

KIT

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Б.Н.Келинкин, Т.П.Кочкина, Б.И.Пустыльник

P-1244

КВАЗИКЛАССИЧЕСКИЙ АНАЛИЗ УПРУГОГО РАССЕЯНИЯ СЛОЖНЫХ ЯДЕР

Б.Н.Калинкин, Т.П.Кочкина, Б.И.Пустыльник

P-1244

КВАЗИКЛАССИЧЕСКИЙ АНАЛИЗ УПРУГОГО РАССЕЯНИЯ СЛОЖНЫХ ЯДЕР

Объединенный инститпдерных исследована-БИЕЛИОТЕНА

Дубна 1963г.

Как уже было показано ранее $^{1,2/}$, упругое рассеяние тяжелых конов можно анализировать с помощью квазиклассического метода. Прежде всего, удалось установить, что отношение сечения упругого рассеяния к резерфордорскому σ/σ_c в угловом интервале, который соответствует таким значениям прицельного параметра, при которых существенную роль начинают играть ядерные силы, можно удовлетворительно описать сравнительно несложной аналитической формулой $^{/1/}$. Параметры, входящие в эту формулу, были найдены путем численных расчетов на электронной машине. Они являются функциями от параметров ядерного потенциала, в качестве которого был принят потенциал Саксона-Вуда. Оказалось, что параметры ядерного потенциала, приводящие кудовлетворительному согласию с экспериментальными данными в указанном угловом интервале, имеют близкие значения для разных комбинаций сталкивающихся ядер.

Однако исследование было проведено в сравнительно узком угловом интервале, что обусловлено условием применимости аналитического выражения для отношения σ / σ_c , основанного на представлении амплитуды рассеяния в виде интеграла. Кроме того, было использовано приближение резкого включения поглощения. Парциальные волны с $\ell \leq \ell_1$ полностью поглощаются (ℓ_1 - значение ℓ , при котором $\theta(\ell)$ классическая функция от-клонения становится отрицательной).

В дальнейшем^{/2/} были проведены расчеты в частном случае рассеяния O¹⁶ + Au¹⁹⁷, в которых оба эти ограничения отсутствовали. Именно, отношение σ/σ_c было вычислено приближенно путем непосредственного суммирования в выражении для амплитуды рассеяния. Был также рассмотрен более реалистический вариант, когда поглощение при уменьшении *l* (т.е. при уменьшении прицельного параметра) включается плавно. Плавный характер поглощения был учтен путем введения в выражение для фазы члена:

b.
$$ln\left(\frac{\ell-\ell_1}{\ell_r-\ell_1}\right),$$

где b - соответствует степени поглошения, а l, - значение l, при котором $\theta(l)$ становится максимальной.

Было показано, что от значения параметра **b** в сильной степени зависит величина рассеяния на большие углы. Именно этим обстоятельством объясняется выбор случая

0¹⁶ + Au¹⁹⁷; ему соответствовали экспериментальные оценки величины σ/σ_с при больших значениях угла рассеяния θ. Удалось также воспроизвести дифракционный максимум, который наблюдается в эксперименте.

Однако работа^{/2/} не была удовлетворительной в двух отношениях. Во-первых, суммирование по парциальным волнам в выражении для σ / σ_c было проведено недостаточно точно-установлено, что осциллирующий характер кривой обусловлен именно этим обстоятельством. Во-вторых, расчеты были ориентированы на эксцериментальные данные для больших углов рассеяния, которые указывали только на верхнюю границу эффекта^{/3/}.

Недавно были опубликованы новые, значительно более точные, данные^{/4/} по упругому рассеянию $O_{+}^{16} P_{b}^{208}$ (E_{CIIM} 154,2 Мэв). Выяснилось, что на больших углах $\sigma/\sigma_{c} \approx 10^{-5}$, т.е. на порядок меньше по сравнению с прежними оценками для случая $O_{+}^{16} Au^{197}$ при сопос — тавимой энергии.

В связи с этим были предприняты новые расчеты. По-прежнему используем формулу:

3

$$\sigma/\sigma_{c} = \frac{2}{\pi \eta^{2}} \frac{\sin^{4}(\theta/2)}{\sin \theta} \left[\left\{ \sum_{\ell=l_{1}+1}^{l} (\ell+\frac{1}{2})^{4} \cos \left[2\delta_{\ell} - (\ell+\frac{1}{2})\theta - \pi/4 \right] \exp \left[b \ln \left(\frac{\ell-l_{1}}{\ell_{1}-\ell_{1}} \right) \right] \right] + \frac{1}{2} \left[\left\{ \sum_{\ell=l_{1}+1}^{l} (\ell+\frac{1}{2})^{4} \cos \left[2\delta_{\ell} - (\ell+\frac{1}{2})\theta - \pi/4 \right] \right\} \right] \left\{ \sum_{\ell=l_{1}+1}^{l} (\ell+\frac{1}{2})^{4} \cos \left[2\delta_{\ell} - (\ell+\frac{1}{2})^{4} - \pi/4 \right] \right\} \right\}$$

 $+ \sum_{\ell=l_{1}+1}^{\infty} (\ell + \frac{1}{2})^{\frac{1}{2}} \cos \left[2\delta_{\ell} - (\ell + \frac{1}{2})\theta - \frac{\pi}{4} \right] \right\}^{2} + \left\{ \sum_{\ell=l_{1}+1}^{2} (\ell + \frac{1}{2}) \sin \left[2\delta_{\ell} - (\ell + \frac{1}{2})\theta - \frac{\pi}{4} \right] \exp \left[b\ln \left(\frac{\ell - \ell_{1}}{\ell_{r} - \ell_{1}} \right) \right] + \frac{1}{\ell_{r} - \ell_{1}} \right\}^{2} + \left\{ \sum_{\ell=l_{1}+1}^{2} (\ell + \frac{1}{2})\theta - \frac{\pi}{4} \right\} \exp \left[b\ln \left(\frac{\ell - \ell_{1}}{\ell_{r} - \ell_{1}} \right) \right] + \frac{1}{\ell_{r} - \ell_{1}} \left\{ \frac{1}{\ell_{r} - \ell_{1}} \right\} + \frac{1}{\ell_{r} - \ell_{1}} \left\{ \frac{1}{\ell_{r} - \ell_{1}} \right\}^{2} + \left\{ \sum_{\ell=l_{1}+1}^{2} (\ell + \frac{1}{2})\theta - \frac{\pi}{4} \right\} \exp \left[b\ln \left(\frac{\ell - \ell_{1}}{\ell_{r} - \ell_{1}} \right) \right] + \frac{1}{\ell_{r} - \ell_{1}} \left\{ \frac{1}{\ell_{r} - \ell_{1}} \right\} \exp \left[\frac{1}{\ell_{r} - \ell_{1}} \right] + \frac{1}{\ell_{r} - \ell_{1}} \left\{ \frac{1}{\ell_{r} - \ell_{1}} \right\} \exp \left[\frac{1}{\ell_{r} - \ell_{1}} \right] + \frac{1}{\ell_{r} - \ell_{1}} \left\{ \frac{1}{\ell_{r} - \ell_{1}} \right\} \exp \left[\frac{1}{\ell_{r} - \ell_{1}} \right] + \frac{1}{\ell_{r} - \ell_{1}} \exp \left[\frac{1}{\ell_{r} - \ell_{1}} \right] \exp \left[\frac{1}{\ell_{1} - \ell_{1}$

$$\sum_{\ell=\ell_{r}+1}^{\infty} (\ell + \frac{1}{2})^{\frac{1}{2}} \sin \left[2\delta_{\ell} - (\ell + \frac{1}{2})\theta - \frac{\pi}{4} \right]^{2} ,$$

где $\eta = \frac{z_1 z_2 e^2}{h_2}$. Фаза δ_{ℓ} определяется, если известна классическая функция отклонения: 2 - 4

$$\theta(\ell) = \pi - 2 \int_{R_0} \left[\frac{2\mu}{h^2} \left(E - V(r) \right) - \frac{(\ell + \frac{1}{2})}{r^2} \right]^{-\frac{1}{2}} \frac{\ell + \frac{1}{2}}{r^2} dr , \qquad /2/$$

причем V(r) -сумма кулоновского и ядерного потенциалов, а R - классическая точка пово-, найденная численно, аппроксимируется с помощью логарифми- $\theta(\ell)$ рота. Функция ческой параболы:

$$\theta(\ell) = \theta_r - \rho \left[\ell n \left(\frac{\ell - \ell_l}{\ell_r - \ell_l} \right) \right]^2.$$
(3/

Аппроксимация функции /2/ по формуле /3/ оказывается весьма точной вплоть до ℓ ≈ 150.

С точностью до членов, не зависящих от ℓ , квазиклассическая фаза, выраженная равна: через параметры θ , ℓ , ℓ , ρ , Sec.

$$\delta_{\ell} = \frac{1}{2} \theta_{r} \left(\ell - \ell_{i} \right) - \frac{1}{2} \rho \left(\ell - \ell_{i} \right) \left\{ \left[\ell_{n} \left(\frac{\ell - \ell_{i}}{\ell_{r} - \ell_{i}} \right) - 1 \right]^{2} + 1 \right\}$$

$$/4/$$

Суммирование в формуле /1/ производилось в пределах первых четырех периодов соответствующих функций: оценка показывает, что пятый период дает вклад ~ 2% от суммы первых четырех. Для области больших углов можно использовать аналитическую формулу, полученную в работе для описания упругого рассеяния а -частиц. В нашем случае квазиклассическое приближение справедливо с гораздо более высокой точностью. Таким образом, при больших значениях θ имеем:

$$\sigma / \sigma_{c} = \frac{2}{\pi \eta^{2}} \frac{\sin^{4}(\theta/2)}{\sin \theta} (\ell^{*} + \frac{1}{2}) \frac{2\pi b}{\rho^{2}} \frac{\exp\left[2b(\ln \zeta - 1)\right]}{(\gamma^{2} - \pi^{2}/4)^{2}}, \qquad /5/$$

 $\Gamma \Pi e \qquad \zeta = b / \left[\rho \left(\ell_{r} - \ell_{1} \right) \left(\gamma^{2} - \pi^{2} / 4 \right) \right] , \qquad \gamma = \left[\left(\theta - \theta_{r} \right) / \rho \right]$

Была исследована зависимость отнощения σ/σ_c от изменения различных параметров, характеризующих потенциал Саксона-Вуда:

$$U(r) = -V_{o} \left[1 + exp\left(\frac{r-R}{a}\right)\right]^{-1}$$
 /6/

и от изменения параметра b , дающего степень поглощения.

На рис. 1,2,3,4 представлены результаты такого исследования в конкретном случае 16 упругого рассеяния ядер О на Рb . В таблице 1 приведены значения параметров, для которых вычислены кривые σ/σ_c . Мы видим / рис. 1/, что даже малое изменение ro приводит к заметному сдвигу кривой, т.е. зависимость от ro очень сильная. значения σ/σ обнаруживает также и от значения параметра

Сильную зависимость кривая

а (рис. 2). Однако в этом случае, помимо некоторого сдвига кривой σ / σ_c , происходит существенное изменение ее наклона. Например, $[\sigma / \sigma_c (33^\circ)] / [\sigma / \sigma_c (39^\circ)] = 3,83$ при

 a = 0,35 f и [σ/σ_c (33°)]/[σ/σ_c (39°)] = 6,7 при a = 0,45 f σ/σ_c слабо зависит от значения V_o (рис. 3). Этого и следовало ожидать, так как результаты определяются величиной эффективного потенциала, являющегося суммой кулоновского, центробежного и ядерного потенциалов. Но при указанной вариации V_o эффективный потенциал мало меняется.

На рис. 4,5 представлены кривые σ / σ_c в зависимости от значения параметра *b* при фиксированных значениях остальных. Прежде всего видно, что в интервале малых углов θ /рис. 4/ результаты очень слабо изменяются при вариации *b* в значительных пределах: 1,4 - 2,0. Напротив, обнаруживается очень сильная зависимость величины σ / σ_c от *b* в области больших углов. Из рис. 5 мы видим, что когда θ - велико, то

[σ/σ_c (b=1,0)]/[σ/σ_c (b=1,4)]=10. Этот результат становится понятным, если принять во виимание, что большим углам рассеяння соответствуют малые прицельные параметры и характеристики поглощающего слоя становятся важными.

Таким образом, отношение σ/q различным образом зависит от разных параметров, характеризующих взаимодействие сталкивающихся ядер. Это обстоятельство в сильной степени облегчает выбор их оптимальных значений.

Результаты анализа некоторых экспериментальных данных по упругому рассеянию тяжелых ионов приведены на рис. 5, 6, 7, 8, 9, 10, 11. Рассмотрено упругое рассеяние: $O^{15} + Pb^{208}$ (Рис. 5,6), $O^{16} + Bi \, {}^{209}$ (Рис. 7), $N^{14} + Bi \, {}^{209}$ (Рис. 8) $O^{16} + Au \, {}^{197}$ – (Рис. 9), $C^{12} + Ta \, {}^{181}$ (Рис. 10), $C^{12} + Ag^{107}$ (Рис. 11). Набор оптимальных значений параметров, энергия, а также ссылки на экспериментальные работы указаны в таблице 11.

Сравнение теоретических кривых σ/σ_c с экспериментальными данными свидетельствует об удовлетворительном согласии (угловая ошибка эксперимента на рисунках не показана; она составляет $\approx \pm 0.8^{\circ}$). Квазиклассическая теория дает возможность воспроизвести ход экспериментальной кривой σ/σ_c в большом угловом интервале (например, случай

 $O^{16} + Pb^{208}$), несмотря на то, что значение σ / σ_c может меняться в исключительно широких пределах: от 1 до 10^{-5} . Из таблицы 11 видно, что значения параметров весьма близки для самых различных случаев, соотзетствующих разным комбинациям сталкивающихся ядер.

Некоторое расхождение между теоретической кривой и экспериментальными точками наблюдается лишь на самых малых углах (эта часть кривой представлена пунктиром). По-видимому, это расхождение можно объяснить неточностью аппроксимации функции $\theta(l)$ при больших значениях l по формуле /3/. Действительно, основной вклад в рассеяние на малые углы должны давать большие прицельные параметры, а следовательно, и парциальные волны с большим l. Однако в то время как $\theta(l)$ при $l \rightarrow \infty$ стремится к нулю, оставаясь положительной, $\theta(l)$, определяемая формулой /3/, при достаточно больших значениях может стать отрицательной. Поэтому ясно, что дальнейшее уточнение теории должно быть связано с учетом этого факта. а (рис. 2). Однако в этом случае, помимо некоторого сдвига кривой σ/σ_c , происходит существенное изменение ее наклона. Например, $[\sigma/\sigma_c (33^\circ)]/[\sigma/\sigma_c (39^\circ)] = 3,83$ при

 a = 0,35 f и [σ/σ_c (33°)]/[σ/σ_c (39°)] = 6,7 при а = 0,45 f σ/σ_c слабо зависит от значения
 V_o (рис. 3). Этого и следовало ожидать, так как результаты определяются величиной
 эффективного потенциала, являющегося суммой кулоновского, центробежного и ядерного потенциалов. Но при указанной вариации V_o эффективный потенциал мало меняется.

На рис. 4,5 представлены кривые σ / σ_c в зависимости от значения параметра *b* при фиксированных значениях остальных. Прежде всего видно, что в интервале малых углов θ /рис. 4/ результаты очень слабо изменяются при вариации *b* в значительных пределах: 1,4 - 2,0. Напротив, обнаруживается очень сильная зависимость величины σ / σ_c от *b* в области больших углов. Из рис. 5 мы видим, что когда θ - велико, то

[σ/σ_c (b=1,0)]/[σ/σ_c (b=1,4)]≈10. Этот результат становится понятным, если принять во внимание, что большим углам рассеяния соответствуют малые прицельные параметры и характеристики поглощающего слоя становятся важными.

Таким образом, отношение σ/q различным образом зависит от разных параметров, характеризующих взаимодействие сталкивающихся ядер. Это обстоятельство в сильной степени облегчает выбор их оптимальных значений.

Результаты анализа некоторых экспериментальных данных по упругому рассеянию тяжелых ионов приведены на рис. 5, 6, 7, 8, 9, 10, 11. Рассмотрено упругое рассеяние: $O^{15} + Pb^{208}$ (Рис. 5,6), $O^{16} + Bi \, ^{209}$ (Рис. 7), $N^{14} + Bi \, ^{209}$ (Рис. 8) $O^{16} + Au \, ^{197}$ (Рис. 9), $C^{12} + Ta \, ^{181}$ (Рис. 10), $C^{12} + Ag^{107}$ (Рис. 11). Набор оптимальных значений параметров, энергия, а также ссылки на экспериментальные работы указаны в . габлице 11.

Сравнение теоретических кривых σ/σ_c с экспериментальными данными свидетельствует об удовлетворительном согласии (угловая ошибка эксперимента на рисунках не показана; она составляет ≈±+ 0,8°). Квазиклассическая теория дает возможность воспроизвести ход экспериментальной кривой σ/σ_c в большом угловом интервале (например, случай

 $O^{16} + Pb^{208}$), несмотря на то, что значение σ/σ_c может меняться в исключительно широких пределах: от 1 до 10^{-5} . Из таблицы 11 видно, что значения параметров весьма близки для самых различных случаев, соотзетствующих разным комбинациям сталкивающихся ядер.

Некоторое расхождение между теоретической кривой и экспериментальными точками наблюдается лишь на самых малых углах (эта часть кривой представлена пунктиром). По-видимому, это расхождение можно объяснить неточностью аппроксимации функции $\theta(l)$ при больших значениях l по формуле /3/. Действительно, основной вклад в рассеяние на малые углы должны давать большие прицельные параметры, а, следовательно, и парциальные волны с большим l. Однако в то время как $\theta(l)$ при $l \rightarrow \infty$ стремится к нулю, оставаясь положительной, $\theta(l)$, определяемая формулой /3/, при достаточно больших значениях может стать отрицательной. Поэтому ясно, что дальнейшее уточнение теории должно быть связано с учетом этого факта.

- 1. Б.Н.Калинкин, Б.И.Пустыльник. Препринт ОИЯИ, Р-989 /1962/, направлено в Acta Physica Polonica.
- 2. С.П.Иванова, Б.Н.Калинкин, Препринт ОИЯИ, Р-1153 /1962/, направлено в Acta Physica Polonica.
- 3. H.L. Reynolds, E.Goldberg, D.D. Kerlee. Phys. Rev. 113, 2009 (1960).
- 4. D.DKerlee, !I.L.Reynolds, E.Goldberge. Phys. Rev. 127, 1224 (1962).
- 5. K.W.Ford, J.A.Wheeler. Ann. Phys. 7, 259 (1959).
- 6. J.Alster, H.E.Conzett. Proc. of the Second Conference on Reactions between Complex Nuclei, J.Wiley a Sons, Inc., N.Y. 1960.

Рукопись поступила в издательский отдел 26 марта 1963 г.

Рис. №	Вариант	Параметры				
		$(R=r_{0}(A_{1}^{1/3}+A_{2}^{1/3}))$	a (f)	V (Мэв)	Ь	
I	I 2 3	I,28 I,30 I,32	0,4	40	I,4	
2	I 2 3	I,30	(),35 (),40 (),45	40	I,4	
3	I 2 3	I,30	0,40	45 40 35 ~	I,4	
4	I 2	1,30	0,40	40	I,40 2,0	

•

Таблица II.

.

•

Рис. №	Реакция	Е _{с.ц.м.} (Мэв)	V (Мэв) ₀	r _o (1)	a (f)	ь Экс п ер.
ŧ.			k			
5,6	$0^{16} + Pb^{208}$	154,2	40	I,30	0,40	I,4 /4/
7	$0^{16} + B1^{209}$	152,3	45	I,32	0,40	I,4 /3/
8	$N^{14} + B1^{209}$	136,2	45	I,32	0,40	I,4 /3/
9	$0^{16} + Au^{197}$	151,7	45	I,32	0,40	I,4 /3/
10	$C^{12} + Ta^{181}$	II6 , 8	45	I,32	0,45	I,4 /6/
II	$C^{12} + Ag^{107}$	III,9	45	I , 33	0,40	I,4 ^{/6/}