

民一日

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Б.Н. Калинкин, И.Ж.Петков

P-1347

РЕАКЦИЯ ПОЛНОГО СЛИЯНИЯ ЯДЕР

Б.Н. Калинкин, И.Ж.Петков

P-1347

1967/2 ng.

РЕАКЦИЯ ПОЛНОГО СЛИЯНИЯ ЯДЕР

Направлено в Acta Phys. Polonica

Дубна 1963

BHERMOTERA

Для анализа ряда реакций, протекающих с участием тяжелых ионов, необходимо знать сечение образования компаунд-ядра $\sigma_{e}(E)$. В работе Томаса^{/1/} это сечение в зависимости от энергии было вычислено для ряда случаев. Томас использовал приближение прямоугольлой ямы, сильно поглощающей ионы. Такой подход является весьма грубым, так как взаимодействие двух ядер в действительности описывается потенциалом, уменьшающимся на больших расстояниях экспоненциально.

В дальнейшем вычисление $\sigma_c(E)$ при $E > V_B(V_B - кулоновский барьер) было про$ ведено в работе⁽⁴⁾, в которой использовалась более реалистическая модель. Согласно этоймодели, ядерное взаимодействие описывается потенциалом Саксона-Вуда с радиусом взаимо $действия <math>R_o = r_0(A_1^{1/3}, A_2^{1/3})$, где $r_0 \approx 1.3 i$ (Томас использовал значение $r_0 = 1.5 i$). Параметры потенциала V_0 , r_0 , a_0 были определены из квазиклассического анализа экспериментов по упругому рассеянию тяжелых ионов. Значения $\sigma_c(E)(E > V_B)$ практически совпадают с аналогичными значениями, полученными Томасом. Этот факт был объяснен эффектом "втягивания" иона ядерным полем мишени в зону поглощения.

Однако в настоящее время имеются указания на то, что реальная величина $\sigma_e(E)$ значительно меньше вычисленной, особенно в области больших энергий ≈ 10 Мэв/нуклон.. Возможно, об этом свидетельствуют эксперименты по делению в реакциях между сложными ядрами, когда тяжелое ядро-мишень не является делящимся. Основным каналом распада составного ядра, образованного, например в реакции $C^{12} + Au^{197}$, является деление ${}^{/3/}$. Поэтому, грубо говоря, $\sigma_e(E) \approx \sigma_1(E)$ ($\sigma_1(E)$ - сечение деления). Измеренное $\sigma_1(E)$ в 2 раза меньше, чем $\sigma_e(E)$, рассчитанное Томасом. С другой стороны, анализ углового распределения фрагментов деления, проведенный недавно в работе ${}^{/4/}$ указывает на значительную роль прямых процессов. Таким образом, можно думать, что $\sigma_e(E)$ при больших энергиях еще меньше.

Эти факты свидетельствуют о том, что $\sigma_{c}(E)$, вычисленное в работах $^{/1,2/}$, следует рассматривать скорее как полное сечение реакции. Что касается вычисления сечения образования компаунд-ядра, или, точнее, сечения полного слияния двух ядер, предположений, на которые опираются работы $^{/1,2/}$, оказывается явно недостаточно.

Действительно, характерной особенностью реакций с участием тяжелых ионов является реализация очень больших угловых моментов. Однако последние могут оказывать большое влияние на процесс образования компаунд-ядра. Рассмотрим этот вопрос подробнее.

Поскольку большие угловые моменты возникают при касательном столкновении ядер, то будем рассматривать именно такие столкновения. При $E > V_B$ относительная скорость движения ядер по порядку величины сравнима со скоростями движения нуклонов в ядрах. С другой стороны, перекрытие объемов ядер при касательном столкновении невелико. Поэтому можно использовать приближение, согласно которому ядра взаимодействуют, как целые. По-видимому, это приближение будет справедливым на первой стадии реакции.

Тогда можно вычислить расстояние R наибольшего сближения между сталкивающими-

3

ся ядрами при фиксированных значениях энергии и момента *l*. *R* должно быть корнем уравнения

$$E - V_q(R) - V_N(R) - \frac{\hbar^2}{2\mu} \frac{\ell(\ell+1)}{R^2} = 0.$$
 (1)

В уравнении (1) V (q) - кулоновский потенциал с учетом размазки заряда в ядре-мишени /5/

$$W_{1}(R) = \begin{cases} \frac{Z_{1}Z_{2}e^{2}}{R_{1}} \left[\frac{1}{n^{2}} + \frac{y_{2}}{6} - \frac{x^{2}}{6} + \frac{e^{-n}}{n^{2}} \left(\frac{1-e^{nx}}{nx} + \frac{y_{2}}{2}e^{nx}\right)\right] \left[\frac{1}{3} + \frac{2}{n^{2}} + \frac{e^{-n}}{n^{3}}\right]; x = \frac{R}{R_{1}} \leq 1, \\ (2a) \\ \frac{Z_{1}Z_{2}e^{2}}{R_{1}} \left[\frac{1}{x} - e^{n(1-x)} \left(\frac{1}{x} + \frac{n}{2}\right)\right] \left[e^{-n} + 2n + \frac{n^{3}}{3}\right]^{-1}; x = \frac{R}{R_{1}} \geq 1, \quad (26) \end{cases}$$

где n = 10 ^{/6/}, R₁ - радиус ядра-мишени (при касательном столкновении используется формула /26/).

V (R) - потенциал Саксона-Вуда, описывающий ядерную часть взаимодействия:

$$V_{N}(R) = -V_{0}\left[1 + \exp\left(\frac{R - R_{0}}{a_{0}}\right)\right]^{-1},$$
(3)
причем $V_{0} = 40$, $a_{0} = 0.45f$, $R_{0} = r_{0}\left(A_{1}^{1/3} + A_{2}^{1/3}\right)$, $r_{0} = 1.3f$.

Предположим далее, что при определенном расстоянии наибольшего сближения *R* (*l*,*E*) происходит образование компаунд-ядра, т.е. полное слияние двух ядер. Вероятнее всего, на переходной стадии форма составной системы будет близка к эллипсоидальной. Действительно, быстрому слиянию двух ядер должны препятствовать большие кулоновские и центробежные силы. С другой стороны, на этой стадии реакции возможно перераспределение "внешних" слабо связанных нуклонов, которое должно привести к заполнению пространства между ядрами. Полуоси эллипсоида *a* , *b* (см.рис. 1) определим из следующих условий.

 Объем составной системы равен сумме объемов сталкивающихся ядер, так как энергия возбуждения много меньше полной энергии связи. Поэтому:

$$\frac{4\pi}{3}ab^{2} = \frac{4\pi}{3}\left(R_{1}^{3} + R_{2}^{3}\right).$$
(4)

2. Большую полуось эллипсоида а естественно определить следующим образом:

$$a = \bar{R} + \frac{A_2}{A_1 + A_2} R(l, E), \qquad (5)$$

где $\vec{R} = (R_1^3 + R_2^3)^{1/3}$ радиус сферы, объем которой равен сумме объемов сталкивающихся ядер (т.е. в случае R = 0 - лобовой удар), A_1, A_2 - массовые числа ядра-мишени и иона, соответственно.

Таким образом, имея радиусы ядер R_1 и R_2 , а также расстояние наибольшего сближения R(l, E), можно определить полуоси эллипсоида *а* и *b*, которые будут функциями от энергии *E* и углового момента *l*.

Если образующаяся составная система устойчива по отношению к обратному процессуразвалу, то при небольшом увеличении полуоси $a \rightarrow a + \delta a$ энергия \tilde{E} , равная сумме поверхностной, кулоновской и центробежной энергий, должна увеличиваться. Таким образом, имеем условие устойчивости (аналогичное выражение использовалось в работе /7/ при исследовании взаимодействия нейтронов с деформированными ядрами):

$$\frac{\delta E}{\delta a} = \pi 0 b \left\{ \sqrt{1 - \epsilon^2} + \frac{1}{\epsilon} \arccos \sin \epsilon + 3 \frac{1 - \epsilon^2}{\epsilon^2} \left[\sqrt{1 - \epsilon^2} - \frac{1}{\epsilon} \arcsin \epsilon \right] \right\} +$$
(6)

$$+ \frac{9}{10} \frac{(Z_{\theta})^2}{a^2 \epsilon^2} \left\{ 1 - \frac{3 - \epsilon^2}{6\epsilon} \ln \frac{1 + \epsilon}{1 - \epsilon} \right\} - \frac{h^2 \ell (\ell + 1)}{2Ia} \cdot \frac{1 + \epsilon^2}{2 - \epsilon^2} > 0,$$

где 0 - поверхностное натяжение, Ze - суммарный заряд обоих ядер, $I = \frac{1}{5} A Ma^2 (2 - \epsilon^2)$ - момент инерции эллипсоида ($A = A_1 + A_2$, M - масса нуклона) в твердотельном приближении, причем $\epsilon = (1 - \frac{b^2}{c^2})^{\frac{1}{2}}$ его эксцентриситет.

Если угловой момент *l* слишком велик и $\frac{\delta \tilde{E}}{\delta a} < 0$, то, с точки зрения данной модели, составная система не может образоваться. Поэтому задача сводится к определению $l_{kp.}$ - критического значения углового момента, при котором еще возможно образование компаунд-ядра. Таким образом, необходимо решить уравнение

$$\frac{\delta \tilde{E}(\ell, E)}{\delta a} = 0.$$
 (7)

Уравнения (1) и (7) были решены численно. В качестве \vec{r}_0 , характеризующего размеры ядер, и 0 - коэффициента поверхностного натяжения были приняты значения $\vec{r}_0 = 1.22 f$ и 0 =0,95 Мэв f^{-2} , соответственно.

Результаты расчетов представлены на рис, 2, 3, 4, 5, 6. На рис. 2 дана кривая $\delta \vec{E} / \delta a$ для различных энергий, значений \vec{r}_{o} и величины момента инерции I в случае реакции $O^{16} + Ni^{58}$. Точка, где $\frac{\delta E}{\delta a} = 0$, определяет значение l_{kp} . Вычислив l_{kp} , можно оценить сечение образования компаунд-ядра по приближенной формуле:

$$\sigma_{e}(E) \approx \frac{\pi h^{2} (\ell_{kp} + \frac{1}{2})^{2}}{2\mu E} .$$
(8)

На рис. З даны кривые $\sigma_{e}(E)$, вычисленные при различных предположениях. Здесь (и на остальных рисунках) кривая с индексом T означает $\sigma_{e}(E)$, полученное по модели Томаса. Верхняя кривая "2" соответствует значению $\tilde{t}_{0} = 1.3 f$, средняя кривая "1" - значению $\tilde{t}_{0} = 1.22 f$. Нижняя кривая "3" соответствует случаю, когда $\tilde{t}_{0} = 1.22 f$, а момент инерции I' = 0.75I. Пунктиром обозначено предполагаемое поведение кривой $\sigma_{e}(E)$ при $E \approx V_{p}$.

Предпочтительной является кривая "1", так как в этом случае $\vec{r}_0 = 1.22f - ближе к общепринятому значению. Кроме того, составная система будет обладать значительной энергией возбуждения. Поэтому для момента инерции лучше принять его твердотельный предел.$

На рис. 4, 5, 6 даны кривые $\sigma_o(E)$ для реакции $N^{14} + N_i^{58}$, $C^{12} + Ag^{107}$, $C^{12} + Au^{197}$, $O^{16} + Au^{197}$, $a^{i} = 1.22f$; $I = I_{\text{TB.T.}}$). В двух последних случаях эллипсоидальное приближение является грубым – здесь лучше было бы использовать грушевидную форму. Однако, можно ожидать, что результаты изменятся не очень сильно.

Интересно сравнить средние значения углового момента *с* по данной модели с аналогичными значениями по модели Томаса. В таблице 1 приведены примеры для такого сравнения. Из таблицы видио, что при энергии, близкой к кулоновскому барьеру, средние значения углового момента в обеих моделях близки друг к другу. Однако при увеличении энергии различие становится большим. Например, в реакции $N + Ni^{58}$ при энергии 110 Мэв отношение $\bar{\ell}$ / $\bar{\ell} \approx 2$

Предлагаемая модель является приближенной. Тем не менее, она позволяет сделать ряд выводов.

 σ_c(E) не является монотонно растущей функцией от энергии. После довольно быстрого роста вблизи барьера σ_c(E) достигает максимума, а затем падает. Насыщение измеренной кривой сечения деления^{/3/} свидетельствует о наличии прямых процессов.

2. Максимальное значение углового момента компаунд-ядра, образованного в реакциях с участием тяжелых ионов, не столь велико, как этого следовало бы ожидать, если исходитв из простых квазиклассических соотношений.

3. Поэтому гипотезу о возможности образования "холодного" компаунд-ядра (вся первоначальная энергия сосредоточена во вращательном движении системы), по-видимому, нельзя считать оправданной.

4. Поскольку эксцентриситет равновесной формы компаунд-ядра зависит от $\bar{\ell}$, то уменьшение $\bar{\ell}$ приводит к уменьшению отношения полуосей a/b. Например, в реакции $I^{16} + Ni^{58}$ при E = 100 Мэв и $\bar{\ell}_{TOMAC}$ 41 отношение $a/b \approx 2$, а при $\bar{\ell} = 24$ (см. таблицу 1) a/b = 1.4. Отсюда следует, что попытка объяснить избыток в выходе заряженных частиц по сравнению с предсказанием статистической теории^{/8/} ссылкой на уменьшение кулоновского барьера в полюсах эллипсоида не должна привести к удовлетворительным результатам. Вероятно, этот избыток обусловлен прямыми взаимодействиями.

5. Проблема баланса полного углового момента в реакциях с тяжелыми ионами, если учесть полученные результаты, в значительной степени утрачивает свою остроту.

Литература

- A.E.Lersh, G.E.Gordon, T.Sikkeland, J.R.Walton. Proc. of the Second Conference on Reactions Between Complex .
 С.П. Иванова, Б.Н. Калинкин. Препринт ОИЯИ P-1162, Дубна, 1962.
- 3. A.E.Lersh, G.E.Gordon, T.Sikkeland, J.R.Walton. Proc. of the Second Conference on Reactions Between Complex Nuclei, John Wiley and Sons, Inc. N.Y., London (1960).
- 4. V.E. Viola, Ir., T.D. Thomas, Glenn, T. Seaborg. Phys. Rev. Lett., 10, No 3, A 12 (1963).
- 5. D.L. Hill, K.W.Ford. Phys. Rev., 24, 1617 (1954).
- 6. Б.Н.Калинкин, Б.И.Пустыльник. Препринт ОИЯИ Р-989, Дубна, 1962. Acta Phys. Polonica, XXIII, 375 (1963).
- 7. А.Г.Ситенко. ЖЭТФ, 36, 793 (1959).
- 8. W.J.Knox. Proc. of the Second Conference on Reactions Between Complex Nuclei, John Wiley and Sons, Inc N.Y.,

London (1960).

Рукопись поступила в издательский отдел 2 июля 1963 г.

Реакция	Энергия Мэв	l kp	ē	Ē T
N ¹⁴ + Ni ⁵⁸	70 •	34,5	23	29
	90	34,0	23	36
	110	33,5	22	42
0 ¹⁶ + Ni ⁵⁸	80	37,5	25	33
	100	36,0	24	41
$C^{12} + Ag^{107}$	90	43,5	29	36,3
C ¹² + Au ¹⁹⁷	130	48,5	32	49
0 ¹⁶ + Au ¹⁹⁷	130	58,5	39	51,7
	151,7	57,0	38	60

Рнс. 2. Зависимость функции $\frac{\delta \vec{E}}{\delta a}$ от ℓ для реакции $O^{16} + Ni^{88}$. Кривые, отмеченные индексом со штрихом, соответствуют энергии E=80 Мэв, без штриха – энергии 100 Мэв. Кривые вычислены при следующих значениях параметров:

 $l_{1}1' - r_{0} = 1.22f ; \quad l = l_{\text{TB.T.}};$ $2,2' - r_{0} = 1.22f ; \quad l = 0.75l_{\text{TB.T.}};$ $3,3' - r_{0} = 1.30f ; \quad l = l_{\text{TB.T.}};$

Рис. 3. $\sigma_{e}(E)$ для реакции $O^{16} + Ni^{58}$ Варианты:

$$1 - r_{0} = 1.22 f ; \quad l = l_{TB.T.};$$

$$2 - r_{0} = 1.30 f ; \quad l = l_{TB.T.};$$

$$3 - r_{0} = 1.22 f ; \quad l = 0.75 l_{TB.T.};$$

Рис. 4. $\sigma_{c}(E)$ для реакции $N^{14} + Ni^{58}$

Рис. 5. $\sigma_{\sigma}(E)$ для реакции $C^{12} + Au^{197}$

