





| let I(v ) be an arnitrary function ﬁ%ns&éam of destribuh

e oL

ion of nucleons of nuclei in momentum space isotropic at anglps°§

_Let us approximate the cross_sectnon of free particle interaotion

mof the particle and nucleon considered by the product of ;%é” by
- sﬂme polynomial ie. CYOJ)- Va L_ B T

Then the influence of intranucleer motlon on tha interact«

io& will formally show itself i! chanving the polynomial aoefc

ficient, An evident form of these ceefficlﬁats is glven halow fer
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For each kind of particles int@z@eﬁimw with the nucleons of

the nucleuag an ennrg; interval cam be leuna l! wni@h ﬁ&@ w&atﬁwa

les buffer, in gnneral, p@ir im?:mm ai@ﬁa whﬁa nugléan@ of g@g-

\.

get nucleuso’ﬁ;
Then we can)cunsider in b@ﬁ@ appraxmwmti@m the 1uclaus as a

matter in: which ‘the parti01@ m@ﬁi@a @a& @@ @xnre%sed by a kimeu

.tic equation (when. there are;no BO&E@@E:JQ lﬁe the mucl@m@)e
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where [ - is. the function of . dis#rihv@igm of pp?ﬁi@l@@ XEtCQ;
ratting, with the nucleusy. . ;: ., - T R S s

\7 As.the veloclity of:ths partieles aitting the nuc- .
leus, sootloy v ibane B A ST R

]VJ4 is the module of relative velocity of the 1nteracta
ing Particles.?“'” : Ly R A ‘

{ 1s a mean free Tange.
The equation (1) may be easily Wwrittén as followssi .« 7
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whieh coincides in“fdrm with the‘kiﬁéfié”éaui*iﬁﬁ describing ths
'prohogation of the nartioles throth the naclear matt@r ai rest@
) As it follows from (l) and (2) in supnositi@n thaﬁ the funct-~
ion of distributloa of nucleons of the nucleua in the phase space
N(X \/')- (X)f (v ) . the crossesection of the ine
teraction oonsideriug the effect of intranucle ar probagablwn is

aqual to

e)c(V)-‘—JJ((V )le V [V IdV o (3)‘

Let us write (3) in qphe;ical syStém‘of coordinatese Mak-
izg use of the faot that:-f(xff) isjisoﬁ%pic at angles and the
eroos~section of the interaction is azimuthally symmetrical; we

- Gan perform 1ntegration over angles - 6 »and ‘? and get
K+l -
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The‘expréésion (3) includes the module of relatlve velocity. The

sign of this module may be omitted if (a) V » V' throughout the
_wholé region of integration (in case of Fermi distribution, for
exaaple) or, if (b) K is odd for V' umlimited in the inte-
gration region (in case of Gauss distribution, for example). Ve
suppose, that one of these restrictions is performed; |

Expression (4) may be easily written:
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Let us consider two particular cases:
1) Fermi distribution and
2) Bauss distribution.
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1, For Fermi distribution the functicn {(V') 1s deter-

mined considering the conditions of novwaligation as followsk

_NQH; inside the volume &2
fv) = { 4T (6)

0 putgide the volume ~u—

Then the effective cross-section may be written
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2, For Gauss distribution the function f(v”),considerigg

the conditions of normalizatlion is equal to:
2.2
-a v o
fv)= 2= )
where (Q 1s Gauss distripution parameter,
As it was noted above the cross-section of interaction in
this case is approximated by the product of ﬁ&? by the poly-
nomial to the 0dd power of velocity, The effective cross—sect-

ion of interaction for this case is equal to:
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The author is grateful to N.A, Chernikov for useful dis-

cussion of this topic,
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