

8 B 55

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ВЫСОКИХ ЭНЕРГИЙ

В.Ф. Вишневский, Ду Юань-цай, В.И. Мороз, А.В. Никитин, Ю.А. Троян, Цзян Шао-цзюнь, Чжан Вэнь-юй, Б.А. Шахбазян, Янь У-гуан

P-1297

О ВОЗМОЖНОЙ СХЕМЕ ОБРАЗОВАНИЯ Л-ГИПЕРОНОВ ЧЕРЕЗ ИЗОБАРЫ В *п*р-ВЗАИМОДЕЙСТВИЯХ ПРИ ЭНЕРГИЯХ 7-8 БЭВ

ПСЭТА, 1964, +46, 61, с 232-242 Пикесоніка, 1964; 79, N2-3, р 161-176. В.Ф. Вишневский, Ду Юань-цай, В.И. Мороз, А.В. Никитин, Ю.А. Троян, Цзян Шао-цзюнь, Чжан Вэнь-юй, Б.А. Шахбазян, Янь У-гуан

P-1297

О ВОЗМОЖНОЙ СХЕМЕ ОБРАЗОВАНИЯ Л-ГИПЕРОНОВ ЧЕРЕЗ ИЗОБАРЫ В *п*р-ВЗАИМОДЕЙСТВИЯХ ПРИ ЭНЕРГИЯХ 7-8 БЭВ

Направлено в ЖЭТФ

į.

1935/2 49

§ 1. Введение

Путем многих экспериментов /1,2,3,4,5/ было установлено, что импульсные распределения вторичных барионов, образованных в π⁻ р -взаимодействиях при энергиях E π ≈ 7-8 Бэв и 16 Бэв. имеют два максимума.

Например, в работе^{/1/} изучались процессы образования Λ -гиперонов в $\pi^- p$ -взаимодействиях при энергиях 7-8 Бэв с помощью 24-литровой пропановой пузырьковой камеры в постоянном магнитном поле 13700 э. Было обнаружено, что импульсные распределения Λ -гиперонов в системе центра масс $\pi^- p$ не согласуются со статистической теорией. В частности, в импульсных распределениях Λ -гиперонов проявляются две группы. В указанных работах^{/1/} на основании анализа экспериментальных данных делается вывод о том, что одна группа Λ -гиперонов возникает в центральных взаимодействиях, а вторая - в периферических.

В настоящей работе предлагается другая возможная схема образования Λ -гиперонов через изобары, как часть той схемы, которая более подробно описана в ^{/7/}; в частности показано, что одним из кинематических следствий такой схемы является существование этих двух групп Λ -гиперонов в импульсном распределении.

§ 2. Основные данные

Ниже перечисляются основные данные Λ -гиперонов из работы^{/1/}. На рис. 1 а), б) представлены угловое и импульсное распределения Λ -гиперонов в системе центра масс $\pi^- p$. На рис. 2 а), б) и в) приведены распределения Λ -гиперонов по так называемым трехмерным переданным импульсам $|\vec{\Delta}| = |\vec{P}_p^{\,c} - \vec{P}_{\Lambda}^{\,c}|$, переданным энергиям $\Delta_o = E_p^{\,c} - E_{\Lambda}^{\,c}$ и четырехмерным переданным импульсам $\Delta = \sqrt{\Lambda^2} - \Delta_o^2$, где $\vec{P}_p^{\,c}, \vec{P}_{\Lambda}^{\,c}, E_p^{\,c}$ и $E_{\Lambda}^{\,c} -$ импульсы и энергии протонов и Λ -гиперонов в с.ц.м. $\pi^- p$. Как видно из этих рисунков, в импульсных распределениях проявляются две группы Λ -гиперонов. Для Λ гиперонов с импульсом больше 1300 Мэв/с характерны малые значения $\vec{\Delta}$, Δ_o и Δ , а для Λ -гиперонов с импульсом меньше 1300 Мэв/с - большие значения $\vec{\Delta}$, Δ_o и Δ (см. рис. 2). Другой критерий распределения Λ -гиперонов на $\Delta > 700$ Мэв или $\Delta < 700$ Мэв практически совпадает с критерием разделения по импульсам $P_{\Lambda}^{\,c} < 1300$ Мэв/с или $P_{\Lambda}^{\,c} > 1300$ Мэв/с соответственно. Все Λ -гипероны на плоскости $|\vec{\Delta}|$ и Соз $\theta_{\Delta}^{\,c}$; (косинус угла между трехмерным переданным импульсом и импульсом протона в с.ц.м. $p_{\pi}^{\,c} = \rho$, а другая – $|\vec{\Delta}| < 800$ Мэв/с к 0,0 $\leq Cos \theta_{\Delta P}^{\,c} \leq + 1,0$ (см. рис. 3а), причем Λ -гипероны с $P_{\Lambda}^{\,c} < 1300$ Мэв/с находятся в первой группе, а $P_{\Lambda}^{\,c} > 1300$ Мэв/с – во второй группе. В угловом распределении Λ -гиперонов в с.ц.м. π[°] р (рис. 1а) имеется резко выраженный пик при θ[°]_Λ≈180[°].Отношение чисел Λ -гиперонов, летящих вперед и назад в с.ц.м.π[°] р

 $\frac{n_{\Lambda}}{\pi_{\Lambda}}$ = (0,18±0,02), т.е. барионы преимущественно сохраняют свое направление движения. Все Λ -гипероны с Δ < 700 Мэв находятся исключительно в интервале (-1,0 $\leq Cos \theta_{\Lambda}^{c} \leq -0.9$),где θ_{Λ}^{c} - угол вылета Λ -гиперонов в системе центра масс $\pi^{-} p$.

Импульсное и угловое распределения Λ -гиперонов из ΛK^{0} -пар в с.п.м. $\pi \bar{p}$ тахие же, как у одиночных Λ -гиперонов⁶. На рис. 4 представлено распределение ΛK^{0} -пар по углам между Λ -гипероном и K^{0} -мезоном. В распределениях по значениям энергии распада $Q_{\Lambda K}$ был обнаружен пик в интервале (100-200) Мэв⁶.

§ 3. Кинематика Л -гиперонов, образованных через изобары, в системе центра масс п р

Рассматривается реакция:

$$\pi + p \rightarrow A + B , \qquad (1)$$

где A – изобара, в результате распада которой образуется Λ –гиперон, B – совокупность всех остальных частиц. Процесс образования изобары полностью характеризуется γ_c, m_A, q и η , где q – поперечный импульс изобары A . η – так называемый коэффициент упругости взаимодействий:

$$\eta = \frac{E_A^c}{E_p^c} \, \checkmark \, \frac{1}{2} \left\{ 1 + \beta_c + \frac{m_A^2 - m_B^2}{(m_p \gamma_c)^2 (1 + \beta_c)} \right\}$$
(2)

при

$$\frac{1}{2} \left(\frac{m_{\pi}}{m_{p}} \right)^{2} << 1$$

Здесьу и β_c - лоренцов фактор и скорость движения системы центра масс π р в лабораторной системе; E_A^c и E_p^c - полные энергии изобары A и протона в системе центра масс π р ; $m_B = \frac{\sum m_I \gamma c}{\gamma_B^c}$ - приведенная масса совокупности B, где γ_B^c и γ_I^c - лоренцовы факторы совокупности B и входящих в нее вторичных частиц в с.ц.м. π р . Из формулы (2) следует, что если совокупность B тоже изобара с определенной массой, то m_B и η принимают определенные значения. Наоборот, если B совокупность несвязанных между собой частиц, то m_B и η могут принимать самые разнообразные значения.

📃 Далее изобара А распадается по простой или по каскадной схемам:

$$\begin{array}{c} A \rightarrow \Lambda + b, \qquad (3) \\ A \rightarrow a + \beta \\ L \rightarrow \Lambda + b. \qquad (4) \end{array}$$

Возможные схемы распада изобары с образованием Λ - гиперонов описаны в /7/

Между импульсом p^{c}_{Λ} и углом θ^{c}_{Λ} Λ -гиперона в с.ц.м. $\pi^{-}p$ существует простое кинематическое соотношение:

$$Cos(\theta_{\Lambda}^{c} - \delta_{e}) = T_{c} \frac{E_{\Lambda}}{P_{\Lambda}^{c}} - W_{c} \frac{1}{\frac{1}{p_{\Lambda}^{c}}}, \qquad (5)$$

где δ_e, T_e и W_e - постоянные коэффициенты для каждого конкретного процесса. Они зависят от η , q и т.д. Фазовый сдвиг δ_e пропорционален q -поперечному импульсу изобары По формуле (5) вычислены кинематические кривые для следующих процессов :

$$\pi^{-} + p \rightarrow N_{3}^{*} + B_{0}^{0}$$

$$\eta = 1.10 \quad m_{B} \sim 0.7 \quad \text{EPB}$$

$$\eta = 1.00 \quad m_{B} \sim 1.5 \quad \text{EPB}$$

$$\eta^{-} + p \rightarrow \Lambda + B_{+1}^{0} \quad \dots \quad (2\Lambda)$$

$$\eta = 1.00 \quad m_{B} \sim 0.5 \quad \text{EPB}$$

$$\eta = 0.97 \quad m_{B} \sim 0.9 \quad \text{EPB}$$

$$\eta = 0.88 \quad m_{B} \sim 1.5 \quad \text{EPB}$$
;

$$\pi + p \rightarrow Y_{1}^{*}(1385) + B_{+1}^{*}$$

$$\longrightarrow \Lambda + \pi \dots (3\Lambda)$$

$$\eta = 1.04 \qquad m_{B} \frown 0.5 \quad \text{E} \Rightarrow \text{B}$$

$$\eta = 1.02 \qquad m_{B} \frown 0.9 \quad \text{E} \Rightarrow \text{B}$$

$$\eta = 1.00 \qquad m_{B} \frown 1.2 \quad \text{E} \Rightarrow \text{B} ;$$

$$\pi^{-} + p \rightarrow N_{4}^{*} + B_{0}^{0}$$

$$N_{4}^{*} + \pi$$

$$\Lambda + K \dots (4\Lambda)$$

$$Y_{1(1388)}^{*} + K$$

$$I_{1}(1388) + K$$

$$\Lambda + \pi \dots (5\Lambda)$$

$$\Sigma^{0} + K$$

$$I_{\Lambda} + \gamma \dots (6\Lambda)$$

 $\eta = 1.10 \qquad m_{B} \leftarrow 1.0 \quad \text{Ese}$ $\eta = 1.00 \qquad m_{B} \leftarrow 1.9 \quad \text{Ese} ;$ $\pi^{-} + p \rightarrow Y^{*}_{0}(1815) + B^{0}_{+1}$ $\leftarrow Y^{*}_{1}(1385) + \pi$ $\leftarrow \Lambda + \pi \qquad \dots \qquad (7\Lambda)$

 $\eta = 1.10$ $m_B \backsim 0.9$ Eəb $\eta = 1.00$ $m_B \backsim 1.5$ Eəb.

 B_s^n - совокупность всех тех вторичных частиц, которые не принадлежат изобаре A, индекс n - барионное число, s - странность этой совокупности. Во всех этих процессах задавалось q = 0; 0,3 и 0,5 Бэв/с. При этом предполагалось, что изобара A движется в задней полусфере в с.ц.м. $\pi^- p$, так как барион преимущественно сохраняет свое направление движения до взаимодействия. Эти кривые приведены на рис. 5. Они показывают, что различные значения поперечного импульса q изобары A дают некоторое размытие по косинусам углов $C_{os} \theta_{\Lambda}^{c}$, а η - по импульсам P_{Λ}^{c} .

Надо отметить, что при сравнении экспериментальных данных с этими кинематическими кривыми нельзя ожидать, чтобы все экспериментальные точки легли на какую-либо одну из кинематических кривых, так как истинные значения поперечного импульса q изобары A статистически флуктуируют. Кроме того, каждому значению q соответствует серия кинематических кривых, заключенных между двумя предельными кривыми. Когда q = 0, эти две предельные кривые совпадают между собой. Следовательно, экспериментальные точки должны преимущественно располагаться между двумя предельными кривыми с $q \approx 0,3$ Бэв/с. (в предположении, что рождение Λ -гиперонов описывается процессами $(1\Lambda) - (7\Lambda)$. Аналогичные кривые были вычислены также для K^0 -мезонов. На рис. 6 приведены три серии таких кривых для следующих процессов:

$\pi^{-} + p$	→ K +	$B^{\pm 1}_{\pm 1}$	•••	(1K)
η =	= 0.98	<i>^m_B</i> 	1.1	Бэв
η =	= 0.95	т _в 🗸	1.2	Бэв
η	= 0.85	m _B 🗸	1.8	Бэв
π ⁻ + p	→ K*	$+ B_{\pm 1}^{\pm 1}$ K + π	•••	.(/2K)
η = 1.0	2 1	а _в 🖍 1.1	Б	эв
$\eta = 0.92$	7 1	т _в с 1.4	Б	ð B
$\eta = 0.9$	0 ;	m _B s 1.8	E	бав
π f`p	→ N*`+ 4 ~K	Β + Λ	•••	- (<i>3</i> K)
$\eta = 1.1$	0	m _B ~ 0.	7 E	бэв
$\eta = 1.0$	0_	т _в со 1.5	5 1	5 э в

§ 4. Кинематический анализ экспериментальных данных Л -гиперонов

Сопоставление углового и импульсного распределений Λ -гиперонов на рис. 1 а/,6/ с кинематическими кривыми – см. рис. 5 и рис. 1 в/ – приводит к указанию на разделенение всех Λ -гиперонов на три группы. Если принять существование этих трех групп Λ гиперонов за истину, то можно попытаться анализировать их. Первая группа летит назад и сосредоточена в области 1300 Мэв/с $\leq P_{\Lambda}^{c} \leq 1800$ Мэв/с и –1,00 $\leq \cos \theta_{\Lambda}^{c} \leq -0.90$. В эту группу дают вклад прямое образование Λ -гиперонов по реакции (2Λ) и образование Λ -гиперонов через гиперонную изобару Y_{i}^{*} (1385) по реакции (3Λ). Вторая группа тоже летит назад и сосредоточена в области 500 Мэв/с $\leq P_{\Lambda}^{c} \leq 1300$ Мэв/с и -1,00 $\leq \cos \theta_{\Lambda}^{c} \leq -0.80$. Она может соответствовать образованию Λ -гиперонов через нуклонную изобару N_{3}^{*} (1688) по реакции (1Λ). Третья группа, возможно, соответствует каскадным рождениям Λ -гиперонов через нуклонную изобару N_{4}^{*} и гиперонную изобару Y_{0}^{*} (1815) по реакциям (4Λ), (5Λ), (6Λ) и (7Λ). Эта группа более равномерно распределена по углам – 100 $\leq \cos \theta_{\Lambda}^{c} \leq +1,00$ и преимущественно находится в импульсном интервале 100 Мэв/с $\leq P_{\Lambda}^{c} \leq 1000$ Мэв/с.

На рис. 2 г), д), е) и \ll) приведены кинематические кривые для величины $\cos \theta_{\Lambda}^{\circ}$, $|\vec{\Delta}| = |\vec{P}_{p}^{\circ} - \vec{P}_{\Lambda}^{\circ}|$, $\Delta_{o} = E_{p}^{\circ} - E_{\Lambda}^{\circ}$ и $\Delta = \sqrt{\vec{\Delta}^{2}} - \Delta_{o}^{2}$ в зависимости от P_{Λ}° для реакций ($I\Lambda$) и (3Λ). А на рис. 3 б) представлена кинематическая зависимость $\cos \theta_{\Lambda}^{\circ} \vec{P}_{p}^{\circ}$ от $|\vec{\Delta}|$ для реакций ($I\Lambda$) и (3Λ). Легко видеть из этих рисунков, что разделение Λ -гиперонов по этим параметрам на две группы (как обсуждалось в § 2 и в работах $\sqrt{1a}$, $\sqrt{16}$) является естественным следствием кинематики образования Λ - гиперонов через предполагаемые процессы ($I\Lambda$), (2Λ) и (3Λ). Необходимо отметить, что по сравнению с кинематическими кривыми для процессов ($I\Lambda$), (2Λ) и (3Λ) на рис. 2 а), в) и 3 а) в распределениях по $|\vec{\Delta}|$ и $\Delta = \sqrt{\vec{\Delta}^{2}} - \Delta_{o}^{2}$ наблюдается некоторый избыток Λ -гиперонов с большими значениями $|\vec{\Delta}|$ и Δ ; эти Λ -гипероны относятся к третьей группе. Нужно обратить внимание еще на то, что в рассматриваемой схеме образования Λ -гиперонов через изобары величины $\vec{\Delta}$, Δ_{o} и Δ уже больше не являются трехмерным переданным импульсом, переданной энергией ичетырехмерным переданным импульсом, так как эти величины относятся не к изобаре A, а к продукту ее распада.

Из кинематических кривых /рис. 5/ видно, что разделение Λ -гиперонов на три группы должно особенно четко выявляться на плоскости P_{Λ}° и $C_{OS}\theta_{\Lambda}^{\circ}$ Распределение Λ -гиперонов на плоскости P_{Λ}° и $C_{OS}\theta_{\Lambda}^{\circ}$ легко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ легко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ дегко получить из перестройки распределения Λ -гиперонов на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ и на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ и на плоскости $|\dot{\Delta}|$ и $Cos\theta_{\Lambda}^{\circ}$ существует однозначное соответствие – см. рис. Зв/ и За/.

В предположении изотропного распределения третьей группы по полярному углу θ[°] было грубо оценено отношение чисел Λ -гиперонов в первой, второй и третьей группах, оказавшееся равным 2:3:2.

§ 5. Некоторые предсказания и предложения

1) Если нанести на плоскость P[°]_Λ и Cos θ[°]_Λ (см. рис. 5ж) распределение Λ -гиперо-

чов, для которых эффективная масса комбинаций $\Lambda_{\pi}^{+}\pi^{-}$ находится в интервале 1700 Мэв $\leq M_{\Lambda\pi^{+}\pi^{-}} \leq 1900$ Мэв (в этом интервале был обнаружен предполагаемый резонанс Y_{0}^{*} (1815) $\rightarrow \Lambda_{\pi}^{+}\pi^{-}$), то в сделанных предположениях процесса (7 Λ) все точки должны находиться ниже огибающих кривых.

2) Если предположить, что в реакции $(3\Lambda) B_{+1}^{0}$ является K или K^* , и считать, что вероятность обмена двумя мезонами мала по сравнению с вероятностью обмена одним мезоном, то гиперонная изобара $Y_{1}^{*}(1385)$ должна быть нейтральна. Тогда Λ -гипероны с $P_{\Lambda}^{\bullet} \geq 1300$ Мэв/с не должны находиться в резонансе с заряженными π -мезонами. Эти Λ -гипероны также не должны находиться в резонансе с K -мезонами. Обнаруженные в $^{/9/}$ пики в распределениях по связанным массам $M_{\Lambda\pi}^{+}$ и $M_{\Lambda K}^{0}$ должны относиться к тем случаям, для которых $P_{\Lambda}^{\bullet} \leq 1300$ Мэв/с. Часть гиперонов с $P_{\Lambda}^{\bullet} \geq 1300$ Мэв/с должна находиться в резонами; из-за малой статистики и низкой эффективности регистрации γ -квантов в камере нет возможности проверить это.

3) По предложенной в данной работе схеме образования Λ -гиперонов и К -мезонов через нуклонную изобару № по реакциям (|Λ) и (3К) следует, что:

а) для ΛK -пар с $P_{\Lambda}^{c} < 1300$ Мэв/с должен существовать пик в распределении эффективной массы $M_{\Lambda K}$ вблизи массы изобары N_{g}^{*} , т.е. $M_{\Lambda K} \approx M_{N_{g}^{*}} \approx 1688$ Мэв ($Q_{\Lambda K}$ 75 Мэв);

б) Λ - гипероны и K -мезоны из ΛK -пар, дающих резонанс со значением $Q \approx 75$ Мэв, должны преимущественно находиться в интервалах 500 Мэв/с $\leq P_{\Lambda}^{c} \leq 1300$ Мэв/с и 100 Мэв/с $\leq P_{K}^{c} \leq 700$ Мэв/с и двигаться назад в с.ц.м. $\pi^{-}p$ согласно ($|\Lambda\rangle$, (4Λ) и (3K);

в) между Л -гипероном и К -мезоном из одной и той же ЛК -пары со значени ем Q_{Ar} ≈ 75 Мэв должна существовать некоторая угловая корреляция.

5 4) Λ -гипероны и K -мезоны из ΛK -пар с P_{Λ}^{c} > 1300 Мэв/с по предложенной схеме образуются по каналам (2 Λ) и (3 Λ), а не через общую изобару. Отсюда можно сделать следующие выводы:

а) в с.ц.м. $\pi^{-} p \Lambda$ -гипероны из этих пар резко коллимированы назад (-1.00 $\leq \cos \theta_{\Lambda}^{c} \leq$ -0.90), а K -мезоны летят преимущественно вперед; угол между Λ -гипероном и K -мезоном в каждой паре велик. Если предположить, что B_{+1}^{0} в каналах (2 Λ), (3 Λ) есть K или K^{*} , то по кинематике для ($|K\rangle$) и (2K) K -мезоны должны быть направлены вперед в узком конусе + 0.80 $\leq \cos \theta_{K}^{c} \leq$ +1.00. Тогда $\cos \theta_{\Lambda K}^{c}$ близко к (-1.00);

б) Л -гипероны и К -мезоны из этих пар не должны находиться в резонансе.

5) По предложенной схеме К⁰-мезоны с Р_К^с> 1300 Мэв/с образуются по реакции 1К, следовательно:

а) они тоже не должны находиться в резонансе с Л -гиперонами;

б) в с.ц.м. (π⁻ p) K⁰-мезоны из ΛK -пар с P^e_K > 1300 Мэв/с должны быть резко коллимированы вперед (+0,90 ≤ Cos θ^e_K ≤ +1,00), а Λ -гипероны преимущественно назад, угол между Λ -гипероном и К -мезоном каждой такой ΛК -пары велик.

8

ź

6) Вообще говоря, при образовании Л -гиперонов через соответствующие процессы (1А) — (7А) АК -пары должны разделиться на две группы:

а) ΛK - пары, образованные через (2 Λ), (3 Λ) и (7 Λ), для которых в с.ц.м. $\pi^- p$ Λ -гипероны преимущественно движутся в задней полусфере, а K^0 -мезоны - в передней;

б) ΛK - пары, образованные через (1 Λ), (4 Λ), (5 Λ) и (6 Λ), для которых Λ -гипероны и K -мезоны являются продуктами распада изобары, идущей в заднюю полусферу.

На рис. 4 в распределении ΛK° – пар по $\cos \theta_{\Lambda K}^{\circ}$ видно некоторое разделение ΛK – пар на две группы с $\cos \theta_{\Lambda K}^{\circ} < -0.4$ (первая группа) и $\cos \theta_{\Lambda K}^{\circ} > -0.2$ (вторая группа). Следовательно, ΛK° – пары с $P_{\Lambda}^{\circ} > 1.3$ Бэв/с или $P_{K}^{\circ} > 1.3$ Бэв/с должны внести вклад в первую группу, а ΛK – пары со значением $Q_{\Lambda K} \approx 75$ Мэв – во вторую.

§ 6. Выводы и обсуждение

1) В настоящей работе показано, что найденные в $^{/1/}$ две группы Λ -гиперонов в импульсных распределениях могут быть истолкованы, как одно из кинематических следствий образования Λ -гиперонов через соответствующие процессы. Другие кинематические следствия образования Λ -гиперонов через эти процессы тоже не противоречат экспериментальным данным.

 2) Если принять схему образования Λ -гиперонов через соответствующие процессы
 (1Λ) - (7Λ) за истинную, то при помощи кинематического анализа удастся разделить Λ гипероны на три следующие группы.

Импульсные интервалы Р _Л ^с Мэв/с	Угловые интервалы Cos $ heta _{\Lambda }^{c}$	Относительное число Л-ги́- перонов дан- ной группы	Способы образования
1300÷1800	(-1.00)*(-0,90)	2	Прямое и через У* (1385)
500 ÷ 1300	(-1,00)=(-0,80)	3	через N* (1688)
100‡1000	(-1.00) (+1,00)	2	через N* (1922) и Y* (1815)

3) В настоящей работе предложена схема распада изобары N_{g}^{*} на Λ -гиперон и K -мезон. Анализ экспериментальных данных показывает, что такая схема оказывается возможной. В отдельной работе 77 рассматриваются схемы распада изобары N_{g}^{*} . Сравнение хода сечений реакции $\pi^{-} + p \rightarrow \Lambda + K^{o}$ с ходом полных сечений $\pi^{-}p$ -взаимодействий в зависимости от кинетической энергии первичных π -мезонов (см.рис.7) тоже приводит к заключению о том, что изобара N_{g}^{*} в процессе образования Λ -гиперонов и K^{o} -мезонов играет существенную роль. Поэтому представляет большой интерес проверка этой гипотезы распада изобары N_{e}^{*} на Λ -гиперон и K -мезон и изучение

and the second second

всех остальных возможных схем распада изобары N_3^* . Эту проверку, по-видимому, удобнее всего осуществить в $\pi^- p$ -взаимодействиях при $E_\pi \approx 1$ Бэв и в NN -взаимодействиях при $E_N \approx 6$ Бэв.

4) Во многих экспериментах, в частности в π⁻ р -взаимодействиях с энергией 7-8 Бэв и 16 Бэв, получены импульсные распределения вторичных частиц с двумя пиками, которые не могут быть объяснены с точки эрения статистической теории. Статистическая теория предполагает, что при взаимодействии частицы образуют единую систему, которая является центром испускания вторичных частиц. Для понимания такого характера импульсных распределений в настоящей работе введены следующие дополнения к методике обработки экспериментальных данных :

а) предположение о двухэтапном образовании вторичных частиц через изобару А с поперечным импульсом q < 0,5 Бэв/с. При взаимодействии две частицы не образуют единую систему, а только возбуждаются отдельно; такие возбужденные частицы (изобары) являются центрами испускания вторичных частиц. Подобная идея высказывалась также в теории 'fire ball':

б) кинематический анализ вторичных частиц.

Результаты данной работы показывают, что такое предположение и кинематический анализ, по меньшей мере, в некоторых случаях могут оказаться полезными, особенно в области энергии порядка Бэв, когда первичные частицы при взаимодействиях не очень сильно возбуждаются и каналов возбуждения еще не так много.

5) В настоящей работе предполагается, что процессы образования изобары протекают по схеме: $\pi^- + p \rightarrow A + B$, где A - рассматриваемая изобара, а B - совокупность всех остальных вторичных частиц. Если В-тоже изобара, то так и л принимают определенные значения и существуют четкие кинематические кривые. Если В - совокупность нескольких не связанных между собой частиц, то т и принимают самые разнообразные значения. Тогда кинематические кривые превращаются в сильно размытые по импульсам области. В настоящей работе все же удалось разделить Л -гипероны на три группы с определенными кинематическими характеристиками. Может быть, это можно рассматривать как некоторое указание на то, что процессы образования изобары с заметной вероятностью протекают, как двухчастичная реакция. Другими словами, процессы взаимодействий между двумя частицами с заметной вероятностью протекают следующим образом, сначала обе частицы во время взаимодействий возбуждаются с обменом поперечным импульсом- q ≤ 500 Мэв/с (переданный продольный импульс может быть любым), затем эти возбужденные частицы (изобары) спонтанно распадаются на вторичные частицы. Конечно, возможно, что возбуждается только одна из двух взаимодействующих частиц, а вторая остается невозбужденной. Нужно отметить еще, что здесь рассматривается только кине матическая сторона образования вторичных частиц через изобары с малым поперечным импульсом и совершенно не обсуждается конкретный механизм образования изобар.

Приятно сообщить, что в /10/ с помощью другого подхода пришли к выводу о том, что второй пик в импульсных распределениях Λ -гиперонов в интервале 1,3 Бэв/с $\leq P_{\Lambda}^{\circ} \leq 1,8$ Бэв/с обусловлен резонансным взаимодействием первичного π^{-} -мезо-

на с промежуточным **К** -мезоном, передающим основную часть взаимодействия в периферических $\pi^- p$ -столкновениях.Этот вывод находится в согласии с нашим объяснением образования Λ -гиперонов через процессы (2 Λ) и (3 Λ).

Авторы пользуются случаем выразить свою благодарность В.И.Векслеру за проявленный интерес к настоящей работе и поддержку, авторам работы^{/1/}, В.С.Барашенкову, Д.И.Блохинцеву, Г.Домокошу, И.Патера и китайским физикам, работающим в ОИЯИ, за полезные обсуждения, В.П.Соломахиной, В.М.Пономаревой и М.И.Чикваровой за помощь в обработке данных.

Литература

- а) В.И.Векслер, И.Врана, Е.Н.Кладницкая, А.А.Кузнецов, А.К. Михул, Э.К.Михул, Нгуен Дин Ты, В.Н.Пенев, М.И.Соловьев, Т.Хофмокль, Чен Лин-янь. Препринт ОИЯИ Д-806, Дубна, 1961.
 - б) В.А.Беляков, Ван Юн-чан, В.И.Векслер, Н.М. Вирясов, И.Врана, Ду Юань-цай, Ким Хи Ин, Е.Н.Кладницкая, А.А.Кузнецов, Э.Михул, Нгуен Дин Ты, И.Патера, В.Н.Пенев, Е.С.Соколова, М.И.Соловьев, Т.Хофмокль, Чень Лин-янь, А.Михул. ЖЭТФ, <u>44</u>, 431 (1963).
- 2. Ван Шу-фэнь, Чжен Пу-ин, Ло Чунь-сюнь, Жэн Зеин-жу. Acta Physica Sinica Vol. 18, N8, p. 422 (1962).
- 3. K.Lanius. Proc, of the 11-th Intern. Conf. on High Energy Phys. CERN, p. 617 (1962).
- 4. А.Х. Виницкий, И.Г. Голяк, В.И.Гуськин, Ж.С.Такибаев. ЖЭТФ, 44, 424(1963).
- T.Bartke, R.Budde, W.A.Cooper, H.Filthuth, Y.Goldschmisi, Clermont, G.R.Macheod, A.de Marco, A.Minguzzi Ranzi, L.Montanet, D.R.O.Morrison, S.Nilson, C.Peyrou, R.Sosnowski, A.Bigi, R.Carrara, C.Franzinetti, I.Mannelli, G.Brautti, M.Caschia and L.Charsovani. Nuovo Cimento 24, 876 (1962).
- 6. Ван Юн-чан, В.И.Векслер, Ду Юань-цай, Е.Н.Кладницкая, А.А.Кузнецов, Нгуен Дин Ты, Е.С.Соколова, М.И.Соловьев, В.Н.Пенев, А.Михул. ЖЭТФ, <u>43</u>, 815 (1962).
- 7. В.Ф.Вишневский, Ду Юань-цай, В.И.Мороз, А.В.Никитин, Ю.А.Троян, Цзян Шао-цзюнь, Чжан Вэнь-юй, Б.А.Шахбазян, Янь У-гуан Возможное построение системы изобарных состояний и схем их переходов. Препринт ОИЯИ Р-1282, Дубна, 1963.
- 8. В.А.Беляков, Ван Юн-чан, В.И.Векслер, М.М.Вирясов, Ду Юань-цай, Е.Н.Кладницкая, Ким Хи Ин, А.А.Кузнецов, А.К.Михул, Нгуен Дин Ты, В.Н.Пенев, Е.С.Соколова, М.И.Соловьев. 1962 International Conference on High-Energy at CERN page 336 (1962).
- 9. a) В.С.Барашенков, В.М.Мальцев. Препринт ОИЯИ Р-724, Дубна, 1961. Fortschritte der Physic Band.9, Heft 11 (1961).
 5) В.С.Барашенков, В.М.Мальцев. Препринт ОИЯИ Р-724, Дубна, 1961.
 - б) В.С.Барашенков, И.Патера. Препринт ОИЯИ Р-1163, Дубна, 1962.

10. Б.С.Барашенков, Д.И.Блохинцев, Э.К.Михул, И.Патера, Г.Л.Семашко Импульсный спектр барионов в неупругих столкновениях быстрых пионов с нуклонами (в печати).

Рукопись поступила в издательский отдел 9 мая 1963 г.

Рис. 1.

а) Угловое и б) импульсное распределения Λ -гиперонов в с.п.м. π р. Заштрихованная область относится к случаям с Δ < 700 Мэв. Для сравнения на рис. 1в) представлены кинематические кривые P_Λ^{*} и Созθ для Λ -гиперонов, образованных по реакции (2Λ) при η =(1,00-0,88) и образованных через изобару N*, по реакции (1Λ) при η =1,00 и через изобару У* (1385) по реакции (3Λ) при η =1,04 (см.8 3); кривые вычислены для q = 0, 0,3 и 0,5 Бэв/с.

Распределения Λ_{-} -гицеронов в с.ц.м. $\pi^{-}p$ по а) трехмерным переданным импульсам $|\dot{\Delta}| = |P_{p}^{c} - P_{\Lambda}^{c}|$; б) переданным энергиям $\Delta_{0} = E_{p}^{c} - E_{\Lambda}^{c}$; в) четырехмерным переданным импульсам $\Delta = \sqrt{\Delta^{2}} - \Delta_{0}^{2}$. Заштрихованная часть относится к случаям с импульсами $P_{\Lambda}^{c} > 1300$ Мэв/с. С целью сравнения на г), д), е) и ж) приведены кинематические зависимости $Cos\theta_{\Lambda}^{c}|\dot{\Delta}|$, $\Delta_{u} \Delta$ от P_{Λ}^{c} , вычисленные по формулам $|\dot{\Delta}| = \sqrt{P^{c_{2+}}P^{c_{2+}}} 2P^{c_{2}}P^{c_{2}}Cos\theta_{\Lambda}^{c}$, $\Delta_{0}^{c_{2}} = E_{\Lambda}^{c_{2}}$ и $\Delta = \sqrt{\Delta^{2}} - \Delta_{0}^{2}$, для процессов образования Λ_{-} гиперонов через изобару N^{*} по (1 Λ) и через изобару Y_{+}^{*} (1386) по (3 Λ). Кривые вычислены для q = 0и 0,3 Бэв/с, $\eta = 1,00$ и 1,04 соответственно.

Рис. 3.

- а) Распределение Λ -гиперонов в плоскости |Δ | и Созθ Δ = по экспериментальным данным без поправок на вероятность регистрации Λ -гиперонов в эффективном объеме камеры.
- ооъеме камеры. б) кинематические зависимости между |Δ| и СозθΔ → для Λ -гиперонов, образованных через изобару N^{*} по реакции (1Λ) при^р η =1.00 (пунктирная кривая) и через изобару Y^{*} (1385) по реакции (3Λ) при η = 1,04 (сплошная кривая). Кривые вычислены для q =0, 0,3 и 0,5 Бэв/с (см. § 3).

¹ На рис. За) и рис. Зв) приведены только те точки, которые были отчетливо видны на соответствующем рисунке в ¹а¹. Поэтому число точек на рис. За) и рис. З в) несколько меньше чем указано в ¹а¹.

12

Рис. 4.

Распределение ΛK^0 -пар по косинусу угла между Λ -гипероном и K -мезоном из одной и той же пары в сц.м. π p (без поправок на вероятность регистрации Λ -гиперонов и K -мезонов в эффективном объеме камеры).

ŝ

Рис. 5.

Кинематические зависимости между P_{Λ}° и $Cos \theta_{\Lambda}^{\circ}$ для Λ -гиперонов, образованных через соответствующие изобары (см. § 3). Кривые вычислены для q = 0, 0,3 и 0,5 Бэв/с; эначения q поперечного импульса изобары A обозначены соответствующими цифрами на кривой. Значения коэффициентов упругости взаимодействий η выбраны по предложенным в § 3 значениям. На рис. 5 г), д), е) и ж), где Λ -гипероны являются продуктами каскадного распада изобар, введен новый параметр $Cos \Psi$, где Ψ - угол между Λ -гипероном и промежуточной изобарой a в системе покоя изобары A

Кинематические зависимости между P_{κ}^{c} и Созд^едля К -мезонов, образо-ванных через соответствующие изобары (см. § 3). Кривые вычислены для q =0, 0,3 и 0,5 Бэв/с, эначения q обозначены соответствующими цифрами на кривой. Значения коэффициентов упругости взаимодействия η выбраны по предложе́нным в § 3 значениям.

Зависимость сечений реакции π⁻⁺ р → Λ + К⁰ и полных сечений п р взаимодействий от кинетической энергии налетающих п -мезонов. Эти данные взяты из статей

i