

3

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ ВЫЧИСЛИТЕЛЬНЫЙ ЦЕНТР

И. Быстрицкий, Г.И. Копылов

P-1364

ЧИСЛЕННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ДЕЙСТВИТЕЛЬНЫХ ОСОБЕННОСТЕЙ МАТРИЦЫ РАССЕЯНИЯ

Дубна 1983

И. Быстрицкий, Г.И. Копылов

ЧИСЛЕННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ДЕЙСТВИТЕЛЬНЫХ ОСОБЕННОСТЕЙ МАТРИЦЫ РАССЕЯНИЯ

2062/3 yr

Объединенный институт идерных исследований ВИБЛИОТЕКА

х/ Институт теории информации и автоматизации, Прага.

Отыскание особых точек матрицы рассеяния имеет кардинальное значение для теории взаимодействия элементарных частиц. Каждой диаграмме /рис. 1/, изображающей процесс рассеяния, отвечают свои особенности матрицы рассеяния. Они могут быть найдены из системы алгебраических уравнений, полученной Ландау^{/1/}. Обозначим число

виутренних линий в диаграмме l, число вершин ν , число независимых контуров k. Присвоим каждой внешней линии диаграммы четырехмерный импульс p_i (i = 1, ..., n) и массу M_i , каждой внутренней – 4-импульс q_i , массу m_i и параметр Фейнмана a_i (i = 1, ..., l). Сумму внутренних импульсов, входящих в вершину j, обозначим Σ_j , суммирование вдоль замкнутого контура $k' - \Sigma^{k'}$. Тогда система Ландау будет иметь вид:

$\Sigma_j q_j = p_j$	(j = 1, 2,, n);	/1.1/
$\Sigma_j q_j = 0$	$(j = 1, 2,, \nu - n)$;	/1.2/
$\Sigma^{k'}a_{i} q_{i}=0$	(k' = 1, 2,, k);	/1.3/
$\ell \Sigma_a = 1;$	an an tha an	/1.4/
$ \begin{array}{c} i = 1 \\ \sum_{i=1}^{n} p_i = 0; \\ i = 1 \end{array} $	$e \in \mathbb{R}^{n}$	/1.5/
$q_i^2 + m_i^2 = 0$	(i = 1, 2,, l);	/1.6/
$p_i^2 + M_i^2 = 0$	(i = 1, 2,, n);	/1.7/
$(p_{1} + p_{2})^{2} = -s;$		/1.8/
$(p_{1} + p_{3})^{2} =$	-: t.	/1.9/

3

Огранячимся случаем, когда n = 4 и ни в одну вершину не входит более одной внешней линин. Тогда система /1/ определяет t лри данном s. Кривой Ландау-Карплуса на физическом листе для данной диаграммы с определенными m_i , H_i называется функция t = t(s), найденная из /1/ при действительных s и t и $0 < a_i < i (i = i,...,l)$. Если некоторые a_i равны при этом нулю, то кривая Ландау отвечает "редуцированной" диаграмме, в которой соответствующие этим a_i линии стянуты в точку. Решения при $a_i \notin (0,1)$ отвечают "нефизическим" особенностям и тоже представляют интерес.

Система /1/ решена лишь для некоторых простейших диаграмм. Методам ее решения уже посвящено значительное число работ /см., напр., ^{/3,4/}/. Связь задачи об отыскании особенностей фейнманновских диаграмм и экстремальной задачи теории электрических цепей показана в ^{/5/}.

Ниже излагается численный метод решения системы Ландау для действительных я и t .

AQ = P,

 $Q = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{q}_2 \\ \vdots \\ \vdots \end{pmatrix} ; \quad P = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \\ \mathbf{0} \\ \vdots \end{pmatrix} ;$

А - матрица, составленная из левых частей /1.1 , 1.2, 1.3/. Она частью совпадает
 с матрицей ининдентности диаграммы. Так, для рис. 1

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & a_2 & a_3 & 0 & 0 & a_6 & a_7 & 0 & 0 & a_{10} \\ 0 & 0 & a_3 & a_4 & -a_5 & 0 & 0 & a_8 & a_9 & 0 \\ -a_1 & 0 & a_3 & 0 & -a_8 & a_6 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Выразим из /2/дчерез p, и a; :
$$Q = A^{-1}P,$$

или

где

$$q_{i} = Q_{i_{1}} p_{i} + Q_{i_{2}} p_{2} + Q_{i_{3}} p_{3} \quad (i = 1, ..., l),$$
 /5/

где Q_{1,1} -функции а,..., а₁₋₁, если учесть /1.4/. Из /1.7-1.9/ и /1.5/ следует, что

$$= P P_{1} = \frac{1}{2} \left(\frac{M^{2}}{1} + \frac{M^{2}}{2} - s \right), \qquad (6)$$

$$\sigma_{1} \equiv p_{2} p_{3} = \frac{1}{2} \left(M_{2}^{2} + M_{3}^{2} - t \right), \qquad (77)$$

$$p_{1} = p_{1} p_{3} = \frac{1}{2} \left(M_{1}^{2} + M_{2}^{2} + M_{3}^{2} - M_{4}^{2} \right) - \sigma_{1} - \sigma_{3} \cdot \frac{1}{2}$$

Остались неиспользованными только ℓ уравнений /1.6/. Подстановка в них /5/ позволнт определить ℓ величин $a_1, \ldots, a_{\ell-1}$ и σ_1 , если задать σ_3 , т.е. s:

 $F_{i} = -M_{i}^{2}Q_{i1}^{2} - M_{2}^{2}Q_{i2}^{2} - M_{3}^{2}Q_{i3}^{2} + 2Q_{i1}Q_{i2}\sigma_{3} + 2Q_{i2}Q_{i3}\sigma_{1} + 2Q_{i3}Q_{i1}\sigma_{2} + m_{1}^{2} = 0./9/$

Эта система может быть решена численно на счетной машине. Для поправок Δa_i , $\Delta \sigma_j$ к очередному приближению получается линейная система уравнений /метод Ньютона решения системы нелинойных уравнений:

$$\frac{\ell_{-1}}{\sum} \frac{\partial}{\sum} \frac{\partial F_{I}}{\partial Q_{I\mu}} \frac{\partial Q_{I\mu}}{\partial a_{I}} \Delta a_{I} + \frac{\partial F_{I}}{\partial \sigma_{I}} \Delta \sigma_{I} = -F_{I} \left(\frac{i=1, \dots, \ell}{j=1, \dots, \ell-1} \right)$$

$$/10/$$

В ней F, /см./9// может быть также записано в виде:

$$F_{i} = -\frac{1}{2} m_{i}^{2} - \frac{1}{2} \sum_{\mu=1}^{3} \frac{\partial F_{i}}{\partial Q_{i\mu}} Q_{i\mu} .$$
 (11/

Далее,

/2/

/3/

141

$$\frac{\partial F_{i}}{\partial Q_{i\mu}} = -2M_{\mu}^{2}Q_{i\mu} + 2Q_{i\mu}'\sigma_{\mu}'' + 2Q_{i\mu}''\sigma_{\mu}'' + (\mu' \neq \mu'), \qquad (12)$$

$$\frac{\partial F_{i}}{\partial \sigma_{i}} = 2 \left(\mathcal{Q}_{i2} - \mathcal{Q}_{i1} \right) \mathcal{Q}_{i3} ; \qquad /13/$$

 $\partial Q_{\mu\mu} / \partial a_{\mu}$ -три первых столбца (μ = 1,2,3) матрицы

$$\partial A^{-1}/\partial a_{j} = -A^{-1}(\partial A/\partial a_{j})A^{-1}, \qquad (14)$$

а матрица $\frac{\partial A}{\partial a_i}$ состоит только из единиц и нулей и легко воспроизводится машиной по матрице А. Существенно, что рецепт составления системы /10/ ие зависит от вида диаграммы. Достаточно задать диаграмму /матрицей А/, чтобы получить по твердым правилам матрицу *B* системы /10/, а затем решить систему. Получив из /10/ поправилам матрицу *B* системы /10/, а затем решить систему. Получив из /10/ поправилам матрицу *B* системы /10/, а затем решить систему. Получив из /10/ поправилам матрице А., можно вычислить очередное приближение и с ним начать расчет снова, пока не будет выполнено для всех *j* неравенство $|F_j| < \delta_j$, где δ_j - заданная точность. Трудность возникает только в выборе нулевого приближения в первой точке кривой Ландау.

Расчеты проводились для ряда значений s в ожидаемой области наличия особенностей. Нулевое приближение для t и a_t в начальной точке s_0 отыскивалось обычио вслепую, так как лишь в простейших днаграммах можно из физических соображений установить s, t и a_t близ асимптот кривой t = t(s) ($s > M_t^2$). В соседних точках s нулевые приближения получались из уже полученных значений t, a_t для начальной точки s_0 при помощи линейной и квадратичной экстраполяций. Ход кривых t = t(s)- обычно довольно плавный, так что /кроме двух первых значений s /

5

при остальных в необходимая для физических задач точность достигалась за 1-2 приближения. Расчет одной кривой t = t(s) занимает доли минуты для l < 15.

Если найдена t = t(s) для некоторой диаграммы с массами $m_1^{(o)}$, $M_1^{(o)}$, то нулевое приближение в первой точке s_0 , t_0^{-} для той же диаграммы с другими массами m_1 , M_1^{-} получается линейной интерсоляцией по массам: отыскиваются $t_0 = t_0(s_0)$ для 16 диаграмм с массами $m_1^{(0)} + \kappa (m_1 - m_1^{(o)})$, $\kappa = \frac{1}{16}$, $\frac{2}{16}$,..., 1.

Рис.

Рис. З

ิก

По составленной программе были рассчитаны кривые Ландау для ряда диаграмм /часть их изображена на рис.2 и 3/У некоторых из них особенности оказались на физическом листе /1-4/, у других – на нефизическом /5-8/. У диаграмм 9,10 метод Ньютона не сходится ни к какой кривой. Для диаграммы 11 особенность на значительном интервале изменения в совпадает с асимптотой t =9, в согласии с аналитическим результатом. В таблице сопоставлены результаты точного аналитического и численного решения системы Ландау для диаграммы рис. 1 /было взято $\delta_1 = 0,01$ и все массы равными 1/.

5 1

s	t анал	t числ
24	10,240000	10,239989
20	10,562500	10,562460
16	11,11111	11,110917

Можно констатировать, что численный метод поиска особенностей амплитуд способен дополнить общепринятый аналитический.

Отметим, что изложенный метод почти без изменений применим для поиска особенностей произвольных "многохвосток". В этом случае особенности лежат на многомерной поверхности, и счетная машина может вычислять сечения этой поверхности плоскостями $s_{ij} = const$, где s_{ij} - те новые инварианты /хроме s и t /, наличие которых только и отличает "многохвостку" от "четыреххвостки". Расчет при фиксированных S_{ij} может производиться по той же программе, но в формулах /5/,/10/,/11/ и т.д. суммирование по μ будет происходить не от 1 до 3, а от 1 до n-1, в соответствии с. тем что теперь в столбие P /см. /3// будет не 3, а n-1 ненулевых элементов p_i

Метод может быть распространен и на поиск комплексных /по *a*, *s* и *t* / особенностей. Возникающие здесь трудности связаны только с определением области изменения *s* и распознаванием того, лежит ля найденная особенность на физическом или нефизическом листе /см., например, ^{/7/}/.

В приложении программа поиска особенностей описана на языке АЛГОЛ-60/6/

Авторы весьма благодарны И.В. Полубаранову, А.П. Рудику и И.Т. Тодорову за цеяные обсуждения.

Литература

- Л.Д. Ландау .Об аналитических свойствах вершинных частей в квантовой теории поля. ЖЭТФ, <u>37</u>, № 1, 62-70 /1859/.
- 2. L.B.Okun', A.P. Rudik, On a Method of Finding Singularities of Feynman Graphs. Nuclear Physics, 15, N2, 261–288 (1960).
- А.П. Рудик. Особенности квантовых амплитуд в теории возмушений. Диссертация, М., 1961.
- 4. А.А. Логунов, И.Т. Тодоров, Н.А. Черников. Поверхность особых точек диаграммы Фейнмана. Препринт ОИЯИ Р-889, Дубна, 1962.

5. J.Mathews. Application of Linear Network Analysic to Feynman Diagrams. Phys. Rev., 113, N1, 381 (1959).

6. Дж. В. Бэкус и др. Сообщение об алгоритмическом языке АЛГОЛ-60. Журнал ВМ и МФ, <u>1</u>, 308 /1961/.

7. Д.Я. Петрина. Аналитические свойства вкладов диаграмм Фейнмана. ДАН СССР, <u>149</u>, № 4, 808-811 /1963/.

<u>Приложение</u>

Исходя из заданного начального приближения, программа вычисляет последовательные приближения к a_i ,..., $a_{\ell-1}$, σ_i до тех пор, пока для всех *i* не выполнено неравенство $|F_i| < \delta_i$, где δ_i - заданная точность. Диаграмма представляется в виде матрицы A, причем достаточно ввести в машину только знаки отдельных элементов /т.е. +1,0 или -1/. Обращение (A, Q)обозначает процедуру обращения матрицы A. Обратная матрица обозначена Q.

Процедура РКЛ (l,k, A, δ, a, σ)

<u>значение</u> l, k; <u>целый</u> l, k; <u>вещественный массив</u> $A_{j,l,j,l}, \delta, a_{j,l,j,l}, \delta, a_{j,l,l,j,l}, \delta, a_{j,l,l,l,j}, \delta, a_{j,l,l,l,j}, \delta, a_{j,l,l,l,j}, \delta, a_{j,l,l,l,j}, \delta, a_{j,l,l,l,j}, \delta, a_{j,l,l,l,j}, \delta, a_{j,l,l,l,l}, \delta, a_{j,l,l,l}, \delta, a_{j,l,l,l,l}, \delta, a_{j,l,l,l}, \delta, a_{j,l,l,l}, \delta, a_{j,l,l,l}, \delta, a_{j,l,l,l}, \delta, a_{j,l,l,l}, \delta, a_{j,l,l}, \delta, a_{j,l,l,l}, \delta, a_{j,l,l,l}, \delta, a_{j,l,l,l}, \delta, a_{j,l,l}, \delta, a_{j,l,l$

 $AA:_{\nu} := \nu + 1; \ \sigma_2 := 0.5 \times (M_1^2 + M_2^2 + M_3^2 - M_4^2) - \sigma_1 - \sigma_3;$ матрица A : <u>для</u> j: = 1 <u>шаг</u> 1 <u>до</u> l <u>выполнить</u> <u>для</u> i: = l - k + 1 <u>шаг</u> 1 <u>до</u> l <u>выполнить</u> A₁ : = a₁ × sign (A₁, 1);

обращение (А, Q);

<u>для</u> *j* : = 1 <u>шаг</u> 1 <u>до</u> 3 выполнить

<u>для</u> i= 1 шаг 1 до l выполнить

<u>начало если j = 3 то n: = 1 иначе n: = j + 1;</u>

 $C_{i,j} = -M_j^2 \times Q_{i,j} + Q_{i,n} \times \sigma_{6-n-j} + Q_{i,6-n-j} \times a_n$

<u>конец</u> і, ј;

<u>примечание</u> $C_{i,j}$ представляет производную F_i по $Q_{i,j}$; <u>пля</u> i:=1 <u>шаг</u> 1 <u>до</u> ℓ <u>выполнить</u> <u>начало</u> <u>пля</u> j:=1 <u>шаг</u> 1 <u>до</u> $\ell = 1$ <u>выполнить</u> <u>начало</u> $B_{i,1}:=0;$

для п:=1 <u>шаг</u> 1 <u>до</u> 3 <u>выполнить</u> <u>начало</u> D:=0; дляг:=l-k + 1 <u>шаг</u> 1 <u>до</u> l <u>выполнить</u>

 $\overline{D:} = D + Q_{i,r} \times (\operatorname{sign}(A_{r,l}) \times Q_{l,h} - \operatorname{sign}(A_{r,j}) \times Q_{j,h});$

$$B_{i,i} := B_{i,i} + D \times C_i$$

<u>конец</u> j ; $B_{i,s} := Q_{i,s} \times (Q_{i,2} - Q_{i,1})$

<u>конец</u>і;

примечание $B_{i,j}$ представляет пронзводную F_i по a_j для $j \neq k$,

по σ_1 для j = k. Матрица $\partial Q/\partial a_j$ вычисляется по формуле $\partial Q/\partial a_j = -Q \times \partial A/\partial a_j \times Q$. Элементы этой матрицы вычисляются в цикле с переменной r; <u>для</u> i:=1 шаг 1 до ℓ выполнить $F_i:=-0.5 \times (C_{i,1} \times Q_{i,1} + C_{i,2} \times Q_{i,2} + C_{i,3} \times Q_{i,3} + m_i^2);$ Обращение (B, B); <u>для</u> i:=1 шаг 1 до ℓ <u>выполнить</u> начало $d_i:=0$; <u>для</u> j:=1 шаг 1 до ℓ_{-4} выполнить.

 $d'_{i} \ := d'_{i} + B_{i,j} \times F_{i}$ конец $i,j; \ a_{i} \ := 1;$

<u>для</u> i: = 1 шаг 1 до l - 1 выполнить начало $a_1 := a_1 + d_1$; $a_2 := a_l - a_1$

 $\underline{\text{конец}} \quad i; \quad \sigma_1 := \sigma_1 + d_{\ell};$

<u>для</u> i := 1 <u>шаг</u> 1 <u>до</u> l <u>выполнить</u> <u>если</u> abs (F_1) > δ_1 <u>то</u> перейти к AA;

 $s:=M_{1}^{2}+M_{2}^{2}-2\times\sigma_{1} ; t:=M_{2}^{2}+M_{3}^{2}-2\times\sigma_{3} ;$ печать ($a_{1:k}$, s, t, ν) конец программы.

> Рукопись поступила в издательский отдел 19 июля 1963 г. ,