

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ЯДЕРНЫХ РЕАКЦИЙ

Г.Н. Вялов

P-1343

К РАСЧЕТУ ФАЗОВЫХ СООТНОШЕНИЙ В ЦИКЛОТРОНЕ

Дубна 1963

Вялов Г.Н.

К расчету фазовых соотношений в циклотроне

Описывается метод расчета фазового движения в циклотроне, не требующий громоздких численных расчетов, основанный на параболической аппроксимации спада магнитного поля на нескольких радиальных участках.

Препринт Объединенного института ядерных исследований. Дубна 1963

P-1343

Vyalov G.N.

Calculation of Phase Relations in the Cyclotron

A method is described for the phase motion in the cyclotron which does not require complicated numerical calculations. It is based on the parabolic approximation of the magnetic field decrease in some radial sections.

Preprint Joint Institute for Nuclear Research. Dubna, 1963.

Г.Н. Вялов

К РАСЧЕТУ ФАЗОВЫХ СООТНОШЕНИЙ В ЦИКЛОТРОНЕ

Направлено в журнал "Атомная энергия"

P-1343

Дубна 1963

Фазовое движение в циклотроне изучалось рядом авторов ^{/1,2/}. Как известно, уравнение фазового сдвига можно представить в форме:

$$\sin \phi_{2} = \sin \phi_{1} = \kappa \left[\int_{1}^{C} h(\epsilon) dC + \frac{e_{2}^{2} - e_{1}^{2}}{2} - p(\epsilon_{2} - \epsilon_{1}) \right], \qquad (1)$$

$$\epsilon_{1}$$

$$\kappa = \frac{\pi W_{k}^{2}}{2eV_{0} m_{0} c^{2}} - \frac{A}{Z}, \qquad (2)$$

где: φ - фаза и 2 V₀ - амплитуда ускоряющего потенциала между дуантами; W₄ - конечная энергия иона, приходящаяся на один нуклон;

- е элементарный заряд;
- с скорость света;
- ш масса покоя нуклона;
- А массовое,
 Z зарядовое число иона.

Спад магнитного поля $h(\epsilon)$ и превышение магнитного поля в центре H_{g} над резонансным эначением H_{pg} определяются соотношениями:

$$\begin{split} H(\mathbf{c}) &= H_0 \left[1 - \epsilon_k h(\mathbf{c}) \right], \end{split} \tag{3/} \\ H_{p0} &= H_0 \left(1 - \epsilon_k p \right), \end{split}$$

где: $\in_{k} : W_{k} / m_{p}c^{2}$.

Полагая в /1/ $\epsilon_1 = \epsilon_0$; $\epsilon_2 = \epsilon_0 = 0$ и решая /1/ относительно 2 е V_0 , получим:

$$2eV_{o} = \frac{\pi W_{k}^{2}}{m_{o}c^{2}} - \frac{A}{Z} D(\epsilon_{s}, \phi), \qquad /5/$$

где:

$$D(\epsilon_{\bullet}, \phi) = \frac{\int_{\epsilon_{\bullet}}^{0} h(\epsilon) d\epsilon - \frac{\epsilon_{\bullet}^{2}}{2} + p\epsilon_{\bullet}}{\sin \phi_{\bullet} - \sin \phi_{\bullet}}, \qquad /6/$$

причем $p = h + \epsilon$,

и Є. - энергия мона в точке поворота фазы.

Для определения энергии поворота Є можно воспользоваться уравнением:

3

$$B_{I} = \frac{\sin\phi_{k} - \sin\phi_{0}}{\sin\phi_{0} - \sin\phi_{0}} = \frac{\int_{0}^{1} h(e) de + \frac{1}{2} - p}{\int_{0}^{0} h(e) de - \frac{e^{2}}{2} + pe}$$
(8/)

В общем случае интегралы

$$J_{k} = \int_{0}^{1} h(\epsilon) d\epsilon \qquad , \qquad J_{k} = \int_{0}^{1} h(\epsilon) d\epsilon$$

и величину *ϵ*, из /8/ можно найти численными методами. Как известно, вычисление *ϵ*, и *D*(*ϵ*, *φ*) очень просто выполняется аналитически в специальном случае магнитного поля с параболическим спадом по радиусу или с линейным спадом ло энергии :

$$H(\epsilon) = H_0 (1 - \alpha \epsilon_k \epsilon), \qquad (9)$$

В этом случае для є, D(є, , d) в 2 e V получаются очень простые выражения:

$$\begin{aligned} \epsilon_{\bullet} &= \frac{1}{1 + \sqrt{B}}; \quad D = \frac{(1 + a)}{2(\sin \phi_{0} - \sin \phi_{\bullet})}; \quad /10/\\ 2eV_{0} &= \frac{\pi \frac{W_{\star}^{2}}{2m_{0}c^{2}}}{\frac{A}{Z}} \frac{A}{(1 + \sqrt{B})^{2}(\sin \phi_{0} - \sin \phi_{\bullet})}; \quad /11/ \end{aligned}$$

где $B = 1 + B_1$.

Однако в практических случаях простой формулой /11/ можно пользоваться только пля очень приближенных оценок из-за непараболичности реального спада. В реальных циклотронах имеются большие отклонения от чисто параболического спада в центре циклотрона, где создается магнитный "горб" для улучшения аксиальной фокусировки, и вблизи края магнита, где для аппрексимации поля нужно к параболическому члену добавлять члены типа \in^n с $n \ge 5^{-/2/}$. Поэтому формула /11/ дает сильно завышенную оценку для $2eV_0$, если а определяется по спаду поля на конечном радвусе $r = R_k$ /завышение порядка 50%/. Таким образом, формула /11/, вообще говоря, неприемлема для практических расчетов. Использование общих формул /5-7/ для анализа многих вариантов шиммирования магнитного поля в выбора оптимального варианта в процессе наладки ускорителя практически неудобно, так как требует довольно большого объема вычислений.

В 1955 г. И.М. Матора предложил такой способ вычисления 20 V₀, когда функция спада h(Є) в окрестности точки поворота Є аппроксимировалась линейным спадом:

$$h(e) = a + a e$$
, $e_1 < e < e_2$. (12)

В этом прибляжении уравнение /8/ квадратично по є в элементарно решается. Это упрощает вычисление, хотя при є < є, и є>є, все еще приходится иметь дело с численным интегрированием, что затрудняет общий анализ фазовых соотношений.

В процессе наладки ускорителей тяжелых ионов Лаборатории ядерных реакций ОИЯИ потребовалось анализировать большое число вариантов спада магнитного поля. При этом оказалось полезным вывести и практически использовать приближенные формулы типа /11/, дающие удовлетворительную точность расчета при милимальном объеме вычислений. При выводе приближенных формул мы исходили из обобщения аппроксимации типа /12/. Интервал энергий от 0 до 1 разбивается на п участков точками $\epsilon_0 \sim 0, \epsilon_1, \epsilon_2, \epsilon_n = 1.$ Очевидно, что при достаточно большом числе точек n и при достаточно малой длине каждого из участков ($\epsilon_{i-1}, \epsilon_i$) спад поля на каждом $i \cdot m$ участке аппроксимируется линейной функцией

с любой наперед заданной точностью,

На практике из простых соображений легко определить, в каком, из интервалов (\in_{i-1}, \in_i) находится точка поворота \in . Предположим, что номер *i* этого интервала известен. Тогда, обозначая

 $J_i = \{hd \in , \}$

получим:

$$J_{i} = \sum_{j=1}^{i} \left[s_{j} \left(\epsilon_{j} - \epsilon_{j-1} \right) + \frac{y_{2}}{2} s_{j} \left(\epsilon_{j}^{2} - \epsilon_{j-1}^{2} \right) \right], \qquad (14)$$

$$\vec{J}_{l-1} = \vec{J}_{l-1} - a_{l} \epsilon_{l-1} - \frac{a_{l}}{2} \epsilon_{l-1}^{2} \cdot \frac{a_{l-1}}{2} \cdot \frac{a_{l-1$$

Уравнение /8/ может быть записано в виде:

 $B_{t} = \frac{Q - 2\epsilon_{s}}{\epsilon_{s}^{2} - T} , \qquad /16/$ $\begin{cases} Q = \frac{2}{1 + a_{t}} (J_{n} + Y_{2} - a_{t}) \\ T = \frac{2}{1 + a_{t}} J_{t-1} \end{cases} . \qquad /17/$

Откуда имеем:

$$\epsilon_{s} = \frac{1}{1+\sqrt{B}} + \frac{\sqrt{B}}{B_{s}} (\sqrt{1-x} - 1),$$
 /18/

$$\begin{cases} x = q - \frac{B_I}{B} \\ q = Q + TB_I - 1 \end{cases}$$
 /19/

Функция $D(\in , \phi)$ определяется выражением;

$$D(\epsilon_{\bullet},\phi) = \frac{(1+a_{\bullet})(\epsilon_{\bullet}^{2}-T)}{2(\sin\phi - \sin\phi_{\bullet})}$$
 /20/

В практически важном частном случае, когда n=3, i=2, $a_i=0$, имеем:

5

где:

$$2eV_{0} = \frac{\pi W_{0}^{2}}{2m_{0}c^{2}} - \frac{A}{Z} - \frac{(1+a_{1})(\epsilon_{0}^{2} - T)}{\sin \phi_{0} - \sin \phi_{0}},$$

$$T = \epsilon_{1}^{2} - \frac{a_{2} - a_{1}}{1 + a_{2}},$$

$$q = \frac{1}{1 + a_{2}} \left[(\epsilon_{2} - 1)^{2} (a_{3} - a_{2}) + B \epsilon_{1}^{2} (a_{1} - a_{2}) \right].$$
(21)

Окончательная формула для $2eV_0$ (/5/, /20/, /21/) близка по форме к /11/ и отличается от нее поправочным множителем, учитывающим отклонение спада от параболического. Как правило, величина q оказывается в несколько десятков раз меньше единицы. Поэтому энергия поворота ϵ_{\bullet} слабо зависит от параметров поля a и определяется с точностью несколько процентов узловыми фазами ϕ_0 , ϕ_{\bullet} , ϕ_k (через B):

Из полученных выражений для 2 е V_о легко получнть аналитически величину ошибки в определении V_о, связанную с ошибками в определении коэффициентов а .

Для иллюстрации эффективности и точности предлагаемого метода расчета 2*eV*₀ на рис. 1 приводится серия кривых спада магнитного поля циклотрона Лаборатории ядерных реакций ОИЯИ. Из рисунка видно, что кривые спада аппроксиммируются тремя линейными по € участками с точностью лучше 0,05%, что лежит в пределах точности магнитных измерений.

Литература

1. Д.М. Каминкер. Диссертация.

2. Ю.А. Завенягин, Н.Д. Федоров. К вопросу о выборе величины разности потенциалов между дуантами циклотрова. Атомная энергия, т. Ш. № 7, 50 /1957/.

6

Рукопись поступила в издательский отдел 24 июня 1963 г.

/22/

тривове спадд магактично поих xист цакиогрона , укция отколительной экергия $\mathbf{f} = W/W_x$ ши разл цагитисто поля в центре H_o . Треугольниками обос (ентальные точки; вертикальные отрезки указывают, к тносится данная экспериментальная точка.