

1299

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ЯДЕРНЫХ РЕАКЦИЙ

Г.Н. Флеров, С.М. Поликанов, К.А. Гаврилов, В.Л. Михеев, В.П. Перелыгин, А.А. Плеве

P-1299

образование спонтанно делящегося изомера в реакциях с « -частицами и дейтронами *20379*, 1963, 745, 65, с 1396-1398 Г.Н. Флеров, С.М. Поликанов, К.А. Гаврилов, В.Л. Михеев, В.П. Перелыгин, А.А. Плеве

P-1299

ОБРАЗОВАНИЕ СПОНТАННО ДЕЛЯЩЕГОСЯ ИЗОМЕРА В РЕАКЦИЯХ С « -ЧАСТИЦАМИ И ДЕЙТРОНАМИ

Направлено в ЖЭТФ

. in the star of ACCREATE Дубна 1963

1971/3 14.

В работах $^{/1, 2, 3/}$ сообщалось об экспериментах по изучению спонтанно делящегося изомера, образующегося при облучении U^{238} тяжелыми ионами. Одним из основных выводов этих работ было то, что для наблюдаемого изомера вероятность спонтанного деления более чем в 10¹⁰ раз превышала вероятность спонтанного деления для основого состояния ядра.

Для более детального исследования обнаруженного явления было бы крайне важно точно идентифицировать полученный изомер и получить сведения о его спине. Но, как известно, реакции с тяжелыми ионами протекают через большое число каналов. Поэтому они не очень удобны для точной идентификации того или иного изотопа. В связи с этим нами были предприняты попытки получить спонтанно делящийся изомер в реакциях с а -частицами и дейтронами. В опытах использовалась аппаратура, аналогичная описанной в работе /1/. Как и в экспериментах с тяжелыми ионами, использовался метод выбивания продуктов ядерных реакций из мишени за счёт импульса бомбардирующих частиц. Поскольку пробег ядер отдачи при облучении плутония дейтронами с энергией - 20 Мэв, согласно оценкам $^{/4}$, $^{5/}$. составляет ≈ 25 мкг/см 2 PuO₂, особое внимание было уделено методике изготовления мишений. Вещество мишени предварительно очищалось от примесей ионообменным методом. Затем оно растворялось в смеси этилового спирта и ацетона с небольшим количеством нитроклетчатки и наносилось на подложку капиллярным методом послойно (15-20 слоев). Каждый слой прокаливался в течение 15 мин при 500. С. Количество плутония и америция на всех изготовленных мишенях было около 60 мкг/см². Мишень из урана имела толщину 500 мкг/см². Сборником ядер этдачи служил алюминиевый диск, вращавшийся со скоростью 850 об/мин. Регистарция осколков спонтанного деления ядер производилась с помощью полупроводниковых детекторов и фотопластинок.

Нами были проведены облучения a -частицами с энергией 39,6 Мэв мишеней из смеси Pu^{242} , Pu^{241} , Pu^{240} , из Am^{243} с примесью Am^{241} , из Pu^{239} и из U^{238} . В опытах с мишенями из $Am^{243,241}$, $Pu^{242-240}$ и Pu^{239} были зарегистрированы осколки спонтанного деления с коротким периодом. В эксперименте с U^{238} эффект не наблюдался. Данные по распаду спонтанно делящихся ядер, полученные в опытах с a -частицами, представлены на рис. 1. На этом рисунке можно выделить лишь один период полураспада, равный 12,6 + 1,1 мсек.

Кривые выхода спонтанно делящихся ядер при облучении мишеней из плутония и америция представлены на рис. 2. Изменение энергии а -частиц производилось с помощью алюминиевых фольг. Оценки сечения образования спонтанно делящихся ядер при облучении P_u^{239} дают величину 4.10⁻³² см², что следует рассматривать как нижнюю границу, поскольку угловое распределение продуктов реакций нам нензвестно.

В опытах с дейтронами были проведены облучения мишеней из Pu и Pu и Pu

242-240 При облучении Ри дейтронами с энергией 19,8 Мэв выход спонтанно делящихся ядер на імка-час был в два раза больше, чем при облучении этой же мишени а -частицами с энергией 39,6 Мэв. При уменьшении энергии дейтронов до 16,2 Мэв уменьшения выхода спонтанно делящихся ядер не наблюдалось. В опыте с Pu эффект не наблюдался. Данные по распаду спонтанно делящихся ядер, полученные в опытах с дейтронами. представлены на рис. 3. Значения периодов полураспада, полученные в опытах с а -частицами (12,6 + 1,1 мсек) и дейтронами (14 + 2 мсек), хорошо согласуются с величиной 13,5 + 1,2 мсек, полученной в опытах с тяжелыми ионами /6/. Совпадение периодов полураспада свидетельствует в пользу того, что как в опытах с тяжелыми ионами, так и в опытах с а -частицами и дейтронами, синтезируется один и тот же спонтанно делящийся изомер. Поскольку этот изомер кроме спонтанного деления, может испытывать и а -распад с энергией, согласно систематике , свыше 8 Мэв, соответствующей времени жиз ни ~ 10⁻² сек, были поставлены опыты по обнаружению ветви ^а -распада. Пока, однако, установлена лишь верхняя граница этого эффекта σ_a / σ_{ock} < 50.

Из опытов по облучению Pu дейтронами следует, что спонтанно делящийся изомер имеет атомный номер $z \leq 95$, а из опытов по облучению Pu а -частицами следует, что массовое число этого изомера $A \leq 242$. Энергетический баланс различных каналов для взаимодействия а -частиц с Am показывает, что скорее всего спонтанное деление испытывает изотоп америция, хотя и изотопы плутония нельзя полностью исключить. Что же касается изотопов нептуния, то к их образованию должны вести реакции типа (a, a' He), (a, He 2p), (a, 2a') и так далее, на которые в наших опытах не хватает энергии.

В пользу заключения о том, что спонтанное деление испытывает изотоп америция, свидетельствует и отсутствие эффекта в опытах по облучению U^{239} а -частицами. Отсутствие эффекта при облучении Pu^{239} дейтронами указывает на то, что, по-видимому, мы $2^{242,241}$ в изомерном состоянии. Период спонтанного деления Am^{241} в основном состоянии равен ~ 2.10¹⁴ лет⁸, период спонтанного деления Am^{242} не измерен, но по систематике ¹⁹ не сильно отличается от значения для Am^{241} . Таким образом, вероятность спонтанного деления изомера оказывается увеличенной не менее чем в 10¹⁹ раз, даже при учёте возможности других каналов распада. Экспериментальных данных об энергии возбуждения, ведущей к такому увеличению вероятности спонтанного деления, мы пока не имеем. Оценки, полученные на основании выражения для проницаемости потенциального барьера при делении $^{10/1}$ дают значение ~ 2,5 Мэв.

Угловой момент ядра, образующегося при слиянии дейтрона с энергией 16 Мэв с ядром плутония, по-видимому, не превышает 10-12 ^h. Возможно, конечно, увеличение углового момента ядра за счёт каскада у -лучей, предшествующего образованию изомерного состояния, однако спин этого изомера, по-видимому, не превышает 16 ^h.

- 1. С.М. Поликанов, В.А. Друин, В.А. Карнаухов, В.Л. Михеев, А.А. Плеве, Н.К. Скобелев, В.Г. Субботин, Г.М. Тер-Акольян, В.А. Фомичёв. ЖЭТФ, <u>42</u>, 1464 (1962).
- 2. В.П. Перелыгин, С.П. Алмазова, Б.А. Гвоздев, Ю.Т. Чубурков. ЖЭТФ, <u>42</u>, 1472 (1962).
- 3. С.М. Поликанов, Ван Тун-сен, Х. Кекк, В.Л. Михеев, Ю.Ц. Оганесян, А.А. Плеве, Б.В. Фефилов. ЖЭТФ, <u>44</u>, 804 (1963).
- 4. L.Bryde, N.O.Lassen, N.O.R.Poulsen. Mat. Fys. Medd. Dan. Vid. Selsk., 33, N8 (1962).
- 5. L.Winsberg, J.M. Alexander. Phys. Rev., 121, 518 (1959).
- 6. В.П. Перелыгин, С.П. Третьякова. ЖЭТФ (в печати).
- 7. И. Перлман, Дж. Расмуссен. Альфа-радиоактивность. ИЛ, 1959.
- 8. В.А. Друин, В.Л. Михеев, Н.К. Скобелев. ЖЭТФ, <u>40</u>, 1261 (1961).
- 9. D.W.Dorn. Phys, Rev., 121, 1740 (1961).

10. S. Frankel, N. Metropolis. Phys. Rev., 72, 914 (1947).

Рукопись поступила в издательский отдел 11 мая 1963 г.

ເົ

į

د.