE. (t.,) = X 0 • Then the solution Xt (t) would cross the straight line 
k I< o _;z . . 

X = X& without making at t >,. t 0 a single return of motion, since . 1;.,(t.,) = ~ > 1 
. Xt; 0 (to) Xe 0 (t.) 

Therefore according to the conventional Theorem about the continuous dependence of the solut-

ion upon the initial conditions all Xe1< (t) with K greater than a certain k 0 would cross'the 

straight line x =Xs w,J-thout making a single return of motion. But on the basis of Lemma 4 all 

.Xf,~ ( t) not reaching at t ,. t~ the straight line X = x 5 have the return point since 

0< !e.,(t.,) < 1 • The obtained contradiction proves the Theorem. 
Xt,1< (t 0 ) 

Let L"' as earlier,. denotes the arc of the parabnla ·connecting the points (X=Xo I"'= o) 

(o(>O, )X 0 -Xs/<ho), and (X=Xs, X=o(Si~n(x5 -x.)fK5 -x_./) 
I 

Let us take the straight iine X = x 0 , Then for any t., determine t 0 as a moment of time at 
• 

which the solution X f. (t) emerging at t = t 0 from a certain point lying on L."' and satisfy-

iJ1g the conditions /A/, would cross the straight line X= x., • It is evident that t: "- t., • 

Since according to Corollary I for any t 0 there exists only one solution emerging with t=t., 

from a certain point of the arc L"' and satisfying the conditions /A/, then· the function 

t:=f"'(t.,) is one valued. 

Denote the point on the arc L.,"' by (x (t0 ), x(t 0 )) from which the solution satisfying the 

conditions /A/ emerges with t = t 0 • Then it is easy to ·prove by means of the considerations 

analogous to those given for the prove of Theorem 4 that the point (x(t0 ), X (t 0 )) continuously 

depends upon t 0 • From here making use of the Theorem about the continuous dependence of the 

solution upon the initial conditions we obtained that the solution XE.(t) of the ·equation 

/*/· emerging with t=t 0 +4t., from the point (xf,(t 0 +L1t0 ), Xf.(t0 + t1t0 )) would cross the straight 

line X =- Xo at the moment of time continuously dependent upon 4t 0 , i,e., we obtain that 

fcs (t0 ) is a continuous function, Since to<(t.,J < t 0 then f"' (t 0 )- - oo with t - - oo , 

Show that f"' (t 0 )- + 00 · with t.,-+ 00 • Thereby it will be shown that the set of the va.lues 
\ 

of the function f~ (t 0 ) is all the numerical straight line i.e., it will be proved that 
I 

equationflt'at any t 0 and Xo sufficiently close to X 5 possesses the solution satisfying 

the following conditions :XE.(t0 )=Xo 1 XE.(t)--Xs with t -oo and 5i3nXE. (t)=Si3n(X5 -X0 ) 

at any t >,.. t 0 • It follows from Theorem 2 -that this solution is unique. 

To prove this fact suppose contrary: let fcs(t 0 ) be limited from above and let t~ be an 

exact upper edge, Show that f"'(t0 ) fails to reach its exact upper edge. Suppose contrary: 
~I 

let fcs(t.,J reach its upper edge t 0 in a certain point t 0 

I ~/ 
• This mea_ns ~hat at any t

0 
'7 t 0 

, ,,..._ ,,,..._ I 

and x0 the- solution XE. (t) satisfying the conditions XE.(t 0 ) =-Xo 
,/",. I • 

and Xc(t 0 ): Xo does not 

satisfy the conditions /A/, Show that it is not so. 

Let XE. (t) be a solution of the equation /~ satisfying the conditions /A/ and the condition 
~, 

.Xf.(t.,) = Xo • Denote by Xio (t) the solution of the equation l*I satisfying the conditions 
- ... , .:.. -, 3 . -, ;:: -, 
X£(t

0
f=X 0 , X£(t0 )=fX£(t 0 ) ; and.the solution satisfying the conditions Xf.(t

0
)=X 0 
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-Then there exists .1t > o such that the solution XE ( t) 
- -, 

satisfying the conditions XE(to-1-Jt)::Xo 

and Xf.(<+.it)=fx,(t 0 ) would cross the straight line X= X<;; without making at t>,.t~ +Jt 

a single return of motion, whereas the solution ;E (t) satisfying the conditions ¼(t:..Llt):Xo 

and ~f,(t;>=fxc(t~) not reaching at t>,t:+Llt the straight line x=x5 will have the 

r.eturn point. Then by the consideratiims like those given when proving Theorem J it is easy 
~- 1 •, "'t J ' ,-, I 

to prove that there exists the point X confined between z: Xf. (t 
O

) and °t"XE (t 0 ) such 

that the solution emerging from the point (Xo,1) at t=t~+4t satisfies the conditions/A/. 

The obtained contradiction shows that f~(t 0 ) fails to reach its exact upper edge. Let now 
I -1 -✓ 

ti<< t 0 and tend to t 0 with k'-=. Denote by Tw the set of the values t 0 such that 

{. (t0 ) = t~ . Since t: is the exact upper edge then no T1< is empty and since any t 0 f Tl< 

satisfies the condition t 0 )' t~ then there exists the final ti<= ~nft0 (t 0 E Ti<) •. Since 

t,._(t
0

) is a continuous function then /,.(tw)=t~ · and since- f-"'(t 0 ) fails to reach its upper 
I • -,. 

edge then ti< - 00 with K - = . Consequently, ti< - ti<> ti< -t 0 - = with K - oo • 
I 

It can be easily seen that ti< is the first at t ~ti< moment of time, when the corresponding 

solution em_erg1ng at t = t~ from the point lying on the straight line. X = X O will be 

incident on the arc L.."' 
. (I<) ., 

, XE < -o<~/X-X0 / 

d dx 
if X0 c. Xs and t<- --- , if X 0 > X5 

d.~/x.-x/' xt'1tkl 
By integrating·we obtain that J df > ti< - t~ 

xo oi:4/xo - ~I 
(J() 

• Since x~ (ti<) is confined in any 

if 

if 

, 1.e., at [ 

I • (W} 

tc: t1< 1 t 1..]xE (t)>o< ✓ 1x-x.1 

if X
O 

> x 5 1. e., d t < dx 
o(~Jxo-xi' 

xf"'ct.,, 
if Xo C. X s and - I. "'~ > ti< - t ~ 

of the two cases between A'o and· X 5 and 

the integrands are positive then extending the integration over the whole interval from Xo up 

to X5 we shall only increase the 
. ' xs d ~ 

1nequali_ty, i.e., tl<-tJ<<l ~ • °' Ix. - t / 
so, one can see that in both cases 

magnitudes of th~ integrals in the left-hand sides of the 
• . I x. . dt 

with x 0 <. x 5 and ti< - ti<< f ~ , with X 0 > Xs • 
1 i2, , XS CX /X o - f / 

ti< - ti<< ;; ✓ /Xo -Xsl 1.e., at any K is limited from above. 

• 
The obtained contradiction proves our assertion. Thus, depending upon what side from Xs the 

point Xo is situated we have_ one family of the solutions of the equation/*/ dependent 

upon one parameter t 0 • These two families contain all the solutions entering into the given 

equilibrium po_si tion of the saddle type. 
I 

Denote by a~ (t~) 
ato,J<s 

the continuous mapping of the straight line t O on the plane 

( x
1 
x) which· can be determined in the following way: 

e 

we take the point { X = XE (t 0 ), X = XE. (t 0 )) on the solution XE. (t) of the equation satisfying the 

It Will be a continuous and mutually-digit 

x0 > x 5 is determined analogously. Thue, 

topological image of the straight line. 

mapping on the plane 
I /I r (t0 ) = U ( L., X U L., X ) 

Xs S S 

at t - oo and Si~n xf. (t) = 

( X ,X) • Qt l/ ( <) 
<1 o, s 

for 

where L'xs and L" is a Xs 

<S. 
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C H A P ~ E R III. 

Further we shall be in need of some properties of the solutions of the following equation 

dt (m(t)x)- k(t)x-= - k(tn(t) 1 /J.I/ 

whe,re m (t) > O and l<(t) > 0 are continuous functions. The correspondi_ng homogeneous equation 

has the unique equilibrium position X = 0 It will be the equilibrium position of the saddle 

type. The aim of this chapter is to prove the following Theorem. 

Theorem 5. 

If the homogeneous equation /J.I/ satisfies the oond1t1ons (~) , and ~(t) is limited 

and tending to zero with t-.;., then for any Xo and t 0 there exists a solution x(t) 

of the inhomogeneous equation /J.I/ satisfying the following conditions : X(t0 ) =Xo and 

x(t)- o at t -"°. 
Note immediately that if such a solution of the equation /J.I/ exists then it is unique. 

It follows from the uniqueness of the solution satisfying the conditions x(t0 ) = O · and X(t)-o 

with t - 00 of the corresponding homogeneous equation. The proof of this Theorem for case 
00 

dt when the integral J -- is divergent is somewhat different from an analogous proof in 
t rn<t> oo d 

case when the integ;al Jt
0

m~t) is convergent. Proving th:s Theorem for each of the 

possible oases we shall try, however, to reduce to the minimum all possible repeatitions. By 
t d't 

the substitution 5 = J t.o rri('ti) equation /J.I/ will be reduced to the form 

Z, • ~:Z, -k(S)X: -k(S)f(t(S)) 

where k(5)-= l<(t(5))m(t(S)) 

/J.2/ 

00 

Lemma 5. Let the integral f d(~J be divergent, }(5) is continuous together with 
t. ,,,, 'ti 

to the second order for any their derivatives up 5 >/ 0 and tends to zero.at S-oo and let 
dz-~cs, 

dsz- has an identical sign.with f (5) at any 5 >,.. o • Then equation /J.2/ has the 

solution tending to zero at 5 - 00 • 

Proof: 

It is easy to see that under these assumptions ~(5). does not reverse its sign since if at 
5=5 0 HSJ=O then at S > 5 0 ~(S);;O. Since in this case the proof is trivial, we shall 

suppose that ! (S} 

The curve X"' t ( 5) 

at S >,.. o does not vanish and for the sake of defin.iteness is positive. 

divides the half-plane 5 >,, o of the plane (S,x) into two parts, in 

one of which the expression X - } (5) is positive and in the other it is negative. Let us 

integrate /J.2/ over 5 from 50 >,.. o up to 5 • · 

We ob.tain 
5 

dx(s} dx(So) 
ds--Ts"" = f k('tJlxctr-J(t>Jdt /J.J/ 

So 
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It can be seen from formula /J,J/ that any solution X(&) of the equation /J.2/ with the 

initial oonditions X(5 0 )=X0 ~ i (50 ) and X(S)=x~ >,.. o is passing monotonously into 

Analogously any solution X(S) with the initial conditions X(5~)=X0 6 t (5 0 ). 

.. I I 

and 

such that H(S0 )-Xo/ + /J (5 0 ) - X 0 ) > 0 is going monotonously into 

Let us take X0 > f(O) > O • If' the solution X(&J of' the equation /J.2/ with the initi

al conditions X(O) =X0 , )(
1
(0) <. o meets the curve X=-f (5) then X(S) is going monotonous

ly into - = . It is sufficient to show that at the moment of' their meeting 
I I / ~ I 

51 X (51) <. } (51) , Evidently X (51) 6 t (51) 
'1 I 

It is sutf1o1ent, therefore, to prove that X (51 ) ;f; l (5 1 ) • Suppose oontrary : let 

X(S1)=((S1) • Then X(S)=X(51)+X(S1)(5-51)+0((s-s,,Z,) , since x"(S,)=O and 

l(&): ic51)+ f'(s,)(S-51)+ i/;,,,s-s,) (s~,541 :, + O((S- sd) '1,e., f(S)-X(SJ=i"(s,/5 'z~ 1 ,i + 

+ 0((5- si) With S suf'f'1o1ently .olose to SI the obtained expression· 7 o since 

t"(S1 ) > o • On the other hand .;,1th & < S1 f (5) -X(S) < O • The obtained oontrad1ot1on 

proves our assertion, 

Let x0 ,-.f(o)>O and x:<f(o)<O • Denote by X-i;(SJ('tE:. [0,11) the solution of' the 
I I 

equation /J.2/ with the initial oond1t1ons X.i; (o) =X0 +'t(t(o)-X0 ) and Xt(o) = 't X0 • 

Denote by T 1 sets of' values {1i f [ 0, 1 J) suoh that Xi- (5) meets with the curve X = 1 (5) 

and,. consequently, goes over into -oo • Denote by T2 the sets· of values (1:i[o,11} auoh 

that the solution X-i; (5) not reaching the curve X = t(S) has the return point and goes 

over into -r oo , It follows from the Theorem about the oontinuous dependence of' the 

solution upon the initial cond~t1ons that Ti and Tt are open sets 1n [o,I] • 

Neither of' them 1a empty since aooording to the above-mentioned statements~= 1 belongs to 

T1 , whereas ~ = o belongs· t~ Ti • It is evident that T1 .A 7i = O • It follows from the 

connectedness of' the segment that [o,1],("1UTz) ,f: 0 • Let T,0 €.[o,1],(T1UT1,), 

Then it is clear that X-r;.,(5) >HS)> 0 
I 

and Xt
0

(5) < 0 at 5 >,- 0 , i.e., X't
0

(5) 

1s tending to a certain-not negative limit. Multiplying /J.2/ by 5 and integrating over 

S from zero up to S , we obtain 
f, 

• 

sx;/5) +xto(0)-X-r.,(5) = JtK(t.)/Xt/t)-}(t)}dt. 
0 

j'J.4/ 

The left-hand aide of' the equality /J,·4/ at any & ,..,, O 

5X~(5)-X1:
0
(5) <. 0 and consequently, the right-hand 

Xt
0

(0) • Since the integrand is not negative it means 

does not exceed Xt
0
(o) , since 

side of the equality does not exceed 
"" 

that the integral J&i<(sJ/xti&1-f(&)}ds 
0 

1s convergent. Taking into aooount the conditions(~) we can easily 

possible only when. Xt
0
(5)-f(5)~ 0 withs- 0 since Xt

0
(5) 

obtain that 1t 1s 

1s a monotonously 

decreaeing function. Therefore, X't (5)- O with S -- oo • Thus our Lemma 1s proved, 

Lemma 5~ Let the integral r j(~) be convergent, }(5) 1s oont~uous together 

with its derivatives up to the seo'ond order for any 5! [o, So) ' where 50 = l Jz-c, monotonou1-

ly tends to zero with S- 5 0 and let ~"(S) have the 81gn oppos1te'tp t(5) at 
'r -~----- -----. ~------

i; {j {~ ~~;t~Oi~ HlD!.! il. !H! CTUT)"1 

~ ~.:;",:t?H'."·! 1,ccJJe)loB:urnll 
~ ~E•I6J1MOTEHP, 
,'1.c, _ _.,.::.::;.:.;=.~~---
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any $ E. [ 0 1 50 ] • Then the equation /J,2/ 'has the solution tending to zero at S - 50 • 

Proof: 

Similarly as in proof of Lemma 5 6ne may restrict oneself by the case when !(S) > o 

for any SE:[o,sJ. It can be easily seen from the-formula analogous to /J.J/ that any.solution 
' I I I I I I I 

X(5) of the equation /J.2/ with the initial conditions X(S
0
)=X0 >✓ }(50 )and X(5 0 )=X0 >/(50 ) 

goes over monotonously into 

ions X(S:)=O , x'cs:)< 0 

+ 00 ., Analogously any solution X(S) with the initial condit-

goes over monotonously into - 00 - • Denote X-r; (&) the solution 
I I oJ' ~/~ 

of the equation /3,2J with the initial conditions Xt(O)=t(o)(f-t) and X't(o)=-t+(1-t)xo,l~•">tt•)1 

by t E [o,I,] • Denote by TI the set of values 1-u [o, 11) such that the solution X-r; (5) 

at S = 5~ E: f o, 5 0 ] with the curve X = ! (S) • Denote b,y Ti the sets of va}.ues /t( [ o, 1J} 
s·uch that the solutio~ Xi- (5) . C.~s with the straight line X = o • As well as in the proof 

of Lemma 5 1t can be easily seen that if the solution X-i; (5) crosses the curv_e X = t (5) 

then further it monotonously goes over into + oo • Therefore,~ and Ti are sets open 

in f o,I] and ½ /\T2, = 0 

The choice of a set of the initial values has been made so that neither of the sets 

would be empty~ It follows from "the connectedness of the segment that [ 0
1 
1j,(T1 U Ti) f: O • 

Let 'toE:[0,1)\(1:uTz.) • Then x'to(S) is confined betweenx=HS)and X=O , i.e.,. Xto(s)-0 

with S - $ 0 • Thereby Lemma is proved. 

Lemma 6. Let \ ( 5) be determined and confined at S >;, 0 and at 5--+- oo tends to 

zero when there exists HS)> 0 such that Tes) >{~(s)I eLm 1°(s)=o,Tcs)<.0 ,·-(cs, 
5,.00 

is piecewise in the gap points we have the limit on the right and on the left 
-,, 

and f (5) > 0 for any 5 >/ o 

Proof: 

Let I Hs)/< M at 5 >r o , Take ~0 = 4M and put t'l<=t0 · z-1< for k > o , For 

every £1< determine 51< such that n (S)j < ~ for 5 >r Sk ( 5 0 = O) , Taking if 
I I 

necessary 51< > Si. ( 50 

t - E. = o) we may obtain that .1k = 1< + 1 1< would satisfy the 
~ f 51<+1-51< 

condition Al<< .1k+i • Supposing .11< = 1 Ak we see that Al< L.. LI 1<-t-i for any 

k' >1 0 Introduce two piecewise functions G"
1

(5)=L1k for5€[51<,S1<+i}and (Ji,(5)=C11< for 

5([5 5) Let G"(S):::EH,(5
l(+l" 5)+E.1<( 5 -SKJ 'and- cr (S):::.!.6" (5) for 5£[5 5 J It 

1<1 l(♦ I • 3 51(+ I - SI< "" ~ i 3 "" I< I I< .. I • 

can be easily<lseen that G"3 (S)=-JG"1('t)d't and (j~(5)=-JO"i,(t,)dt . 
s s ,.. 

It is evident that (j (5);, Ci (5) > n (5)1 • Finally introduce (5 (sll<(s,., .. ,- 5 1<) ... lh(&-S1<) 
3 ! 

00 
s sJ< .. ,-s" 

for 5([51< 
1 
51<,.,J. and put 

0 > Gt ( S) >r G"5 (S) >/ 0 1 ( 5) 

~(5)=-fG"
5
('t)d't • It can be easily seen that 

&· 
i.e., O<. -(5z(S)~-G"5 (5)= -61 (5) • Integrating the last 

"" "" 00 

inequality from 5 

i,e., (5'~(5) ~ ics) 
thtt T(s) > I\ (5)1 
- ~1<- LIi< - t..1<+1 

-5K+,- 5K -,sk••- sK)z, 
zero at 5 - oo 

this, 

up to oo , we obtain that - J G"i('t')d't !: - j G"5 (t)dt = - JG; ('t)dt 
r, r, r, 

• Comparing the last inequality with G~ ( 5) > / l ( 5) / we obtain 

It is evident that ((5) 4 O and for SE (51<, 51<+1) }'
1

(5) = 

'> 0 • It follows from the fact that <5"1 ( 5) and 63 ( ei) are tending to 

that H5) .... o also at S - «> • The proof of the Lemma is completed by 
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Lemma 61 , Let \ ( S) be determined and limited for ·s € [O, So) and tend to zero at 

S - So , Then there exists 1 (S) /" O monotonously tending to zero at S -+ So such 

that t (S)>/5 (S) / , whereas\ 11(5) is piecewise, in the gap points it has the limit on the 

right and on the left and~ 11 (S) < 0 for any SE [9,So) , 

Proof: 

We take the.half straight line l:s=So, \ >O_ on the plane (s, ";) and the sequence 

of points on it f" = { So, 50 -2,-KJ where ~o-;:= SU,pl~ (S)/ a.n.d. /( ~ 0 • We draw a straight line 
SE[o,s.J 

~ = 5i-1 + {II (So-S) through each point ·p,,. 80 that the graph of the function 

I~ (S)/ would be situated lower than our straight line. For this it is necessary to take 

~ sufficiently great, We subject the choice of ti< to the following conditions: 

LYK+1 - I,.} >- i ( ~ - t,,.- 1 ) > fe }; · and J',.+ 1 >- "! d'K , Then, it can be easily varified 

SK+£= s. +-¾ ~ .... :~ and ~K+I =- ~4 ";~:.Xv,. "+I at K+ I ;,, 0 ' whereas s. :::: 0 and~- =so-t- f ioSo 

satisfy the following conditions: S,.+, >-SK, iK+r.::. ~"' 

an.d ½ (SK+/ -sK)-<(f,.-gK+l)<t.,(§;..,-s.) 

The last conditions as can be easily seen are necessary ~nd sufficient for the existence of 
S.c·H 

tJ!,._5ontinuous po~it::_v~ :unc~on _c1-..._(s) such that J d-.,,, (S)clS == Y,.+1 -~ 
- Jell( (S)dsdw - n" \,.+,) y.. (SK+/ SK).-. s s. 

and 

;;;~te by ,{(SJ the function equal to 't< + J ~~ CC:} cl-i- for SE [S~, S ,.+J and let 

. f (S)=t,-ff('r:}dT • Then it can be 
5
;asily varified the obtained function \(5) satisf-

o 

ies all the conditions of Lemma. 

Just note that Lemma 5 /Lemma 51/ remains valid if ~ (S) satisfying the conditions 

of Lemma 5 /Lemma 51/ is replaced for ~ (SJ , constructed in Lemma 6 /Lemma 61/, 

Making use of the last remark it will be quite easy to finish the proof of Theorem 5, 

Denote by X( l) the solution of the homogeneous equation /J,I/ satisfying the following 

conditions X lto) = 1. , X ( t) < 0 and ~ X ( t} =O Then as is known the general solution 
t-+oo 

of equation /J,I/ is of the form 

X.(t)=-C,X(l)-+-l?2 X(l)jt ol~ X( 1Jft{ 1 • j-r:K("')X( ,it( ,id_·w·} ...1,... 
• i mt1:J x (t') - -c. . m/1:Jx•(-r:J VJ . w,:, w, . CA,,_ 

• to f:;.0 

/J,5/ 

i d't' 
where x (I:.) J m(rJX'tr:J is the ~econd solution of the hpmogeneous equation /J,I/ linearly -in-

t. 
dependent of X ( t) It follows from-the fact that the homogeneous equation /J,I/ satisfies 

-I; 

the conditions(olJ that x(l:..)j m(';t;.l'l:') --+= .. a~t- 00
• 

to ~ r J,.~';> 
Therefore, expression /J,5/ may tend to zero only at½ =Jl((u.>)X1(W)( tW) w. Under the 

. t . 
assumption \ (S) is limited and tends to zero at t- 00 • • Then according to Lemmas 6 

. and 61 there always exists ~ (S) >- I 5 (S)/ such that if in the equation /J,I/ 3 (S) is 

substituted for ! (s) then we obtain the equation which ~ccording to Lemmas 5 and 51 has the 

solution tending to zero at -6 - oo • This means that the expression 

)((t) /{ mcrfx•m /~(w)~(W) X(W) d W) d't' 
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is tending to zero at t ----->-co , Since X(l)>O at l ::;::.to then 

X ( l)j { mcrAv.cr:J jK (w) ~ (w) X(W)dw l olr >,, 
t. -z:- J 

"xtt)f .{ mr<fx•c-cJ f 1wJJ\(w)/ Xiw)dwJ d.r;,, 

7--X<-l)j {mm; 2 <-i-J !J°7<(w)\(w)x(W}dw/) cl 1: ?-
tof --,;;-

?/X(t!{ [Qrntrfxv..(rJ {~(w)5(W)X(w)cl w} d T I, 

therefore, the expression 

X (t) j{rn trJ !2 cr:J fa ( w}'~ ( w) x ( w) cl w·} cl r 
to -z; 

is tending to zero at f _,... co • Thus, the ex'pression 

X0 X(t) +X(i)ft{mtr:J~2 (1:) 1: (w)s(w)x{w)dw} clr 
t. 1: 

is the solution we have sought for. Thereby Theorem 5 is proved. 

Lemma 7. Let the homogeneous equation /J,I/ satisfy the conditions (d...) , whereas X(t) 

is the solution of the homogeneous equation /J.I/ satisfying the conditions x(t.)=i, x'tt)-t.. O 

at t~to andX(t)--70 at t.- 00 • Thenm(t}X(e)__,,.O at f.-;--=. 

Proof: 
00 

for case when the integral j ::;;;) 
-bo 

validity of the -Lemma for case when 

is divergent the proof is evident. Let us prove 
oO . 

the the inte~ral j 1l~) is convergent. m cl) x'ct) 

strictly less -/;than zero for any t -::.- to is the monotonously increasing function 

Let fu.n m{t)x(t)=-C .c..O 
t- Oo 

, Then at any t. >,:,,l0 m(i.)X(t)~-C. 

Integrating from t up 'to C<> , we obtain· that x(t}>C r~~'l:') 
equaHty by K {t) and having integrated from io up tot oo 

j
0

°,f{tJ/~~J)dt< J/°,f(f)xa)dt 
to (i to 

•-{; C , i.e.,-}[( )>rntel 

• Multiplying the last 

we obtain that 

The last integral as it ha5 been noticed earlier ie convergent. Therefore, the integral 

J;_(/;J(J :/;c!;;f)d[ is also convergent. It is known that from the convergence of 
t /; .,.,.., I "'° 

the_ intj~ral j j 'f- (S)dsclv follows the convergence of the integral J st</ (SJ/ ds . 
O V ,/ ( )-t 0 For S = Ii (1:) dr: and 't (S) = K(S) m (S) the first integral is equal to 

<><:,OQ t d-r: 
j j If( t} • mt1:Jdt and as proved is convergent. Therefore, the second integral is also conver-
t, t <>o 1.. ( t ) 
gent, i.e., the integral fm(f5 jn(r:)clrdt is convergent that contradicts the con-

t.o e, 
ditions / c/._ /, The obtained contradiction proves our Lemma. 

Theorem 6. Let the equation 

:ft (m(t,"J...)X)- K-(t,il)X=-K_(t,;l.n( t,i\.) (!t.b) 
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isatisfy the conditions of Theorem 5 for any lLE:[i\.o-<',i\. +cSJ(o>-0), the functionsm(t,i\.) , 
. . 0 

It { i, il) and ~ ( t, 7-.) are uniformly tending to -m(-6, i\..0 ) ,1t(l-,.it0) and ~ (I:., 'i\. 0 ) with 

il--). Ao on every segment [lo, t J , whereas the function ~ (t, 7,...) iis limited by one con-

stant for any t >,- to · and for any ;\.€: [ .ila-O, il.+c:S]. Denote by ·xi\. ( t} the solution of. 

the equation /J.6/ sat"isfying the conditions x .... (to)= Xo 

Then X}.. lt) is continuosly dependent upon A. , i.e., 

and X~{t)~o at t -,.oo 

X}JI:,)--,. X)..
0
(l) with 'A.._,,. fl..o 

is uniformly on every final segment of the values t • 

Proof: 

According to Theorem 5 

x,1 lJ~x. X,(t} + x,11)l {m,d,1u,~ r,qw, A) 5 (w, ;\) x, (W, A)d➔ d,:' 

where Xi\. ( t) 
X;i._ ( t.) == i 

is the solution of' the homogeneous equation /J.6/ satisfying the conditions 

and Xi\. (l}-+-0 at l -=,; From the fact that ~-,._(-l) and ti\ (t) at ,7\_4 il_ 0 

XA..o (t) and x"/lo (l) correspondingly uniformly on every segment [ to J t'] are tending to 

one may write using Lemma 7 

Oo oO 

j tt (r-, i\..) xi\ ('t)d:r =-m(t, il) ii\ lt}~ -m (t, 'ilo) xi\. {I;) =f K-(1:Jt.o) X-~,Jr:) d -r:; 
t . 6 

w,th 

is uniform on every finite segment of the values t / from the fact that the written express

ions are the functions · t , monotonously tending to zero ,follows that the convergence will 

be uniform on.all the semiaxis t ~-lo/. Making use of the limitation of the function 

\(t,'il..}uniform over f\.. it can be easily shown that 

~tr:, il)\ ('C tl.) ><1- l'C)d T;-+ f~cr:,7'-~)'~ (1:
1 
i\) X11.

0 
(1:)d1; 

t t -
at jl--,. ;l

0 
·iis uniform at every finite segment of the values t • The latter circumstance 

implies that Exp. /J.7/ with ;l- A..0 is tending uniformly to an analogous expression for 

i\_ = Ao at every finite segment of the values t • Thus Theorem is proved, 

C II A P T E R 4, 

0 
The results of the previous chapte~ give the possibility to finish the outlined program, 

It is the aim of this chapter to prove the following Theorem. 

Theorem 7, Let the functions m(E..,t} 1 K.(€1t)Jp 1
(X) and e!ce.,t,x,X)X.' possess the 

con• !ous derivatives over E.,X and X up to the order K and satisfy the condition:, 

(14) /their mea~irig will be explained in the pro;f of the Theorem/. Then every solution o! 

the equation/:;,.,-' satisfying the conditions /A/ has continuous derivatives over. E up to 



- 22 -

K-order tending to zero with i --+ 00 and satisfying the equations obtained from l*I by the 

successive differentiation· over 8 • 
Proof: 

Let us prove the a8sertion for the first derivative, 

For the derivatives of higher orders the proof is analogous. Let X~(i) be the solution of the 

eiuation l*I satisfying the conditions X~ lto) =Xe (IX.•- X5 I .C. h 0 ), XE. (l)_.., X5 with t -+ 
00 and 

siJnXr(t)= s,'Jn(Xs-X.) with -/;>;,to, ' 

whereas XE+AE(t) be 'he solution of the equation l*I, with the changed value of the parameter 

satisfying the same conditions. Let us aubstract the corresponding equation for XE. (l) from 

the equation for X£+Af (I:,). Applying Adamar·Lemma /see, for example, /7/, page BI/ we obtain 
11XE < t> _ K£+•• ltJ- xr1-bJ ·· 1 that ~- LI£ with ,1 f.. r O satisfies the equation 

A ( 4Xe(lJ) JLlJ..[il {1 i ' dt, m(£+/1£,t) .1£ - ,1£ 'f(E.+AE.~,xt~4£,Xt,+ot)+ 

+ xf.,/1:f (f.+!Jf,/;, xf..+AE,Xt +\ i1xt)d"jr(£+tit} + 

+ .1~ell) {K(E.+M,•l:)jp 11 (x,+v1xl)cL~ -
0 

- (E.+llE)Xlif~
1 
(E+LIE,t,Xr+5llXi,Xt)d~} := 

· 1 i =-:fl (xiJm; (£ ... 5aE,t:)cl))-P'Ui..)]ri\_(£+5llf.,t)cl)+ 
0 0 

I. 

+ f (£, t, X,., Xi) XE.+(£+ IH) Xf j 1: (£+~ aE, Xt, Xr_) cl\ 

with the boundary conditions: 

.1X,(t.) _ o and 
A£ -

D 

LlXi( tL - o with t _,,. 00 

AE 

Let :l£ (£} be a solution of the equation 

11 < rn(E, t) it)- Eie { I (f, t,xE ,Xd+ l~l (£, b, Xi. Xd Xi}-t 'lr { ri,(f,/;) p''(x()-E/x/E,f,Xt,~)Xt} = 

.:::- 1 (E, t? XE, Xt)Xr + £/; (f,l,x,,xd Xe - 91 (m~ (£,t) Xd- l'C~ (E,t) p
1

(Xf..) 

/4,I/ 

/4,2/ 

with the boundary conditions li (to}= 0 a.nd '.li:. (t}-+- 0 with t -+ 00 • In virtue o! 

Theorem 4 the coefficients in equation /4.I/ with ~E ~o are tending to the corresponding 

coefficients of equation /4.2/. The homog~neous equations /4.I/ and /4.2/ satisfy the cond1-

tions /ol / because the equations/*/ satisfy the conditions /cl._,./, Therefore, for the 

applicability of Theorems 5 and 6 it is necessary that the expression 

I 
I 
I 
I 
i 

I 
) 
1 
:; 

1\ 

I 
l; 
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would be uniformly limited for the sufficiently small llE and tending to zero with -t ➔ <><>. 

This will be fulfilled if for any C >- 0 for / Xe,_-Xsf < h., f xt / L. C, and for the sufficiently 

small LIE the expression{lt(E,-b,XhXE)+(Er/lf.)/; (E+~llE.,b,xt.,X~)I + 

+JIC;(E-t-01.flE,/;)f}: /l'i.e(E+/Jf.,-c)/ (o<:e, .c:i) . 
[1. 1. } 

/see chap.I/ will be limited with t ~ to or increases slower than min(IXdtJI J/Xl(i)-Xar 

whereas the expression cit (.xE m~([: +02tlE, I:.»: f tf.c (£+l!.E;l::)/ ( O< 82. ~ 1.) 

is uniformly limited and -+ o with l - co. Vie call t~is condition / __p /. We may finish 

the proof of the Theorem by the requirement of the validity of the condition (,,6) for the 

equation /*/ , since its proof for the derivatives of higher order is quite identical the 

validity of the condition analogous to the condition/}/ provided. 

CHAPTER 5 

Now let us be engaged with the actual calculation of Xc<t.J • Differentiating the equation 

/ * / K times over E and assuming E = O , we obtain 

XK-z) 

/5.0/ 

/5,K/ 

Thus, having determined .Xo (t.) from /5,0/ we Jf~l'l.'l'.d using /5k/ have determined successively 

- Xt {t}, X2 lt) etc. However, the determination X1e (t,) considerably simplified if one 

in { 5", ti:.) takes Xa as an independent variable. Let us multiply /5 ,0/ by Xo (t} and 

integrate from t; up to t • We obtain 

ma (-k0~{1;} - x;i-l:1)=-Ko {P(Xo(~)-p(io(l~~} 

- Passing in /5,I/ to the limit at f ➔oo we obtain having in vien Xo/6)-Xs. 
with t __,,. 00 

Subtracting /5,2/ from /5,I/ we obtain that 

mo -!J:/JlJ =- tta{p<xs)-p(x.(t)} , i.e. 

/5,I/ 

and Xo (6}➔ O 

(Z\1 

/5.2/ 
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where t~ is the moment of time, in which the solution Xe. (t) satisfying the cond;t:Hons 

/ A / crosses the straight line X= Xo 

We have 

for the last time. 

-x· olx" -
It= clXo Xo, 

Substituting into /5.K/ we have 

:..: dtx" ..!....2 d,k ~ 
X"= dxt Xo + d.x. Xo 

~ ~a{~ (P(Xs)-p(X 0 ))- ~~! p
1

(xo)+X1ep"(xa)= {
0 

:T,._ lXo ,l~) 
.,., /5.J/ 

It is easy to verify that Xr<.(Xo)=V2p(Xs)=2p(Xo) is the solution of the homogeneons equation /5.J/ 

tending t·o zero with Xo -')- X5 /1.e. with t; _.,. 00 /. Then according to Theorem 5 the solut-

ion of the equation /5 .J/ equal to zero at Xo = Xo i.e., at f; =-l; and tending to zero 

at X0 ---'r Xs , i.e., at -f-00 has the form' 
. Xo X:t J_. · I . . 

X,r (Xo) = V2.p(Xs)-2f(Xo)J - .£ Ko 9;{},tol<L! dx 
Xo [2p(Xl)-2p(Xlj ~ 

In order to estimate the capture region for the moment of time f 0 , 

- - ' d -K ,:_ . - - I 

culate XK. ( Xo) and cl~o Xo for the value X0 -= Xo (-fo) for all -/;0 

determine Xo from the formula 
Xtt J V Ko d ~ . i; _ / ( 

Xo £mo (PCXs)-P(jv O 1::o 

/5,4/ 

it is necessary to cal

• By C~ one can 

/5.5/ 

- - . · cix -For Xo obtained in such a way we determine X1<- (Xo). and~ X0 

substituting there the expression for {;~ by the formula /5.5,i 

from the formula /5,4/ 

The obtained corrections 

give good results for that part of the boundary of the capture region which goes into the 

point ( Xs, 0) , 1.e,, for t: < Co • For :6; > &0 we determine at first Xe (t;~) , then will 
· \ I . /_ L 1 -

look for our solutibn for -r:; 0 ~-c;~vo taking as Xo the solution of the equation /5.0/ with 

th~ initial conditions: Xo {lo)=- Xo and ko ( t~)=x( (I:.~) whereas for Xn:. the solution of the 

equation /5.K/ with the initial conditions:X,t{-t~}=X,c(t;;}=O ( K >OJ. For this expansion 

the H,Poincare theorem is correct as well as usual theorems about the existence of the deri

vatives by the parameter. 

Thus, in this case we may determine the. point (xE. (to}, Xdto)) on the solution satisfying 

the conditions /A/. 

CONCLUSION 

The reader could notice that we did not use the closeness of the equation ( ~ ) to the 

conservation one anywhere except the last chapter. 

Thus, the results of the first four chapters will hold also for th~ equation: 
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with an assumption that at th'e functions m (l:,-/;) and tt (E.., -6) are independe11t 

of -6
1 

and J(E, b, 'X,X)X is identically equal to zero. Therefore, we could here 

first determine the capture region for the equation ( *, * ) at E .. 0 , what is usually 

simpler, than at E. =I= O ,and then to construct the asymptotic expansions by the powers E. 

However, the cases, when the expansion coefficients may be_ expressed in terms of.integrals, 

as it holds for the equation ( * ) under these general assumptions seem to be extremely 

rare. The numerical integration of the linear equations of type (S .K) is ve,ry likely 

·simpler than that of the equation ( * * ) . 

* * 
* 
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