





INTRODUCTION

The purpose of the present papér is to determine the capture reglon for the equation
of the following form:
aét—(m(a,t);'()+k(e,t)P'(X)fEf(é,t,",*‘)"( ) R

where E 1s a small parameter, which.may be considered not negative whereaS the functions

m(¢t) and K(E,t) 1f E = 0 are independent of t . Let Xe be the equilibrium position
for the equationﬁﬁ[ Then the'capture region for a given moment of time to and for a
giQen equilibrium posifion Xe is understood here as the sets\of the va}ues of the(initial
~conditions ( X s Xo ), such that the solutions bf the equatibn /%®/ determined by them yill
steadily oscillate with respect to X, . The problems of finding the capture regions arise
in the calcﬁlations of the charged . particle accelerators of different types from where
thebterm ffcapture regiohﬁ 1s taken. The thing is that the particles accelerated in any
resonance accelerafbr undergo the so-called "“phase oscillationaﬁ described by a certain
non—lihear equation, and the capture region for this equation determines the number of
particles captured into the acceleratlion regime. The equation for phase oscillations
itself may be interpreted as an equation of type /%/by introducting the small parameter in

a natural way. Thus, the analysis of the equation /3/ may be used for still more'exact
determination of the.capture region in the acceleratorx/. From a mathematical point of
view a certain analog of the separatrisses is introduced in this papex which makes it
poqsible to separate the motions of different types and the method for the practical de-
termination of these'separatrisses is given.

The method applied by the physicists for the solution of this task /see, e.g.}ﬂ ’nﬂjjb
for case.?(&,t, x,x)s @] consisted in the following: since E 1s small then the change
of the functions m(¢,t) and K(g,t} for the time of one pefiod of phase oscillations which
13 or the order‘&7f ( T 4s the period of phage oscillations) is also small and the time
dependence was neglected. 1In such a case the energy integral may be found, with the help
of which the capture region may be also easily found. Howeéer, since p%x) is a non-~linear
function, T . depends both upon X, and X, and infinitely 1ncréases when X, and X,
approach the boundary of the capture region. Thus £T becomes at any fixed £ # 0 whatever

great. Thefefore, the main premise for the speculations of such a kind 1g3not correct.

x/ One can agquaint oneself with such a calculation in the note written together with
Yu.'S. Sajasov. This note will be published in JTP.
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One may add also that the capture regions for the éduationhqif E=0and if E # 0 are
essentially different: in the first case it is, generally §peakihg, limited, in the second
it 1s not. - 4 v - -

Yu., S. Sajasov determined the capture region by means of the:numerical integration of’
equation/%ﬁ He has obtained an appreciable increase of the capture region and set a problem
of determining the capture region using the analtic method. ‘ . |

The equation /%/ may be interpreted from a mechanical standpoint as an equaflon deg—
cribing the motion of thebmaterial pdint of a variable mass under the action of the non-
linear elestic force weakly time dependent and the smali force of friction. Therefore, the
class of physical problems described by the eqﬁation is very wide.: Tb make this method
apﬁlicable 1t 1s only necessary that in the fulfillment of certain natural 1imitafions the
parameter E characterizing the closenéss of the equation /%/ to the conser?ed would be
small, ‘

In‘iconclusion I take the opportunity to express my gratitude to Yu. S. Sajasov who is
the chief of this work, to S8.V. Fomin and L.A. Chudov for their critiéal remarks., 1 am

grateful also to V.V. Nemytsky and to the members of his seminar for some useful remarks.
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CHAPTER I.

Let us make some remarks concerning the equatioh /%/ « First of all e)/e;:ywvhere further
we shall consider that the' functions m(a;t); k(e,t) ,/ p'(X) and {l(tlt,'x,k) are contihuous and
poesess the continuous particular derivatives ;ovex“'/ all the variables in the hecessa.ry regior.
of change E , x , x , t up to the necessary order. In particular, we sbéill_s.up1)ese that |

the theoi'em of the existence and uniqueness of the solution'deterfnined by the thitial con- ‘
| ditions: Xg(t,) =X, ~ and Xe(ta) =‘5(9 is correct. The functions rﬁ(é,t) and k(g t) will
be assumed positive. ' ‘ b_

It is clear from the kind of the equatlon /#/ that the nulls of the‘functior. pl(x) e.nd
only‘ they are ‘the equilibrium position. Further we shall suppese that“all the nulls of the
function p'(x) are simple, i.e., 1f Pfxe) = O then p'fx,)#O. It follows fr.om here ’i‘mmediateiy
that all the equilibrium positions are isolated. On depending ‘upvon"the sig‘n of P”(/"e)'
we shall speak tha.t Xg is the equilibrium position of the saddle type"lf p”(x¢)< 0 , and
Xe 13 the equilibrium position of the focus type if p”(xe) >0 . For the first case we '
introduce the notation Xg , for the second X'f' «  The equilibrium positions of the saddle
type take turns in one with the equilibrium positions of the focus type. Further 1t would
be very convenlent to 1nterpret any solution of the equation as a curve of the para.meter t
on the plane / X, X /e Let us make some remarks about this 1nterpretation. Let ’(E(t)

~be a certain solution of the equation /3% . ‘We shall state that x! is a return point of the

solution x;(t), 1f there be found such a moment of time t that xe(t’)=x'for all t sufficlent-

ly close to t » the difference xg(t) -x’' conserves the constant sign. ‘One may obtain

from here that "\'E (t)=0 . Thué, the vanishing of the ftrst derivatlve 1s the necessary

condition of the return point. One can easlly see that 1t is also sufficient. Really,. af
ke(t') = then Xg(t') # 0  otherwise X (t') would be an equilibrium position and we have

the solution entering into the finite moment of time into the equilibrium pOsition that

1s impossible according to the theorem about the uniqueness of the solutién. Thus, the

surficlent exctremum condition turns out to be fulfilled. One can draw a certain conclusion

about the behaviour of the solutions on the phase plane.’ Namely: if the solut’\;pn X‘E‘ (t)

in the finite moment of time t met the st‘raight line %=0O then 1t inevitably passes from

the‘ ha.lf—plane ')'( >0 to the half-plane X< 0 and vice versa. The latter circumstance depends

upon, the sign p’ée(t’)) « Namely, 1f P’(xg (f{)) >0  then the solution passes from the upper half-

plane to the lower one, if p’(Xe(t')) < 0. 1t 1s vice versa. \ o ‘
A It follows immediately between two subsequent return points of the arbitrary solutipn

XE{t) from here that there is an odd number of changes of the function sign p'(x) l.e.y

the odd number of equilibrium positlions. The equilibriun‘l positioﬁs of the focus,type will be

aiwe.ys by one more than the positions of the saddle type. The solution XE‘(t) “of the ‘



equation /%/ 1s calied W -—oscillating if it has infinitely many return points if £ > 0.
It 1s easlily seen that the moments of time on the axls when the return of motion occurs
have no limiting points. Indeed, let us suppose contrary: let tx be the moment of time in
which the K —-return of motlon of a certain solution xé(t)occurs‘and tK *-tlat K = co.
Then -there is %} least one equilibrium position between xe(tk)and Xé(tk”) and with g suf-
ficiently great -only one.- Let it be Xe¢.. Then it follows from the continuity of the
solution that Xs(t9=x@ that contradicts the theorem about the uniqueness of the solution.
We shall speak that the solution X¢ (t) oscillates steadily 1f ‘any 1its three return points
following one another X¢(t,), Xg(t,) and Xe(é) (t1< t14t3) satisfy the following condition:
the ﬂumber of the equilibrium positions of the equation which are found between Xe(tz)
and X¢ (t;) does not exceed that of the equilibrium positions between xg(t,) and X (t,) . We
shall speak about the ) —oscillating solution of the equation /#/ that 1t oscillates with
respect to the equilibrium position Xg , if one of any.its two successive return points
is situated to the right from Xp and the other to the left. We shall speak that the solut-
ion xg(t) tends to the point X , if Sup/xe(t) -x/ —= 0 with t ——oco. It easily follows
.from the.above mentioned statements that w — oscillating solutions may tend only to the
equilibrium position of the focus type. Thus, in the equilibrium position of the saddle type
the solution may enter only monotonously,i.e. so that from a certain moment of time[igﬁ) >0.
In ®<his paper we shall always suppose that the solution may tend monotonously only to the .
equilibrium position of the saddle type. It means first of all that the solution cannot
monotonously tend to the point which is not an equilibrium position, secondly, it cannot tend
to the equilibrium position of the focus type. The second limitation implies that we exclude
the-cases of great friction. It i1s clear that this limitation 1s not quite natural, however,
its neglect considerably changes the results. We intend to devote a separate paper to the
consideration of this caée.

The first limitation will hold since the qésea when it is not valid seem to be of no
interest. Now we shall formulate the sufficient conditions for performing the first limitat-
ion. These conditions are obtained from the comparison with the analogous conditions for
the equation X?t)-K(t)x(t)=0‘} where K(t)> O . The divergence of the integrall}kd)dt
is the necessary and sufficient condition that there exist no solutions tending to tﬁ;
finite limit different from zero(see, [4]). One may reduce the equation
d
dst

is divergent then the divergence of the integral

v
b [m(t)x] K(t)X = O( (m(t)>0) to the form LX o m(t(s)K(ts)x =0 by the substitution

5z Jmm and 1f the integral

mee]
ISnﬂ(t(ﬂ)K (t(s))ds 1s the necessary and sufficient condition for performing the first

limitation. This is equal to the divergence of the integral

il
[

In case when the integra 1s convergent as 1s shown in /6/ the divergence of the

integral JK (t)df) dt

to

r+L__\
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is the necessary and sufficient eondition for performing the first limitation. |

Summing up all what was said we can state that in order the ed,'uation [M(t)XJ -k(Dx=o0
goould satisfy the first lim‘_ita.tion it is necessary and sufficient that both 1ntegrals

J (j (t))dt and -[m(t) (J K(’L’)dt)dt would be divergent simultaneously.

to comparing the equation/yywith the equation (m(t)x) K(t)x = 0 we may obtain the
sufficient conditions tha.t the equa.tions/aywould satisfy the first limitation. On the basis

of the mean-value theorem one may write

st (me,t)x) + {K(E, )P (xs + BCE)(x(t) - X, )) -

L (&t x5 +0(t)X(t)-Xg), G(t)x(t))e(t)x(t)j(x(t)-xs)=
=E[ 1 (6,1, X5+ BCt)(x(t)-xXs), B(L ()OIt +

(et xg + B(t)(X(t)-xg), G(t),%(t)])'((t)

where O < O(t) < 1 « Let for any C > 0 and for the sufficiently small fixed h, >o

o

there exist the functions 1, (t,t), £ (Et) and K (£,t)< O such that
K (E,8) 7 K(e, 8P (x) - e f (gt x, %)X

lFC (s:t)»h (E’)ttxlk)'\; + f(gltlx)x)» )-e-C (E"t)
at any [X-x,[¢ h, and [xisc

whereas both integrals

j m(f l(c(f,,'t)’:lc (E,T)dt)dt . V and
to / ! to :

o

- t
J K. (E,,t)l‘rc(ﬁ,t)(J m(std)ic(e’c)) dt 1s divergent if
to to ! ! -

t
Rc(e,t)= exp (-E,J P.o(e,t)dt) _ and

to
F (g t)~ exp (- € j { (g, T)dt).

These conditions are sufficient for the equation/*/to satisfy the first limitation/cf./5/ /.
Further everywhere we shall consider them to be performed and call them the conditions /o /.
Let us denote by Es_.the sets of the equilibrium positions of the saddle type of the

equation/x/. For every x € ES let us take all the solutions X (t) of the equation satisfying
the condition X (t)—Xs with t —- o (the existence 'of such solutions will be proved furthex)
It follows from the fact that the solution may enter only monotonously into the equilibrium ‘
position of the saddle,type that for suoh solutions Xs (t)—— O with t — oo . Let us _
draw the -curve X=X¢ (1), i(:!\'e (t) on the plane (%, X)) for every such sclution. We obtain

a certain family of curves which é.re, generaily speaking, crossing. For a certain fixed

moment of time Lo on each curve of our family we take the point (X=X¢(t,), X ""%6 (t.) »
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Thus we obtain & certain set {'(t,) . If time does not explieitly enter into Eq./#/then I'({,) con-
sists of the whole trajectories and is independent of t, . Otherwise it is wrong. The role of

—

I (t,) will be clear from the following Theorem.

Theorem I. Let A= Ez ~ [(t,) , where E? 1s the plane (X, X) , from which the points
of typew(Xe'O) are taken away. Then there exists the unique representation A=y 44 where
each 4, 1s a linearly conneoted set open in 4 and Ay A4y =0 , with « &',

Suppose that there éxis‘%s the point (Xolx',)eddo such that the solution of the equation /#/
beginning there at the moment of time t, steadily oscillates with reépect to Ax, /not with
standing to what type of egquilibrium positions X, belongs). Then any 6ther solution of the’
equation beginning at the moment of time i, from an arbitrary point belonging to &', will
steadlly oscillate with respect to X¢ .

To prove this Theorem the following Lemmas are hecessary.

lemma I. Let © < A ~ be a connected set not crossing with the straight line X=0
and let X’ be the first return point with t > t, of a certain solution Xg (t) of the equat-
ion /%/ beginning at the moment of time t, from the point (Xo.’%a) €L « Then the first with
t >¥ return point of the arbltrary solution X¢ (i) of the equation ‘/x—/'beginning at the:
moment of time lo from an arbitrary point belonging to = 18 situated between Xé and’

x'e’ s where )(; is the first equilibrilum position to the left from’ X_' , and Xg is the
first from the right.’
Proof:

Consider the case when Y, lies in the half-plane X > O . The case when T Jlies in the
half-plane X < O 1s considered analogously.

It follows from the definition of the-set L that any solution X¢ (t) beginning at the
moment of time 1, from the point (X, X,)€ L. either has the return point at t > t, or
goes over into the plus infinity. Really, if XE (t) vanishes at t’7to then Xg(t') 1s a
return point, 1if the Xe (t,) does not vanish then X (t') monotonously goes over into plus infi-
nity. Xg (t) cannot tend to some finite value under the assumptions about the behaviour 61‘
the solutions of the equation /3#/ and in virtue 6! the choice of the set L. . Let us denote
by E'I the set of points {66 ):} such that in the sglutions emerging from them at the moment
of time t, the first at t 7 t, return point lies to the left from Xg , by T the set of
points such that in the solutions determined by them the first at t > t, return point lies
between xé and>Xa”> y» by Z'"' such that either in the solutions determine& by them the first
at t >t, return point lies to the right from xg or the solution goes over into plus infini~
ty. The latter set may be determined as a set of such [O‘é E} that every of the solutions
determined by them passes at a finite moment of time Ly a certain point X¢ > X; with the
\ velocity different from zero. It follows from the theorem of the continuous dependence
of the solution upon the initial conditions for a finite interval of the values U that )::E”

and L are open sets.
“" ‘ " ] i "w .
On the other hand, = N(CUL") = 0 and L U(ZUL)=L . Aceording to the definit-—
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ion of the connected set it is possible only when either E" or ():‘UE”‘)' are emply séts.
Since }_—_” ¥ O then (Z/U ):) =0 , thus L= . Thereby the Lémma is proved.

Lemma 2. Let the connected set K lie on the straight line x = O and involve no
equilibrium position and let ‘to (k) is a continuous function for K ‘.. Let XI be the first
at t>t_(K,) return point of a certain solution Xg(t) beginning at the moment of time
t,(K,) from the point K, € K . Then the first with t >t°§k) return point of the arbitrary
solution }E (t) beginning at the moment of time t,(k) from the point k€K is situated between
Xé and xg , Where Xé is the first to the left from X"eqﬁilibrium position, whereas XL
is the first one to the right. ‘ ‘ )

The proof of this Lemma is analogous to that of the preceding one and therefore it is
omitted.

The proof of the Theorem, .

Let (X, X,) be an arbitrary point belonging to Ay,. Denote by -F(§)={X=f1($) ,
x =1, (f)} mapping the continuous of the segment [0,I] into the set A«, such that £(0)=(x, %,)
and {(1):()(,,?,). -Denote by G ‘the set {26[0,1” such that the solution of the equation /x/
beginning at the moment of time T, in the point ,Q(}) will steadily oscillate with respect to
X¢ + We shall show that G  1s open in the segment [0,I]. Let }’ be an arbitrary point
beloning to G . Let further ﬁ(g'):(x;i’) . I X'# 0 then take § > O so small that the
image of the interval (g’-&) Elf(S) in the mapping ﬁrould not cross with the atz"aight line
X=0 , It can be done in virtue of the continuity of f(f) . If x'=0 then denoting by t,
the moment of time at which there occurs the first at t >t, return of motion of the solution
Xe¢ ('tf beginning in the point g(;) at the moment of time t, let us take t,l, <t, , but
greater than T, . Then Xg(t;) # O . According to the Theorem about the continuous depen-—
dence of the solution upon the initial conditions for the finite interval of values T one
may choose 5/> O so small that the sign of the first derivative in the point t; of any
solution beginning at the moment of time to from an arbitrary point belonging to
%((g'-é’fi#él)) would coincide with the sign ’S/E (t;) . Then the case X = O will be reduced
to the case X’ + O if substitute t, for tlo + Applying Lemma I we obtain that the
first at t >t, return point of any solution beginning at the moment of time t, from
an arbitrary point of the set ‘C=f(($/-r5, §I+ J)) 1ies vetween the same two equilibrium posit—
ions as well as the first at t >t, return point of the solution beginning in the point f(f’) .
Let t,(}) be equal to the moment of time at which there occurs the firstétt t »t, return '
of motion of the solution X (t,}) beginning in the point -F(e) where §6(§I—5'§'+ J) .
It follows from the Theorem.about the continuous dependence of the solution upon the initial
conditions that 1, (})  1s continuous.
Thus, t,(}) and K, ={X€(t,(§),§)’ O} satisfy the conditions of Lemma 2. Applying Lemma 2
we may determine the continuous function t,(¢) by puttir;g it equal to the moment of time at
which there occurs the first at t>t,(}) <return of motion of the ‘solution Xe(t,8) and the
set K, ={Xe(tz<§), ), o] , which, evidently, satisfy the conditions of Lemua2 . HNow it
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1s clear how to determine an (3}) and K 1f the function fn () and the sets K, are

n+4
available. Thus, we get the mutually-digit consistence between the return ﬁoints of the
solution Xé(t,}U and any other solution X¢(t,}) , where {¢ ({-5, ?u-J) \, such that the
K~return point of the arbitrary solution XE(@§) lies between the same two equilibrium posit—
ions as well as the Kk return point of the solution x, (t,}') . Since X¢(t,}’) oscillates
steadily with respect to X, under the assumption, then X¢(t,}) for ge({-é }'+J) will
oscillate steadily, i.e., G 1s open in b I] « As 1s knownﬂﬁ s page 130), any open set on
the straight line 1s a combinaticr of not more than a numerable set of the noncrossing 1nter-
vals by pairs. Th&g, G 1s a combination of not more than a numerable set of the non-cross-
ing intervals by pairs and of not more than two half-intervals which have no common points
eifher with the intervals or with each other. There are no segments among the components
G since 1h this case G =[O,ﬂ and everything is proved. To finish the proof we shall show
that boundary points belonging to any interval or half-interval entering into G also belong
to G . Let 9i, Dbe an arbitrary interval or ﬁalf—ipterval entéring into G and 3}, 1is one
of its boundary points, for definiteness we shall consider 1t.the left one. If it 1s necessary
one may chooged>0so small by‘substitutingtbforﬂ*%ﬁhat f1rst1y@,ﬁ;3)<3btthatndly that the connected
set{=ﬁé¢£lhﬂ;£)} would not cross with the straight lineX-o,i.e.,would lie either in the half-plane
X>Oor in the half-plane x < 0 . Let us take §I= },'?g. Then the solution Xg(t }') will
steadily oscillate with respect to X¢ . Having repeated almost word for word the first part
of the proof we can easily obtain that Xg (t,,) oscillates steadily with respect td Xg
'Now it 1s not difficult to show that G =[0,1] . Suppose contrary : let G #[0,1] . Since
G 48 open and (}=0) €G V then there exists the maximum half-interval 9iq containing the
point(E:O}. gh =Bz§) « Since together with any half-interval gﬁZG' its boundary points
belong to G then [0F] © G . Therefore, { <1 . But since G 1is open in [0,1] then
such § > 0 will be found that [0 +d)c G . Therefore, g;, 18 not the  maxinum half—iﬁterval
‘containing the point (§=O). The obtained contradiction completes the proof of our Theorem.

CHAPTER <.

After all what was said we proceed to the finding of the way for calculaéing M(t,) »
For this it 1s necessary to find .the way for finding the solutions of the equation /»/ satisfy-
1ng the condition Xe(t)—- Xg with t—= oo ‘
We shall try to f£find such solutions expanding them in a series by the powers of the small
parameter E 3

Xg (1)=R,(t)+ £X,(t) + f—, (t)+ =
/2.1/

‘The equality /2.I1/ is, generally speaking, divergent. Besides, the calculation of Yk(t) is
rather clumsy, and we may, in fact, calculate only a certain smali number of the terms of a

series /2.1/. Assuhing

(n) no_ X
Xe (t)= '(E:o X (t) £y | /2.2/



we must evaluate
| R (t,€) = xg(t) = x¢ (t).

As 1s well-known from the analysis ’

! n+l — n+

Ra(t,&) = Q—BZ/:’—E;((:)— 2,08 (T{T)T , wherze 0<¢8 <1
The. validity of the expression /2.2/ for the calculations will follow from |R, (t, N, (£)e™.
it will be Shown further where N, (t) 1s limited when t »t, and EumA/ (t) = . vTherefore, ‘
at the sufficiently small &  the term ]P (¢, E,)l may be made whatever sma11 and, hence, ex—
pression /2. 2/ whatever slightly 1s different from the exact solution. In order to prove

this fact we shail prove that’ there exist the derivatives overf up to the necessary order in th‘e

solutions satisfying the cvonditionv xf(t)—-xs with t —~ oo . We intend to evaluate their be~
haviour for great' t . For this it 1s necessary to be able to distinguish the solutions of
the équation,éytending at t — o0 to the same equilibrium position of the saddle type, i.e. to
find the conditions _of uniq‘ueness. The following Theorem will present these cbnditions.

Theorem 2. Let the expression k(&ﬁp”(x)-&f;(e;t,&k)k <o with ¢t > t, for -eocxc+oo
0<&£ €, and (X-xg)$h,+ It can be easily seen that ho must be so small that thé segment
[Xg*ho,X5+ho] would involve not a single equilibrium position different from Xg o
Then the solution of‘the equation/*/sgtisfying the conditions Xg(t,) = Xo where [X, - X5 |< h'°;
Sign Xg (4) =5ign(Xs - Xo)  with t 7 t, and Xg(t) X with t —- oo 1s unique.

Proof:

Suppose contrary: let }'e (t) antl?e(t)be the solutioﬁs of the equation /2#/ satisfying the
conaitions of the Theorem. Then ;(t)=fa(t)—z_(t) vanishes 1f t = to and tends to zero 1if
t, —= oo, It follows from here that }(t) 1in @& certain point t, >to has either the positive
maximum or the negative minimum, 1l.e., %(t,) Xg(t,) XE (t;) = . Substituting first Xg (t)
then ;t (t) 1into the equation /=/ and subtracting the second expression from the first one

we get at 1 =1, :
(e, b (k) * [K(E, 10 p"(Re 1)+ 03 (8,)) -

—a{f;(a t,, Xg (t, )+9g<'t ), iv'“ (t))}x' (t, )};(t)=o

where <9 <1 . Because sign XE (t) = 5m3X€ (t)= s,ng(xs X,) with t “to
then [Xgq ~ Xg (t,)- 9§<t)}< ho
and, hence, k(e,t')P"(z\’e(t) 8%(t,))- 5 .
-s{x(e i, X (t, )+ 03(t,), E(t ﬂfg(t,) <0

Thus, we have o

F(t,) -t )bt =0, /2.3/
where wz(t,) >0 “and $(t,) # O . From here we immediately pass to the contradiction since
1f §(t,) >0 , then %(t’,)ﬁ 0 it }(t,)< O then g(t,)h O . Both these possibilities con-
tradict equation /2.3/. The obtalned contradiction proves our assertion. Everywhere further

we shall consider that Theorem 2 is correct for any t, . Now we shall be concerned with the

problem about the existence of the solutions Xg.(t) satisfying the conditions AXg (t,):XalXe(t)-Xs
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if t— o and §ign )?e(t)= Sign(xs-xa)vfor t #t,. We shall call these conditions /A/
The problem about the existence of the solutions satisfying the conditions /A/ has been con-
sidered in /5/ lHlowever, we approach it from a different standpoint and the result which we
shall obtain will be somewhat different from the results of /5/ Taking the point
Xo (IXo = Xg|<h,)we denote byl-’ol the  arc of the parabola X = O(Slgn(Xs xo)J_xTo' connecting the
points (x=X,, X=0) and (X=xg, x-ds:gn(xs- ,)mby x>0,

Theorem 3. In the set L« there exists the point from which the solution eatisi’ying the
conditions /A/ emerges when t=t, .

Proof: ©

Denote by L.Id the set of the points of the arc[.l,g Suoh'tha.t

The solutions beginning in them at 1 =ta- would oross the straight line X = X making
not a single return of motion before this at t »to . Denote by L.",,g the sets of points of the
are L, such that the solutions beginning in them at t=t, -, not reaohing’ the straight line

Xaxg at t #t, have the return point. It folloivs,from the theorem of ‘oontinuous dependence
of the solution upon the initial conditions that L.lgg and L,l:,‘ are open sets, neitheryof them
is empty /the point (X=x,,x'=0) belongs to LY , whereas the point (x=x5,k=o(5ign(x5-x°)m)
belongs to L,:( and their intersection is equal to zero. Therefore, if one assumes that
L°<UL'; = L»d » then we immediately obtain the contradiotion with the connectedness of the
segment. Therefore, there exists at least one point, whioh does not belong to L.Id ULy . -,
The solution emerging from it at { =1, must monotously tend to a oertain point confined
between Xo &and Xys « Since there are no equilibrium positions between X, and x5\ and
we assumed that there were no solutions entering‘monotonouslyh into the point. different from
the equilibrium position then our solution enters into X5 . Thereby the Theorem is proved.

Further we shall be in need of the following Lemma.

Lemma 3. Let ,?E(t) and :\;; (t) Vbe two different solutions of the equation/f/satisfying
~ the oonditions (A) and let at t7t, |Xg(t) ~x5|¢ h, and[X (t)*kgj < ho where h, so
small that at t > t, the conditions of Theorem 2 are fulfilled. Then at any t >-/to the ex-
pression {)?s(t)-)?;(t)}()?g (t)-Xg(t)f <o Loy

Proof :

It follows from Theorem 2 that at any t toth.e expression X;_(t) - Xg(tji‘éoif at
a certain ti >, Xe ()= Xa(tikhen according to Theorem 2 and Xg(tz) = Xc(fl)tbat contradicts
our assumption that Xs(t) and Xg(t) are different solutions since otherwise 1t would contra-
dict the Theorem about the uniqueness of the solution. Suppose now contrary : let at t t
equation /2. 4)' be not negative. Without restricting the oommunity we shall oonsider that
R(t) ~X(¢)>0 . 1hen Xz(f)~/\’5(‘t") . Let us consider the case Xz(t) Xz("u) =0
Then with, t >t put sufficlently close tot Xs(tJ“f\:(tbosince 1f '\fs(t) XE((-') =0 ‘then
Xg (t) = Xg (t) £ that contradicts equation /2.3//see, the proof of Theorem 2/.



- I3 -

Therefore, assuming for t/‘ somewhat later moment of time we reduce the case ;E(t’)-;\:ve th=0 .
to the c[ase‘ ?“t')-?ﬂt’) >0 "'+ We ahall show that it .vis also impossible. Really,

§(t)=/?g(t)-7\"g(t) satisfy the following 'conditions: §(t) 20, f(tl) >0 and $(t)— 0O
at t —~ oo . Therefore, §(t) possess the positive maximum what is impossible'. We could
have already bec‘on’le convinced in this when proving Theorem 2. Thereby the Lemma 'is proved.

Corollary .I.‘ Since any two points situating on the same aro L, satisfy the oondition

(X=X )(X; =X;) >0 at a.nyro< >0 , then the set L.d\;(L.;UL.:) oonsists of the only point.at any
to and at any « >0 . : '

The following theorem will be useful further.

Theorem 4., Let equation /#/ if X, and 1, are chosen possess the unique solution Xe (t)
satisfying the conditions /A/. Then this solution is continuously dependent upon E y 1e04,
xa(t)——,\’eo(t) and xe(t)—,-z\’so(t) at £ -~ &, uniformly by 1 on every 1imited set of the values

t .

The following lemma is required to prove this theorem.

Lemma 4. Let equation /=/ at the ohosen X, and to possess the unique solution Xg(t)
satisi’jing the conditions /A/. ’l‘hen. any solution ’:\’i (t) of the equation /x/ emerging at
t= to‘ from the point (Xo, X,) 1f =Xe > would‘croso the straight line X = Xg

Xe (o)
without making at 1 >t, a single return whereas at 1 >,2°%_ 50 not reaching at t >t
8 =% ) :4 ’ X—?EJ ’ : 14 7 Lo

X=Xs .
the straight line¥it will have a return point..

Proof: ,
Let us give the proof for case }-’%’ |
’ Elte v /\.’o .
The case O 1s proved analogousl, Suppose oontrar : let X\ 7= 1 be
e cas 1>x(t,)7 P g Y+ Supp ¥ (X(t)>)

found and such tha.t the’ oorresponding solution Xs(t) not reaohing at t > t, the straight
line X =Xg will have the return point. Let L.,‘ y as earller be an arc of the parabula

X = Slgn(Xs-Xp)W which connects the points (X=Xg, X = Sign (Xg ~ XoN|Xg - Xo| and
(X=X, X=0) « Let b be the least .at { > to moment of time, when the ‘solution Xg (t) would
cross Lo‘ « It can be easily seen that taking < >0 suffioiently great one may get that

X {*“’) at te[t ~;/td] would be > I, whereas the solution Xe (t)  satisfying the oon-

ditions @

~ 4 Xo \? A / .
Xe(tu) = Xo~ ( T) SIgn(xs'Xo), Xe (ta) = Xo
. not reaohing at t » t; the straight line X=X, will have a return point. Let L.’“ be &
part of the aro L, , oonfined between the points (x= = Xg , X = 5ign (X5~ xo)Jx—sT and (X = Xo~
( ) 5‘3”\"’5 )x:xo. It can be easily seen that the point (Xe(t“), Xe(t‘)) does not belong
_to L.o( . Applying the oonsiderations of Theorem 3 to L.‘,( we may easily prove the existenoce
of the solution X¢ (t) satisfying the oonditions /A/ and different from Xe(t) that oontra=-
dicts corollary I.The obtained oontradiotion proves the Lemma.
Proof of the Theorem @
For proof it 18 suffucient to prove that Xe (t,)——-)’cég(t,)with € =€, .+ We shall try to
prove it. Suppose the oontrary: let [xsk(to)-)'ceo(t,){ remains more than a certain 4 >0

~
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) . X R
for a certain sequence £ —= £, with Kk— oo -and let X:"‘((:")) »1+4(8-0) ~/the case when
: ’ » S(ts
O<—/%—§%))—<1—Z is proved in quite analogously./  Let Xo be an arbitrary point, such that
£ vo — . .
1+3 ;x:O(t ) v 1 . per.xote by XeK(t) the solution of the equation with & =&, satisfying the
conditions Xek(t‘,)m\’o, Yek(to)=X, . Then the solution Téo(t) would cross the straight line

xﬁo(tﬂ) _‘ X'a > 1
. ) X&o(tﬂ) - X&,(ta)
Therefore according to the conventional Theorem about the continuous dependence of the solut-

X=Xg 5 without making at t>1t, a single return of motion, since

ion upon the initial conditions all X, (t) with X greater than a certain k, would cross the
straight line Xx=Xs without making a single return of motion. But on the basis of Lemma 4 all

Xak(t) not reaching at t > to the straight line X=X, have the return point since
7& (ta) A
O¢ SR red,
< X&K(to) .
Let L, as earlier,.denotes the arc of the parabnla connecting the points (X=Xo, X =0)

and (X=xg, X =« Sign(xs -xolIxs x| ) (x> 0, [Xo-Xs|< ho).

Let us take the straight line X=x, . Then for any t, determine t/‘, as a moment of time at
L}

<1 « The obtained contradiction proves the Theorem.

which the solution X, (t) emerging at t=t, from a certain point lying on Ly and satisfy-
ing the conditions /A/, would cross ithe straight line x=x, . It is evident that t,’, <t, . )
Since according to Corollary I for ‘any to there exists only one ‘solution emedrging with 1",=t.,
from a certain point of the arc L, and satisfying the conditions /A/, theén- the function
to=f. (to) 1is one valued. ’ ‘ .

Denote the 'pc;int on the arc L‘,( by (X(to),k(to)) from which the solutién satiéi‘ying the
conditions /A/ emerges with t=t, . Then it is easy fo'prove by means of the considerations
anélogous to those given for the prove of Theorem 4 that the i)oint (x(toJ, X(T,o)) oontinuously
depends upon 1, . From here making use of the Theore'm about the continuous del')endence of the
solution upon the initial conditions we obtained that the solution Xg¢ (t) - of the ‘equation
/ac-/-emerging’ with f=t°+Ato from the point (X¢(to,+at,), X (t, + 4at,))  would cross the straight
line X = X, at the moment of‘time continuéusly dependent upon at, , 1.é;, we obtaiﬁ that
{4 (ts) is a continuous function. Since Et,)<t, “then £, (‘to)—- - oo ’,w:'l.th t——-0co
Show that F.,‘ (t,)—= + oo’ withbto’—-—+0° . iThereby it will be shown that the set of the values
of the function f;,( (to) is all -the numerical straight liﬁe '1.e., it will bve péroved that
equation,hyat any T,/o ‘and  Xo sufficientl_y" close to Xg poss‘esses‘ the solution satisfying
the following conditions : Xe(t,)=Xo, X¢ (t).—F X with t —~oco and 5ign Xg (t)=5ign (X5 = Xo)
at any T >» 1o . It follows from Theorem 2 that this solution is unigque.

To prove this fact suppose contrary: let ¥d (t,) be limited from above and let Elo be an
exact upper edge. Show that Fd (to) fails to reach its exact upper edge. Suppose contrary:
let {d(t‘,) reach its upper edge: E; in a‘ certain point Ea o This means Fhat at -any tol>’Ei,
and X, the.solution f\’e (t) satisfying the oonditions f\’\;_(t:,) =Xo_ and @(t;) = Xo does not
satisfy the conditions /A/. Show thaf it is not so.

Let Xg(t) be a solution of the equation /=/ satisfying the conditions /A/ and the condition
' .X£(€;)=.X,, . Denote by Xg(t) the solution of the equation /*/lsatisfying the conditions
?a(EJ)E/\’O , )—(:a(%;k%Xg ('E:,) s+ and the solution satisfying the conditions ?E_(E;) =X
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Reo)=Xo, Xp(to)=%4e(to) by Xe(t) .
Then there exists 4t > 0 such that the solution ’;E (t) satisfying the conditions ;£(€;+At)=Xo
"and ’?E,(t;"' At)»z%’%é (t,) . would cross the straight line X= Xy without making at t»t, +at \
a single return of motion, Whereas the solution §& (t) satisfying the conditions }i(€;4'dt)= Xo
.and X&(t )=35 Xa(t not reaching at t7li;+dt- the straight line x= X5 will have the
return point. Then by the consideratipns like those given when proving Theorem 3 it 1s easy
to prove that there éxists the point ;\ confined between ‘zxg(t ) and "'& (t ') suoh
that the solution emerging from the point (X, X) at t +At satisfies the conditions/A/.
The obtained contradictiqn.shows that L (t,) fails to reach its exact uppei edge. Lgt now
t;‘%:, and tend to {':; with K—oo . Denote by T, +the set of the values t; such that
-Fd_(to)=t,’, . Since ‘i::,/, is the exact upper edge then no T, 1s empty and sinceany t € Ty
satisfies the condition T, > ty then there exists the final [, =inft, (t,€Ty) .-Since
Fo‘ (t,) 1s a continuous function then ¥d (tk)=t; " and since- ¥d (to) falls to reach its upper
edge then T, — o= with K — oo . Consequently, t - t; >tk"£;:—~,— oo with K— oo ,
It can be easily seen that T, 1is the first at { > ‘t,/;, " moment of time, when the correspénding

solution emerging at { = t; " from the point lying on-the straight line, X = X, will be
/
incident on the arc L, , i.e., at fteftk ]XE (t) > A IX = Xo]

- (k)
if X, < Xg 9 Xg <d—o<\Hx—x,l if Xo » Xg - 1.e., dt< m
1f X, ¢ Xg and di¢- X 1f X, > Xg . e

~ X[ xg"(t,‘yd; 4k ,
By integrating we obtain (:}hat J 2 o T >ty - t,( 1f Xo < Xg and -J,W—{— >t -tk |
if Ko > Xg + Since x; (ty) is confined in any of the two cases between A, and X5 and
the integrands are positive then extending the integration- over the whole interval from Xo. up
to _Xs we shall only, Iinci::'ea:: the magnitudes of’thq 1ntegr9]{.s 1r: tlhzileft—hand sides of the
inequality, 1.e., t“-t“<l, L YIth o< X5 and by -ty f Ee with x, > X5 -

x5 olixo -}l

So, .one can see that in both cases 1, —t;<§'— [Xo=Xgl 1e€eyat any K 1is limited from above.
. . N

The obtained contradiction proves our assertion. Thus, depending upon what side from Xg the

point X, is situated we have one family of the solutyions‘ of the equa.fion /3&/ dependent

upon one parameter to These two families contain all the solutions entering into the glven

equilibrium position of the saddle type. ‘ ,
Der‘m‘te by 3;;{, (t:,) the continuous mapping of the sfraight 1ine t/o qon the plane

(X,x) which can be determined in the following way:

we take the point(X=XE(t,,), )'(:)?E (t,)) on the solution x¢ (t) of the equation satisfying the

conditions: X&(t;)=XoLXo <Xg, X, - an]< ho Xg(t)—Xg at t —— oo and Sign X (t) =

—SIﬁn(Xs—X ) at t>t, .

It will be a continuous and mutually—digit mapping on the plane (x x) . gt-p:X5 (t;) for

CXo ¥ Xg -1s determined analogously. Thus, r(t,)=xs(L,x&U L‘Xs) ‘where les and L‘I»{Ys is a

topological image of the straight line.
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CHAPTER - III.

Further we shall be in need of some pfoperties of the solutions of the following equation

(m(t)x) K(t)x = - k(t)F(t), /3.1/

where m(t)>0 and K(t)>O are continuous functions. The'oorresponding homogeneous equation
has the unigue eqﬁilibrium position Xx=0 . ‘It will be the equilibrium position of the saddle
type. The aim or this chapter 1s to prove the following Theorem.

Theorem 5. v -

If the homogeneous equation /3.1/ satisfiea the conditicns (x) , and f(f,) iz 1imited
and tending to zero with t — oo then ror any . Xo and t, there exists a solution Xx(t)
of the inhomogeneous equation /3.1/ satisfying the following conditions : x(t,) =X, ‘and
X(t)+» 0 at Lt —-o00 ,

Note immediately that if such a solution‘of the equation /3.1/ exists then 1t 1s unique.
It follows from the uniqueness of ‘the splution satisfying the oonditions x(t;) = 0 and X(t)~0
with ¢ — o° of the cerresponding hbmogeneous equation. The proof of this Theorem for case

when the integral J dt 1s divergent 1s somewhat different from an analogous proof in

. dt
t, M(t) ,
possible ocases we shall try, however, to reduce to the minimum all possible repeatitions. By

M) o
ocase when the 1ntegra1

is convergent. Proving this Theorem for each of the

t .
the substitution 5 =L.a_ri;?i_) equation /3.I/ will be reduced to the form
2 . ‘ /3.2/
dx . K(s)x=-R(s1E(t(5)

ds¥
where K(S) k(t(S))m(t(S))

Lemma 5. Let the integral. j "~ be divergent, 3 () is continuous together with

m(r,)
their derivatives up to the second order for any S >0 and tends to zero.at §——co and let
2y (8)
d_d—gb—- has an identical sign with f(s) at any 5> O . Then equation /3.2/ has the

solution tending to zero at §—= oo ,
Proof:

It is easy to see that under these assumptions ;(5) does not reverse its sign since if at
$=85, ¥(5)=0 themat § > S, §(5)=0. Since in this cése the proqf is trivial, we shall
suppose that 1§ (S) , at 5> 0 does not vanish and for the sake of defin“iteness 15> positive.

- The curve = $(5) divides the half-plane $S> O of the plane (S,X) into two parts; in
one of which the expression X -} (95) is positive and in the other it is negative. Le‘t us
integrate /3.2/ over 5 from S5, > O up to. S . ‘
We obtain

9
dx¢s) dx(so) _ /3.3/
lxcs) . 9xGe) - (Reo{xcw - (fdT L

-]
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It can be seen from formula /3.3/ that any solution x(5)of the equation /3.2/ with the
initial oonditions X(S,)=X,3$(S,) and X(5)=x. >0 1s passing monotonously into + o° .
Analogously any solution X(Ss) with the initial conditions X(S, ) Xo% $(5,) ' and
X(55)=%0 % 3(Sq) such that [;(s )=Xo| *|} (s )= X,|>0 1s going monotonously into
- -0

Let us take x,>§(0) >0 . If the solution’ X'(,S) of the equation /3.,2/ with the initi-

al conditions x(0) =X, x’(O) < 0 meets the curve X=}(8) then X(S) 1s going monotonous-
ly into -~ oo . It 1s surﬂcient to show that at the moment of their meeting

§ x(s,)<}(s,) . Evidently x's,)¢ }'(s,) 4 ,

It is suffioient, therefore, to prove that X"(s,) ¥ }1(5,) + Suppose oontrary : let

X(S,) =3'(5,) . Then X(5)=X(5,)+X(5,)(5-6,)*0((5-5,¥)  , sinoe X(5,)=0 and

}(5)= $(50)+ F(5,)(5-5,)+ § 5 (5~ s,)(—s——fi’— 0((s-5,%) t.e., E(S)-X(5>=v§"(5:)(s—:gsr'-)f
+0((5-51)3)W1th S sufficliently _olose to SI the obtained expre;sion' Y% 'since

E_”(s,) >0 . On the other hand vdth 5«5, ¥(8)-Xx(5)<«0 « The obtained oontradiction
proves our assertion. '

Let X,7§(0)>0 and x;<§l(b)<0 . Denote by X4 (5)(TE[0,1]) the solution of the

equation /3.2/ with the initial oonditions X, (0)=Xo +’B(}(o) ~Xo) and X;(o):"cx‘l,.

Denote by T, sets of values [‘56[0,1” such that X4 (5) .meets with the curve X =}(5)
and, consequently, goes over into — oo ., Denote by thhe agts' of values [te[o, 1]] suoh
that the solution X;($) not reaching the curve X = $(5) has the return pdint' and goes
over into ~+ oo « It follows from the Theorem about the oontinuous dependence of the
solution upon the initial oond_itioné that 'T4 and Tz are open sets in [O,I]

Neilther of th,erh is empty since according to the above-mentioned ﬂtatementé T =1 belongs to

Ty , whereas T = O belongs to T, . It is evident that 'T'{/\'T;. =0 . It follows from the
connectedness of the segment that [0,{N(T,UT,) # O . Let T,E[0IN(T;UT,).

Then it is olear that Xg (5)>}(S)>0  and Xy (5) <O at 5 %O , i.e., Xy (3)
15 tending to a certain.not negative limit. Multiplying /3.2/ by 9 and integrating over

S from zero up to S , we obtain ' 3 '

5
S Xz, (5) * X (0)-Xg,(5) = [TR(%)| % (®) - Hv)} dT 304/
[}

The left;hand side of the equality /3.4/ at any 5 >» O does not exceed X¢ (©) , since
SXT (5) -~ X‘c (5) < 0O and oonsequently, the right-hand side of the equa.lity does not exceed
xt (0) . Since the integrand is not negative it means that the integral I&K(s)lx-c (6)- f(s)}ds
is convergent., Taking into account the conditions () we can easily cbtain that it is
éossible only when Xto(S)-f.(s)—r 0 with S~ O since X‘C.,(s) ‘15 a monotonously

decreasing function. Therefore, Xc,<5)—" O with § —»=co . Thus our Lemma is proved.
: by ‘

Lemma 5’. Let the integral md(t;) be oozivergent, §(s) is continuous together
_dt__

with its derivatives up to the second order ror a.ny 56[0 5, s where S, = monotonous-
ly tends to gero with § —— S, and let § (5) have the sign opposite’tp }(S) at

, et e 7 A S e e ;
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any se[o, So] « Then the equation /3.2/ has the solution tending to zero at 5—5,.

Prdof: |

Similarly as in proof of i.emma 5 6ne may restrict onéself by_ the case when g(s) >0
for any 56[0,50) . It can be easily seen from the"form}xla analogous to /3.3/ that any solution
X(5) of the equation /3.2/ with the initial conditions X(S:)"'Xo % }(s.)and X(5L)=xg >4 (50) -
goes over monotonously into + ©@ , Analogously ar;y solution X(5) with the initial condit-
ions ,\’(S;) o, X(Sa)< O goes over monotonously into —<° - . Denote Xy (5) the solution .
of the equation /3. 2/ with the initial conditions xt(o)-;(o)(f T) and Xg(0)=-T+(1- T)Xo (’@}‘M)
by te[ 0,I ,] . Denote by T; the set of values [ce[o,f]j such that the solution Xp (%)
at §=5,¢€[0,5,] with the curve x=}(6)‘ . Denote by T, the sets of values {te[o,i]}
such that the solutiom$ X; (5).¢Css with the straight line X=0 . As well as in the proof
of Lemma 5 it can be easlily seen that if the solution X, (5) crosses the curve X= 2(5)
then further it monotonously goes over into + o 7. Therefore, T, and T, are sets open
in [O,I] and T,AT, =0 . ' .

The choice of a set of the initial values has been made so that neither of the sets
would be empty. It follows from the connectedness of the segment that [0, 1]\(T1UTZ) F0 .
Let T,E[0NT,UT;) . Then X, (5) s confined between X=}(5)and X=0 , i.e., X (5)—=0
with S — S, . Thereby Lemma is proved. ) _

Lemma 6. Let E(S) be determined and confined at S> O  and at $—=©o° tends to
zero when there exists }(S5) > O such that ?(5) >{‘$(5)] Eim; ?(S)=O,—§I(S)<0 ,.—§”(5)
is piecewise in the gap points we have the s]'.;m:!.t on the right and on the left
and ?”(5) >0 for any 5 > O

Proof:

Let ]E(S){<M . at §>0 . Take ;o:‘lM and put €k=80'2-K for K>0 . For

every €, determine &, such that HEIES —E',f— for § » S, (5,=0) . Taking if
necessary 5; > 5, (S:, = 0) we may obtain that A, =—66-L3—% would satisfy the
K+i1 = OK

condition A, < 4, 4y « Supposing A,( = Ak we see that Ay < 4,4 for any
K>»O0 . Introduce two piecewise functions G,(s)= 4, for 5€[S,, Sy, }and O'a(S):ZK for
€[5, 5] Let 63(s)=5"“(;"<*' f’ﬁ““j“’ and’ G, (s)=3G;(s) _for 5€[s,,5,,,] . It
can be easily*seen that G, (;) = JG(‘C)d’U and G, (s) =‘g0},(1’z)df

k (Ske1 Sic)+ B (S -5k )
N o Skeim Sk
for 56[5,(,5,“,] " and put ?(5)=-j6 (t)deT « It can be easily seen that

S
0 >G,(s)»Gs(5) > G, (s) i.e., -G, (5)¢0; ()< - 0, (5) .+ Integrating the last
inequality from $ up to ©°° , we obtain that —JG (T)dt ¢ - jG (T)dt ¢ -JG(t)dt

It 1s evident that G, (5)> G, (5)>]§(5)| . Finally introduce 6'5(5)-

ice., G,(5) & ?(5) . Comparing the last 1nequa11ty with G, (5) >]§(5H we obtain
that }(s) > |3(9)] . It 1s evident that }(5)< O  and for "S€(Sk, 5¢.,) }'(5)=
:SAK':_g: :(ijtﬂsk)z' > 0 ._It follows from the fact that G, (5) and G; (o) are tending to
zero at § —» ©© that §{(5)+0Oalso at § —=©°° ., The proof of the Lemma is completed by
this. -
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Lemma 6%, Let ‘{I (S) bve determined and limited tor SEL0,50)  ana tend to zero at

S —>So . Then there exists § (5) >0 monotonously tending to zero at S —*>So such
that §(5)>/§ (8] s whereasg”(S) is plecewise, in the gap p'ointsdit has the limit on the
‘right and on the left and E 7(8) < o0 for any SE€ [0.5.)
Proof: |
We take the half straight line Lis=5So, ¥ >0 on the plane (S,;)' and the sequence

of points on it Pr —{30 ¥,°9 }where £,=34plE(S)] and K20 . We draw a straight line
SE_EU,SaJ ’
E=%, + Yk (S0—S) through each point Py so that the graph of the function
1§(S)! would be situated lower than our straight line. For this 1t 1s necessary to take

ﬁ sufficientiy great. We subject the choice of X,‘ to the following conditions:

(XK., ) > _t(% Yu- ,)>Z55 32 and Yaer 77 Y . Then, it can be easily varified
—_— . 5 1 55 % -l + . py >
Sket =So % T2 and ¥, = SofEp Tl at K+l >0 , whereas S =0 and%. =¥+ $ 4,5
Yuer=Yk ¥ ¥ ‘

satisfy the following conditions: §n+| 7§n ) §x+. < En
and X‘ (§K+I "SK)<(§.<—§.H,)<}{(., (§xn— :)
The last conditions as can be easily seen are necessary se.nd sufficient for the existence of

L3l ]

eﬂcontinuous positive function &« (S) such that foi (5)dls = Y (Yx and
}focn () AsAW = (En=¥uu) =Y (S5eei=Si)- . S
Denote by 4 (S) the function equal to "‘fo(« (v)dt for S€ ['Sn{,gxw and let
E(s) §o HT)aT » Then it can be easily varified the obtained function g(s) satisf-
les all the conditions of Lemma. _

Just note that Lemma 5 /Lemna 51/ remains valid if % (S) satisfying the conditions
of Lemma 5 /Lemma 51/ is replaced for § () , constructed in Lemma 6 /Lemma 61/.

Making use of the last remark it will be quite easy to finish the 'pro‘of of Theorem 5.
Denote by X(t) the solution of the homogenéous equation /3.I/ satisfying the following
conditions X(&o) =1 ’ X'(£)<0 and Gm X(f) =0 . Then as 138 known the general solution

t—>oo

of equation /3.I/ is of the form

_ t ol t . T . /3.5/
X(U:C,XU:)+@.X({:J‘ LG '—X('U_[ {m ]K(W)'X(Q)S(W)d‘w} dt
o r'y t'

where x(é)j m(f)X‘(T:) is the second solution of the hpmogeneous equation /3.I/ 1linearly -in-~-
dependent ‘of X(?';) . It follows from the fact that the homogeneous equation /3.I/ satisfies
the conditions (o) that X(é)jm—(f.)—f';(—?:)—- —_—rc0 a.t t —> oo,
Therefore, expression /3.5/ may tend to zero only at Cz —fK(u))Xl (u))g (w)dw . ‘Under the
to

assumption E(S) is limited and tends to zero at t—>eoo” | Then according to Lemmas 6

N
_and 61 there always exists \g(s) > % (S)I such that 1f in the equation /3.I/ E(S) is
substituted for E (S') then we obtain the equation which according to Lemmas 5 and 51 has the

_solution tending to zero at 'lL, ~—>o0 , This means that the expression

t oo
X(*)f{m,—ixa—a Tfﬁ(wﬁ(w)X(w)oLw ot
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is tending to zero at t —co |, since xX(t)>0 at L>to then

t )
X(é)}/ m%(t,)—iﬁa]“(w)g(w) X(w)dw olt »
. T

t
4
ZX(H[G‘ mlmw)lg(w”ﬂw/d }dfc’
t
7/,((75)/ W(]«(w)g(w)x(w)dw} T >
/!X(Q[ {mu:)x‘(r) ]K(o.))‘g(w)x(w dw} Tl

therefore, the expre.,sion
(=]

é)f T o /K(w)i(w)x(w)dw dt

T
L)
is tending to zero at f —r oo, Thus, the expression

X X(£) +X( é)f /K (W) 3 (Wx(wWdwtdT

m('c)x“(r)
is the solution we have sought for. Thereby Theorem 5 1s proved.

Lemma 7. Let the homogeneous equation /3.I/ satisfy the conditions (OL) y whereas X(f)
is the solution of the homogeneous equation /3.I/ satisfying the conditions x(t,)=1,x(t)<0

at t 2te and X(¢)—> 0 at £ —>©0 , Then m(#)X(t)—>0 at t —r oo
Proof: oo
For case when the integral ,3.(’(7;) is divergengothe proof is evident. Let us prove
the validity of the -Lemma for ca:bsoe when the 1nteéral r(rle(g) is convergent.m(t) X(t)
is the monotonously increasing function strictly less 1Etha.n zero for any Z t .
Let i—&_-,:mm(\é/x(é)=—c<o . Then at any t >t, m(t)x(t)< ¢ s 1.e.,—i<f}>—r%q .

Integrating from t up to oo y We obtain that X(f)>Cf mL’L‘} o« Multiplying the last
equaljty by K (t) and having integrated from to up to' oo , we obtain that

jm) 2T |dt< ’/ff(.é)x(é)dé

The last 1nte1>ral as 1t has been noticed earlier is convergent. Therefore, the integral

jli(é) (/ r;.][’(% ot 15 also convergent. It s known that from the convergence of
the.inte vralfff (9)dsolv follows the conver;_,ence of the integral fsly."(sﬂds .
Q
For S=/H(D'dT and 5{(3) (K(s)m(S)) the first integral is equal to

j”(f) to rﬁvt(t‘)df{: and as proved is convergent Therefore, the second integral is also conver—
;’e‘;ﬂt, l.e., the integral f—z;(_/m(t)d,’c)dt is convergent that contradicts the con-
ditions / AL /. The obtained.contradiction proves our Lemma. /

Theorem 6. Let the equation

o (m(t M) X) = (5, ) x=—r(E )3 (E) | (3.6)



satisfy the conditions. of Theorem 5 for any A€ [, - 6" /i +d](d>0) , the functions m (¢, A)

- #(£,2) and § (t5X)  are uniformly tending to m({; A si(ba)  and  B(£,R,) with

A= A,on every segment [f f] , Whereas the function 3(%, l) is 1limited by one con-
stant for any ¢ > to ' and for any A€ [lg“g, Ao+é']t Denote by X, ( t) the solution of.
the equation /3.6/ satlsfying the conditions X, (fo)=Xo . and X?\(f)—*o at t —Treo |
Then X, (t) 1s continuosly dependent upon 2, 1.e., Xp{t) =X, (%) with A— A,
is unifbrmly on every final segment of the vaiues t . . v
Proof: ' . |

According to Theorem 5
= £ 4 g = . g
Xp (£)=Xo xl(é)+iz(e)£f mm_[/t(u),l)‘;(w, A) Ry (w,a)dwhdT 37/
. ° T

where il(f) i1s the solution of the homogeneous equation /3.6/ satisfying the oonditions
X (to)=1 ana X (£)—>0 at £ —°0 . From the fact that X, (£) and X, (£) at A2,
are tending to 27@ (f) and k—ho (ﬁ) correspondingly uniformly on every segment ['to ,t]

one may write using Lemma 7
G . ’ . - — .
[r(T,0) B(TIAT ==m(£,2) X, (§)~——m(t, Ro) X, (E) = [k (T, 20) Ky (W) ST
t ' : t
W'Z_L' K_"' 10

i1s uniform on every finite segment of the values t / from the fact that the written express-
lons are’the functions =« t, monotonously tending to zeroyfoll'ows that the oonvergence will
be uniform on all the semiaxis t > {;0/ + Making use of the limitation of the function
§(i R) uniform over A it can be Lasily shown that '
fur ¥ (TA)X, (’L‘)d,'l:'—-—rfn,(r o) E(T )Xy, (r)dT

at A—> l is uniform at every finite segmgnt of the values t . The la.ttAer circumstance
implies that Exp. /3.7/ with A —> A, 1s tending uniformly to an analogous expression for
A=A, at every finite segment of the values t . Thus Theorem is proved.

CHAPTER 4.

The results of the prevlous chapter give the possibility to finish 1:h<é3 outlined program.
It 1s the aim of thils chapter to prove the 'following Theorem.
Theorem 7. Let the funcbtions m.(¢,t)  K(€,¢t) P'(X) and E%(E,;‘:,X.XI)X’ possess the
con* 1ous derivatives over € X and X » up to the order K  and satisfy the conditions
( /”) /their meaning will be explained in the proof of the Theorem/. Then every solution of
the equation /»' satisfying the conditiona /A/ has continuous derivatives over_ £ up to
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K-order tending to zero with t — %2 and satisfying the equations obtained from // by the

successive differentiation over 8 .

Proof:

Let us prove the assertion for the first derivative.
For the derivatives of higher orders the proof is analogous. Let Xt(f) be the solution of the
equation /%/ satisfying the conditions X (£‘°)=)(o (1X,=- x5|<h,,)7x£({,)—~ Xs with +t —>°° and
sijn)'([(t)— s:don(Xs-X ) with t>to \

whereas XUM(t) be ?he solution of the equation /s%/, with the changed value of the parameter

satisfying the same conditions. Let us substract the corresponding equation for X¢ () from

the equation for X%+Ae (ﬁ) Applying Adamar ‘Lemma /seé, for example, /7/, page BI/ we obtain
aXe (£ (o

that ag with AE.;‘O satisfies the equation

OZtL (m(e +0€,t) (H) “ﬁdﬁ (W“AE-&'&“E'X&;M) +
+X£=ofi(}{;£ (e+48, £, )(w.g,)'(bE +§A>?g)d§} '(£+AE) .
+ azl(&t {n(amz,ﬂfp"(xil+§Axi)oL; —
~(s+a£’))'(gf17f'xs (z+A£,£,x£+§Ax£,X£)oL§}: 41/
- ()&Eflmé (E+3a,¢)cl}) — P'(xajﬁ'a(&?ﬂ&“d}*

i ‘ . N
+ ek Xe, K ) K +(E+08)X, [ fe(e+3 08, %, X ) oLy

with the boundary conditions:

-—E—“X“"):o and A)Z‘S(t —> 0 with { —>o=

33

Let Z.(t) be a solution of the equation

& (mt)E) £, {f(s e K+ o (6,4, X)X }*Z {n(e £)P"0x)- -Efrtet XE’X&M}
= Jle, b, KeDle €55 (5,1, X Ke Ve — G (my(€,8) Xe) =K, (,4)p ) /4.2/

with the boundary conditions Zs(éo)’—'o and Z¢ (£)—>0 with t —©0 ., 1In virtue of

Theorem 4 the coefficients in equation /4.I/ with A& — O are tending to the corresponding
coefficients of equation /4.2/. The homogéneous equations /4.I/ and /4.2/ satisfy the condi-
tions /£ / Dbecause the equations / = / satisfy the conditions /A /. Therefore, for the

applicablility of Theorems 5 and 6 it 1s necessary that the expression



-23 -
. . . ‘ ] ) . l N 1 s
{/fﬁ,i,xs,x;)x; (00 [ (64508, £ 4 )oY~ 55 (Je [m] 308, 8)d ) -P ) [ (s+;as,£)d;}1
' | (erae, t)fp'l(15+$ng)d§ (£+A£)/£_[/;X£ €+0E ¢, Xe *34X57ﬂ£)d3}

would. be uniformly limited for the sufficiently sm_all Ot and-tehding to zero witht —>°o,
This will be fulfilled if for any ¢ >0 foi‘ 1Xe~Xsl< he > l/\;aléc and for the sufficiently
small 4 € the expression I,{(E,é,XE,XE)d-(nge){; (E+688,E, X, X% )] +

+Irger,ae, 6 1 fre(eese,t)] (06, <1) o
/see chap.I/ will be limited with t =t, or increases slower than min{]’f(‘}(—{:)l— )Wlb'—'_)_‘__x‘,{} ’
whereas the expressiona"”;(&ﬂt@(f*‘%ﬂf,ﬁ)):l!& (e+aet)) (0< 8, <41)
is uniformly limited and —> o with £ —>oo. We call) this condition //5/'. We may finish
the proof of the Theorem by the requirement of the validilty of the condition (,8) for the
equation /#%/ , since its proof for the derivgtives of higher order 1is quite 1dentical the
validiity of the condition analogous to the condition //B / provided.

CHAPTER 5

Now let us be engaged with the actual calculation of X.(t) . Differentiating the equation
/¥ / & times over € and assuming £€=0 , we obtain

Mo —'x-.o"'l{o P'(io)":o ' /500/
mofﬁ"'ﬁopll(k-n)x.x=?:(f;)?°,~ . )L(;K—zk) /5'K/‘

Thus, having determined Xo (15)' from /5.0/ we,‘,‘grqﬂ'fa using /5k/ have determined successively
- Xa (1’:}, Yg('é) etc. However, the determination )—(z(ﬁ) considerably simplified if one
in (5, K) takes X as an independent variable. Let us multiply /5.0/ by Xo (%) and

integrate from ﬁ; up to t . We obtailn

m, (H18) x*:(a:)):_,co {P(fﬂ({?)*P(io(é;))} L

“Passing in /5.1/ to the limit at £ oo we obtain having in vien Xo (t)— Xs and Xo (£} ©
with ¢—>00 _
< 2 14 .
t —
-m, lozﬁ ol:.-—}to ‘{P(x,,.)-P(Xo (:[:;))}

Subtracting /5.2/ from /5.1/ we obtain that

moi%é)_: m,,{,:(xs)—p(xo(i)} , Lee.
+£,

&
/95+2/

J L) (P(Xs) ~P3)
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{ 3 . . T
where t, 1s the moment of time, in Which the solution Xg () satisfying the condifions
/ A / crosses the straight line X= Xo for the last time. ' .

We have
z _d¥e = o_d*¥Xe w2 d¥% =
$oeZax, Xo, XeFgzi Ko tdx Ko

Substituting into /5.X/ we have

P(xo)+X.<P(Xo 11;()?3,{;,',)

/5.3/

It is easy to verify that Xk (X,)= VQP(Xs) 2[)(Xo) is the solution of the homogeneons equation /5.3/
tending to zero with Xo —r X, /i.e. with t —oo /+ Then according to Theorem 5 the solut-
ion of the egquation /5.3/ equal-to‘ze‘ro at Xo =Xo i.e., Aat és'{;é and tending to zero
at Xo—> X4 , 1.e., at t—>oo has the form '

A2
X (Xo) =V2P(Xs)- 2 p(Ks) /[2,0(:;) QP(XZYJ/’A—E . /5.4y -

In order to estimate the capture region for the moment of time '1?0 y 1t 1s necessary to cal-
- = ' i = /
culate Xx (Xo) andd'x" Xo for the value X, = Xo (‘éo) for all 1‘;:, . By to onme can

determine Xo from t_he formula

Xa .
a3 ! : .
J VZ,“,:.,(P(xs> PG) =toto it

For Xo obtained in such a way we determine X< (Xo). andm Xo from the formula /5.4/
substituting there the expression for fo by the formula /5.5( The obtained corrections
give good results for that part of the boundary of the capture region which goes into the
point (x‘s, 0) , t.e., for ﬁ:( to . For 'é:, >to we determine at first Xe (k?%) , then will
look for our solution for {Jgéll;é{;:; ' ta;king as Xo. the solution of the equation /5.0/ with
the initial conditions: Xo (t—o)f' Xo = and ).(_q (-é:)):X‘_('éol) whereas for )?.t the solution of the
equation /5.X/ with the 1nit1a1‘conditions:)—(n(éz;)=):(_x (te)=0 (K> 0) . For this expansion
the H.Polncare theorem 1s correct as weil as usual theorems about the existence of the deri-
vatives by the parameter. '

Thus, in this case we may determine the point (XE (‘éo) Xg(léo)) on the solution satisfying
the conditions /A/ o '

CONCLUSION

The reader could notice that we did not use the closeness of the equation (% ) to the
conservation one anywhere except the last chapter.

Thus, the results of the first four chapters will hold also for the equationi



=25 -

AlmE ) X] + ke, pix) = @b X% CD
-t .

ﬁith an assumption that at €=0 the functions #t (E,£) and K (E,t) are independent
of ﬁ, and sz(gie,ﬂ;k)k is identically equal to zero. Therefore, we could here

first determine the capture region for the equation ( ¥, ¥ ) at €=0 , what 1s usually
‘simpler, than at £ 0 ,and then to construct the asymptotic expansicns by the powers E.
However, the cases, when the expansion coefficients may be expressed in terms of .integrals,
as 1t holdé for the equatlion ( ¥ ) under these general assumptions seem to be extremely

. rare. The numerical integration of the linear equations of type (8.K) is very likely
“simpler than that of the equation ( % % ).
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