

KIH

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ ВЫЧИСЛИТЕЛЬНЫЙ ЦЕНТР

Ю.М. Казаринов, В.С. Кисслев, И.Н.Силин.

P - 1221

ФАЗОВЫЙ АНАЛИЗ НУКЛОН-НУКЛОННОГО РАССЕЯНИЯ ПРИ ЭНЕРГИИ 660 МЭВ.І Ю.М. Казаринов, В.С. Киселев, И.Н.Силин.

P - 1221

ФАЗОВЫЙ АНАЛИЗ НУКЛОН-НУКЛОННОГО РАССЕЯНИЯ ПРИ ЭНЕРГИИ 660 МЭВ.I

Пеляненный инсти-Поных исследованые БИБЛИОТЕНА

Дубна 1963 года

Фазовый анализ нуклон-нуклонного рассеяния при энергиях, лежащих выше порога мезонообразования, заметно усложняется. Постановка задачи в достаточно общем виде требует проведения чрезвычайно широкой программы исследований упругих и неупругих нуклон-нуклонных столкновений^{/1/}, программы, которая в ближайшее время вряд ли будет выполнена. В связи с этим, по-видимому, целесообразно, сделав некоторые предположения относительно процессов мезонообразования, провести фазовый анализ по несколько менее общей программе. Такой анализ *pp* -данных при энергии 660 Мэв в предположении справедливости резонансной модели Мандельштама для неупругих столкновений при этой энергии был недавно выполнен Р.Я. Зулькарнеевым и И.Н. Силиным^{/2/}. Анализ дал весьма интересный результат. Был найден единственный набор фазовых сдвигов с разумным х² x[/].

Начиная совместный-фазовый анализ при энергии 660 Мэв, авторы понимали, что при той сравнительно небольшой экспериментальной информации, которой они располагали, вряд ли можно будет восстановить амплитуду нуклон-нуклонного рассеяния столь же однозначно, как это было сделано ранее в области энергий до порога мезонообразования ^{/3,4/}. Тем не менее можно надеяться, что полученные результаты окажутся полезными прежде всего при планировании будущих экспериментов.

На первом этапе анализа поиск решений производился при $\ell_{max} = 4$, т.е. начиная с моментов $\ell = 5$, амплитуда бралась в одномезонном приближении. Релятивистскими эффектами при учете кулона пренебрегали. В соответствии с результатами работы^{/2/} считалось, что мезонообразование идет, в основном, из состояний с полным изотопическим с пином t = 1, состояний ${}^{3}P_{0,1,2}$ и ${}^{1}D_{2}$, а во всех других случаях влиянием неупругих столкновений можно пренебречь. Фазовые сдвиги волн с t = 1 были взяты из работы^{/2/} и считались постоянными. Фазовые сдвиги волн с t = 0 находились из условия минимума суммы квадратов взвешенных отклонений расчетных кривых от экспериментальных пр -данных /Табл. 1/.

На первом этапе было сделано 70 поисков решений со случайных начальных условий. При этом найдено четыре решения с $\chi^2 = 44,6$ 42,0; 42,7; 48,3 при $\chi^2 = 18$. Каждое из найденных решений повторялось по крайней мере два-три раза.

Большая величина отношения χ^2/χ^2 и заметные ошибки фазовых сдвигов волн t = 1, которые на первом этапе не учитывались, заставили уточнить все найденные решения, варьируя фазовые сдвиги всех волн и константу связи $t^2/26$ параметров/. Уточненные решения имели $\chi^2 = 80$, 74, 76, 82 /Табл. 2/, при $\chi^2 = 44$. Таким образом отношение χ^2/χ^2 хотя несколько и уменьшилось $\chi^2/\chi^2 = 1,7-1,8/$, но по-прежнему оставалось неудовлетворительным. Проверка показала, что наибольший вклад в χ^2 для всех решений давали точки $R_{pp}/72^{\circ}/\mu C_{nn}^{pp}/54^{\circ}/\mu$ /в сумме от 11 до 16 единиц/. При этом вклад от $R_{pp}/72^{\circ}/\mu$ оставался примерно одинаково высоким /6,5-8,0 единиц/ для всех решений, в то время как вклад от $C_{nn}^{pp}/54^{\circ}/\mu$ падал от девяти единиц во втором до трех единиц в четвертом решении. При уточнении была также сделана попытка опре-

х' Последнее, по-видимому, указывает на то, что в исходных предположениях налагаются какие-то достаточно жесткие ограничения.

делить мнимые части фазовых сдвигов ${}^{3}S_{1}$ и ${}^{3}D_{1}$ и параметра смешивания ϵ_{1} . Эта попытка, однако, не увенчалась успехом, указанные параметры были найдены с ошибками более ста процентов.

По найденным фазовым сдвигам были расчитаны элементы матрицы перехода и зависимости экспериментально наблюдаемых величин от угла рассеяния /рис. 1-4/.

В настоящее время вряд ли можно выбрать из найденных решений наиболее достоверное. Следует, однако, заметить, что только в решении 4 /Табл. 2/ наблюдается одна характерная черта наиболее вероятного в области энергий до порога мезонообразования фазового набора 1^{/4/}. Это единственное решение, которое указывает на то, что в рассматриваемом случае, так же как и в области энергий до порога мезонообразования , пр -рассеяние на углы, близкие к 180°, происходит только в синглетном состоянии пр -системы. Правда, отрицательный знак A_{мр} вблизи угла 90° плохо согласуется с предсказаниями первого набора. Интересно заметить также, что в отличие от остальных

<u>Раблица 1</u>

Данные, использованные при проведении фазового анализа при энергии 660 Мэв

Измеренная величина	Энергия, при которой велись измерения Мэв.	Число точек	Литератур- ный источ- ник	
				T
о pp	660	I 2	5,6	
P _{pp}	635	I 4	7	
D	635	5	8	
R PP	635	5	9	
C ^{<i>PP</i>} _{<i>nn</i>}	660	3	Ю	
C	660	I	IĪ	
σ_t^{pp}	660	I	12	
o _{np}	630	19	I3 , I4	
Pnp	635	8	15	
σ_t^{np}	580	I	16	
$\frac{\sigma_{nd}(0)}{\sigma_{np}(0)}$	630	I		

Таблица 2

Фазовые сдвиги волн в градусах /параметризация Стаппа и др. /17// при Т = 660 Мэв

	I	2	3	44	
ť 2	0,078±0,006	0,076 <u>+</u> 0,006	0,074 <u>+</u> 0,006	0,078 <u>+</u> 0, 005	
's _o	-20,498 <u>+</u> 7,824	-3I,940 <u>+</u> 4,700	-22,989 <u>+</u> 7,887	-17,108±5,611)	
³S,	-I2,505 <u>+</u> I2,6I	27,739 <u>+</u> 5,249	28,7I0 <u>+</u> 6,550	17,538 <u>+</u> 4,831	
³ P ₀	- 32,463 <u>+</u> 6,279	-37,732 <u>+</u> 6,588	-33,2I5 <u>+</u> 6,085	-37,133 <u>+</u> 7,687	
¹ P ₁	15,081 <u>+</u> 7,378	I2,092 <u>+</u> 5,007	I3,64I <u>+</u> 6,744	-15,242 <u>+</u> 4,414	
³ P ₁	- 13,316 <u>+</u> 3,824	-I6,736 <u>+</u> 5,I83	-I4,II5 <u>+</u> 3,642	-I6,877 <u>+</u> 4,748	
³ P ₂	64,451 <u>+</u> 17,44	4I,5I2 <u>+</u> 5,434	6I,9I9 <u>+</u> I4,93	56,480 <u>+</u> 8,269	
¢1	24,477 <u>+</u> 7,393	27,667 <u>+</u> 6,I40	-7,355 <u>+</u> 3,694	- 5,072 <u>+</u> 6,615	
³ D	- 17,991 <u>+</u> 6,868	-II,I 5 0 <u>+</u> 3,817	-8, 946 <u>+</u> 2,396	-28,275 <u>+</u> 2,456	٠
¹ D ₂	2 ,573<u>+</u>3, I02	2 ,737<u>+</u>3,823	4, 499 <u>+</u> 2, 798	6,188 <u>+</u> 2,064	
³ D 2	22,095 <u>+</u> 10,12	7 15,223 <u>+</u> 6,950	8,9I3 <u>+</u> 4,662	- 4,620 <u>+</u> 5,226	
³D ₃	4 ,97 8 <u>+</u> 4,584	- 7,4II <u>+</u> 2,825	3 , 945 <u>+</u> 3,155	- 6,101 <u>+</u> 2,414	R_ð
é 2	- 1,034 <u>+</u> 5,082	- 2,479 <u>+</u> 3,077	- 0,719 <u>+</u> 4,888	0, 646 <u>+</u> 3,353	•
³ F ₂	- 5,076 <u>+</u> 0,956	- 7,138±1,172	- 5,104 <u>+</u> 1,072	- 5,591 <u>+</u> 0,987	
¹ F _g	3,4I6 <u>+</u> 2,2I4	5,031 <u>+</u> 2,870	5,906 <u>+</u> 2,762	-I4,844 <u>+</u> 2,683	
³ F ₃	3,943 <u>+</u> 1,712	I,980 <u>+</u> I,295	3,065 <u>+</u> 1,286	2,200 <u>+</u> 1,311	
³ F ₄	-23470 <u>+</u> 13079	-3;88I±0;685	-2,066 <u>+</u> 1,036	- 3,74 <u>3+</u> 0,842	
é z	16,793 <u>+</u> 1,673	I2,4 6 5 <u>+</u> 2,756	-19,220 <u>+</u> 1,858	I3,404 <u>+</u> I,594	•
³ G ₃	- 4,887 <u>+</u> I,532	- 3,736 <u>+</u> I,105	- 3,583 <u>+</u> 2,008	-I2,453 <u>+</u> I,539	
'G4	8,482 <u>+</u> 0,855	8,067 <u>+</u> 0,84I	8,220 <u>+</u> 0,92I	7,850 <u>+</u> 0,995	
³G₄	5,7I6 <u>+</u> 2,753	I4,705 <u>+</u> 2,876	I5,50I <u>+</u> I,978	15,654 <u>+</u> 1,613	
³ G 5	I,200 <u>+</u> 2,703	6,04I <u>+</u> I,544	5 ,3 16 + 1,383	- 7,051 <u>+</u> 2,273	
³ P ₀	_ 2,77I+7,966	3,368±8,163	-I,550±7,083	8,321±10,804	
⁸ P ₁	- I,07I <u>+</u> 4,173	- 0,565 <u>+</u> 3,373	-1,638<u>+</u>3,59 8	- 1,777 <u>+</u> 3,310	Ϊδ
³ P ₂	34,532 <u>+</u> 6,66I	I7,632 <u>+</u> 4,I49	32,323 <u>+</u> 6,255	25,347+4,336	
¹ D ₂	I8,679 ± 5,372	23,818±7,357	18,171±4,924	I6,566 <u>+</u> 4,494	
X ²	80,0	74,0	76,0	82,0	

Данные, использовани	ные для определения фа	азовых сдвигов	при энергии 380	Мэв
Измеренная всличина	Энергия, при которой произ- водились изме- рения . Мэв	Чмсло точек	Литератур- ный источ- ник	
σ pp	380	26	19	
P _{pp}	415	7	20	
D _{pp}	382	I	21	
C , , , , , , , , , , , , , , , , , , ,	382	I	22	
PP C _{kp}	382	I	22	
σ _{np}	400 .	23	20	
P _{np}	350	12	20	

Таблица З

решений четвертое дает отрицательную вещественную часть амплитуды *пр*-рассеяния вперед. Последнее подтверждается результатами, полученными ранее в^{/18/} при анализе рассеяния протонов на ядрах углерода и *pp* -рассеяния в области малых углов.

Для того, чтобы проследить насколько хорошо найденные решения соответствуют фазовым сдвигам набора 1 в области меньших энергий, была сделана попытка провести фазовый анализ нуклон-нуклонного рассеяния при энергии 380 Мэв, опираясь на интерполированные эначения фазовых сдвигов. Использованные данные приведены в таблице 3. Полученные решения достаточно удовлетворительно подтверждают монотонный характер зависимости $\delta(T)$. Расчетные кривые экспериментально наблюдаемых характеристик рассеяния приведены на рис. 5-8.

Как уже указывалось, не все экспериментальные данные, полученные при энергии 660 Мэв, одинаково хорошо описываются найденными решениями. В связи с этим было сделано уточнение решений после исключения наиболее далеко "выскакивающих" точек (R(72°) и D(108°)). При этом найдено, что решения меняются не очень сильно, а χ^2 падает до 60 единиц.

В заключение авторам приятно поблагодарить В.П. Джелепова за обсуждение результатов и С.М. Биленького, Р.М. Рындина, Л.С. Ажгирея и Ю.П. Кумекина за дискуссии по вопросам, возникавшим при выполнении работы.

Таблица 4

Фазовые сдвиги	волн п	при Т	= 380	Мэв	/параметризация	Стапла и	/17/,
		<u>.</u>					др. /

	$\ell_{max} = 3$	$\ell_{max} = 4$	
x ²	71.2	58 /	
f ²	0,049+0,005	0.065+0.008	
1 S o	- 4,53 <u>+</u> 1,71	-6, 45+2,26	
³ S ₁	- I0,67 <u>+</u> 4,89	- I4,I3 <u>+</u> 3,73	
³ P ₀	- 20,80 <u>+</u> 4,88	- 17,30 <u>+</u> 10,59	
¹ P,	- 25,43,5,03	- 21, 87 <u>+</u> 16,62	
³ P,	- I4,93 <u>+</u> 2,23	- I5,35 <u>+4</u> , I9	
³ Р ₂	24,94 <u>+</u> I,30	2 5,88 <u>+</u> 1,86	
٤ ₁	34,18 <u>+</u> 2,70	34,76 <u>+</u> 4,75	
³ D ₁	- 2I,03 <u>+</u> 2,45	- 20,88 <u>+</u> 3,5I	
1 D ₂	14,16 <u>+</u> 0,62	I3,94 <u>+</u> 0,76	
°D,	I,84 <u>+</u> 3,43	0,08 <u>+</u> I0,I4	
⁹ D 3	8,50 <u>+</u> 2,40	6,47 I 2, 34	
ε ₂ 5 Γ	- 7,70 <u>+</u> 0,97 0.06+I.05	- 6,89 <u>+</u> 2,51 - 0.11 +1 76	
¹ F ₃	- 0,49+0,91	- 4.60+ 7.08	
³ F ₃	- 7,57 <u>+</u> 0,59	- 7,20+ I.04	
⁹ F ₄	2,29 <u>+</u> 0,59	2,07+ I,IO	
٤3 ع م		2,45+ 3,3I	
• G 3		- 5,06+ 2,30	
~4 ³ G∡		_ I,06+3,07	
3 G 5	~	+ 8,60 <u>+</u> 4,96 - 0,70 <u>+</u> I0,7I	

.

.

а Л.М. Сороко, Препринт ОИЯИ Р-226, Дубна 1958.
2. Р.Я. Зулькарнеев, И.Н. Силин. Препринт ОИЯИ Д-1107 Дубна 1962 г. ЖЭТФ /в пе- чати/.
3. Ю.М. Казаринов, И.Н. Силии. ЖЭТФ <u>43</u> , 692, 1962.
4. Ю.М. Казаринов, И.Н. Силин. ЖЭТФ <u>43</u> , 1385, 1962.
5. Н.П. Богачев, И.К. Взоров. ДАН <u>99</u> , 931, 1954.
6. Н.П. Богачев. ДАН <u>108</u> , 806, 1956.
7. М.Г. Мещеряков, С.Б. Нурушев, Г.Д. Столетов. ЖЭТФ 33., 37, 1957.
8. Ю.П. Кумекин, М.Г. Мещеряков, С.Б. Нурушев, Г.Д. Столетов. ЖЭТФ <u>38</u> , 1451, 1960.
9. Ю.П. Кумекин, М.Г. Мещеряков, С.Б. Нурушев, Г.Д. Столетов. ЖЭТФ <u>38</u> , 1665, 1962.
10 Б.М. Головин, В.П. Джелепов, Р.Я. Зулькарнеев. ЖЭТФ <u>44</u> , 142, 1962.
10. Б.М. Гонодин, 11. В.И. Никаноров, Г. Петер, А.Ф. Писарев, Х. Позе. ЖЭТФ <u>42</u> , 1909, 1962.
12. В.П. Джелепов. В.И. Москалев, В. Медведь. ДАН <u>104</u> , 380, 1955.
13. Н.С. Амаглобели, Ю.М. Казаринов. ЖЭТФ <u>37</u> , 1587, 1962.
14. Ю.М. Казаринов, Ф. Легар, Ю.Н. Симонов. Препринт ОИЯИ Р- 1962.
15. Б.М., Головин, В.П. Джелепов, В.С. Надеждин, В.И. Сатаров ЖЭТФ <u>36</u> , 433, 1959.
16. В.П. Джеленов, В.И. Сатаров, Б.М. Головин ЖЭТФ 29, 369, 1955.
17. H.P.Stapp, T.Ypailantis, N.Metropolis, Phys. Rev. 105, 302 (1957).
18 Л.С. Ажгирей, С.Б. Нурушев. Препринт ОИЯИ Р-1188, Дубна 1962 г.
19. D.Harting, J.R.Holt, I.A.Moore, Proc. Phys. Soc. <u>71</u> , 770 (1958). I.R.Holt, J.C.Kluyver, I.A.Moore, Proc. Phys. Soc. <u>71</u> , 781 (1958).
20. W.H.Hess, Rev. Mod. Phys. 30, 368 (1958).
20. W.H.Hess, Rev. Mod. Phys. 30, 368 (1958).
21. J.Kane, R.Stallwood, R.Sutton, I.Fox, Bull. Am. Phys. Soc. 1, 9 (1990).
22. A.Ashmore, A.N.Diddens, G.B.Huxtable, K.Skarsvag, Proc. Phys. Soc. 72, 289 (1958).

Рукопись поступила в издательский отдел 6 марта 1963 года.

Ø

-экспериментальные данные, использованные для проведения анализа.
-коридор ошибок.

Рис. 4. Зависимость экспериментально наблюдаемых величин от угла рассеяния при энергиц 660 Мэв, рассчитанная по фазовым сдвигам решений 1,2,4. Ф -экспериментальные данные, использованные для проведения анализа. Г -корндор ошибок.

Рис. 5. Зависимость экспериментально наблюдаемых величин от угла рассеяния при энергии 380 Мэв, рассчитанная по найденным фазовым сдвигам.

-экспериментальные данные, использованные для проведения анализа. 7 коридор ошибок.

I - коридор ошибок.

