





A b.s tract

It is shownvthat the relativistic forhulae for angular dis—
tribution, for polarization vectors and tensors in the.reaction
of a + b;—anc + d\ type in its rest system coincide mainly.with
the nonrelativistic ones if the spin of the particle 1is determin-
ed as the intrinsic angular momentum of -the partidle with res-
pect to its centre Qf inertia. The squame of this‘intrinsic an-
gular momentum is the Lorentz invarianto* -Spiﬁs of the partiéles‘
are arbitrary and they have non-vanishing restémassesa h

The malin difference from the nonrelativistic case is that
the description of the spin state is not jdentical in different
Lorentz systems, Therefore, it is necessary to introduce the cor-
rections into the nonrelativistic formal theory 6f the cascades
of the reactions (for insfance, for the experimentsvon double scat-
tering). The relativistic changes in thevangular corrélations in
the cascades of the type B |

T+p-—Y *k, Y—=N+J

are pointed out.

, #* Shirokov Yu.M. informed us that he had elaborated a similar

relativistic theory of polarization and correlation effects, start-
ing from the same description of the spin state, which he obtained
from the theory of .the irreducible representations of the inhomo-
geneous Lorentz group. o



Introducti on

There are formai theories for the reactions of type a + b-e-
c + do There theories express the angular distribution and the
polarization state of the reaction products in terms of ‘the pola-
rization state of the peam and the target and in terms of the un-
known parameters whieh are the Sématrix elements of the precess
a + b— o+ do The s1mp1est example is the wellaknown formula

for the function T (@) appearing in the expression ,
W(PL) - LT\;{*}(@&) @'sz‘l/,z o ()

for thepwave function of the stationary scattering process of
particles with sero‘spinsa The unknown parameters innthis case
are called the scattering phase-shifts. | |

These theories are based upon the use ef the laws ofkjconm
servation } (mainly law of the angular momentum conservation).
Coester and dJauch ‘ll were the first who obtained the formulae
for angular distribution and phlarization in the cgse of the ar-
bitrary spins of a,b,c,d'starting from the expression of the laws
'of’conservatien_ip'the‘form of»diagonality of‘the S=ﬁatrix\e1ementsb
with respect to conserving»variableso‘Simon and Weltop have ob- |
tained the same formulae but in some differeﬁt manner (see, for
instance, 12] Do |

These formulae are nonérelativistic ones but only because
the spin state of particles is described in the Pauli approximat-
ion (so that it i1s the same in all Lorentz systems). The theory |
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of Scattering of spinless particles ié actually relativistico,
”in order to obtain the angular distributibn in any Lorentz sys-< |
tem 1t is necessary to transform 6(6)=|f(6)ja from the
system of inertia into the abovementioned systgm using thg knpwn
formulae; For the relativistié generalization, therefore, it is
necessary to determine the relativistic operator 6f_the spino
The operator of the spin used further satisfies all the claims
which may be required of the notion of the spin as %he intrinsie
angular momentum of the particle,

To,dbtain the relativistic formulae we use the Coester

and Jauch method in the form presented in 131

» Le® us point

out that in this method it is necessary to be 6ply able to des-
cribe the state of the free particle with the s?ino Oné will

- not need the relativistic equations (for free particiés), simi-
lar to a Dirac one (which plays a considérable fole in thékstapp5s

|41

relativistic theory for the scattering of particles with

spin 1/2)0

§ I, CONSERVING PHYSICAL VARIABLES IN
RELATIVISTIC THEORY

The conservation laws express the fact that physical pro-=
cesses in the isolated physical system must be ;;dependent of
the way Qf its despribing, particularly, of the.choilce of the
frame of referemce, It is assumed, of course, that spacetime is

homogeneous and isotropic g (one may consider, however, that



this assumption is involved into the notion of thébisolated Sys=—
tem). 7 |

| In quantum mechanics this fact is displayed in the requi~'
rement that the S-matrix of the physical process must commute
' with ten operators of infinitesimal translations of the origins
of space and time coordinates ‘PF and the rotations in sSpase=
time M}lv o;The commutatiun’of the operatorxr with the S=matrix
indicates that the latter is diagonal in the eigenvaluss of this %
operétorzfland thaiﬁtherefore,'the corresponding physical vaxia51@ 
is consérved, i.e.y the internal processes fo not change it.

Four nonservation laws are of the ciear physical meaning

of the conservatlon of the total momentum = energy PU =

{Px)Py, ., LR, } " Three operators L (K = 1,2,3) out
of six other ones MP“ are of no immediate physical meaning and
we Introduce six other operators instead of MP? which will
have the meaning of the coordinates of the centre of ingrtla
of the physical system and its total angular == momentum (a.mo
in short) relative to this of centre of inertia. |

The properties of the centre of inertia Ffollow from its

very notion: motion of the system as é certuin whole may be
characterized first of éll (in the very first approximation ) as
the motlion of the point the mass of which is equal to the resté

2/ Write As-SA = O in the form of the matrix product and
choose such a representation in which the A operator'diagonal (iee09 :
let us enumerate A elements by its proper values). Then

Atk ke "SimAme = (A~ Ae) 5 =0
lees, 5,9 must vanich if 1 2L, -
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"mass’(or energy) of the system and with the mdmentum which 1s
équal to the total momentim D of the system. Therefore, the
centre of inertia pf the isolated systém must move uniformly

and rectilineary. Besldes, in the quantum mechanics we should
,réquire‘the centre of.inerﬁiax -ﬁ. to be the operator of the
cabrdiname of a certain point particle, in particular, the kﬁ%¢n

commutation relations between R, R y? R,y B, P, P, must be ful-
x .

filledo
o —_r
Such an operator. R may be obtained in the followlng Way.

The following commutation relations which the operators PL

and Mpy must satisfy to are known (see 151 §3 ana 16l )
[P PI=0; '[PL,EFO. $
| [ML,PJ]‘:LEUKP" (1.1); [ML,EFO;
'[ML,P’IJ]QEL]»( My (1.2); [N, Pj]= 5} )

[NL{E]”PL ) '[MLuNj]:LE"ijNk (1.3)

[N NjI= =16 My (1) o (D

The notations: [A,B]=AB~ BA | h= c-1) Lk

assume the values 1 92430



L ) 4 , VB IN
{Mhzvg Mj} %r oMy, P M e M R YT

? \1x 1s the tensor antisymmetrical with respect to all in-

dices, gggg =1, It is meant»that‘we are concerned only with

 those state vectors i, s Which describe the states with .
' o S g 2

. the definite rest mass m , i.e., for which PuPu W =-mp

or (P, *‘-)Uf -(}~ (thé‘timg»tramﬁlation opsrator P soluslies

with E). Note that«sinﬁ@:iiﬁ;)gﬁ-ejﬁ the mean velue of N

i
is linearly time dependemta Therekcxeg Ni is W@@ﬂﬁbrwfd” in 4he

sense9 that the internal processew affect thib time d@pend@nce
in no wayo "

We introduce three new operators R,y Ros R ? for which

J
T A } ¢ ‘
[se“{j Cand  [R P]= 5y
(and then | R, F]=t. Pu/p) | |
Representing M in the form I , =1 EWﬁaagkﬁ%*'ﬁx from (1 l)

i !

" we obtain that [Il,FQ};O' o 1 on@ requires R_, Ryg R, tn be-

the components of a space vector, they must satisfy the follow-

ing commutation relation: BV R.=L¢ z,iﬁf, | Therefore
. (A R § S A

?IL)QJV*” and Jx;J} Ty are #lso the three dimensio=-
nal vector. It fellews from (1.2) that ; ] )]ylﬁLﬁljﬁ.Jk,:
By analogy, representing N in the form N, a’l/z(aiE +
ERy) + Ky =% R4E = $P1/2E + K, we obtaln that |K,Pl s 0o
Therefore, |Ki,El-= 0 and the mean value of K, is time d indepen-
dent. .

crin b

Now we intend to @xpr&sg M and N in t@r@s of the op@ra%@fs
‘h andTintre&uced abovao For M 1% has been: alr@a@y doneo Ther@
r@mmins only to express the space polar ve@tor k inm term3 ef P

and Jo It can be shown that if R ,Rngzﬂ are
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the'first;three components of any four—vectqr‘(ioe,, for instance,
INL, Ri| = O (4f 1 # J) then K cannot be expressed only in terms
of _ja and -§'~so that all the commutations for N would be

satisfied. It means that if K are composed only of P and J
then fﬁ x.;']k’ and Jk- are not the space components of the se-
cond rank fourtensor. | ‘ | ‘

Theliimpleét 'E) (namely lineér with respect to Ix;Jg,Iz)
.satisfying\'(;{f;) and (1.4) 1s of the form: k=[P xJ] (E t m)!
(compare 471 ang 161 )3/° | '

Since the problem has the solution then:

1)“§J is "cénserved" (in the same sence, asnﬁ) since it
may bé expreséed in terms of the conserving operators MPV(see
Appendix ):E’:may be called the operator of the centre of iner-
tiél'It coincides with the definition (e) of the centre of iner-
tla in Pryce's papers |8|°

2) J is also conserved and, what it is especially im-
2
r = E “ j s 2 hS e u?‘ . ?v
as | N J J:tO» - Emphasize that it 1s correct for any K=K(P7).

: IR R S ~
portant for us, J =J, *+J *+J, 1s the Lorentz invariant,

'§ 2. USE OF LAWS OF CONSERVATION.
RELATIVISTIC DETERMINATION OF THE SPIN OF A PARTICLE

Four laws of the total momentum—- energy conservation and

three laws of the centre of iner&ia conservation may be expressed

i —= 2
'3/ We were able to show, that no other K exist for 1=Ya(/e+t)
and J*=zp2 o Starting from other considerations, L.G. Zastaven-
ko seems to have proved that K 4is unique (whatever eigenvalue
J2  has). We are grateful to him for the discussion of this
question, . R



very simply. As usual the consideration is being carried on in
‘the Lorentz system K_, where the (conserving) total momentum is
déqual}to Zero (the so called coms system). The origin of the coor-
dinate frame of axes may be taken in the point of the centre of
inertia (to be more exact, in the poiﬁt of the mean value of the
operator-ﬁ 4/) of the particles a and b (or ¢ and d)o Then‘?,is
£ the total a.ms Since the commutations between wajg>

are the same as for the any aom. (e.g. as for the Pav 1 spin

A

matrices) then the eigenvalues of J°© and Jzk are qual to

heT(T+1) and M= I -7
respectivelye ;
The law of conservation of ?F 1s expressed as the dia-

~

gonality-of,thefomatrix in the eigenvalues of J° and Jg:
v I" TM V ‘ y
(... ) M8 ). T =S ] ) by On's @)

| c I o
and, besides, as the independence of (.. ) rd,) of M,
«following from.[Ii‘, ] O

If one meeds to find, for ins?ance9 the angularg distri-

bution of ¢ and 4 1t 1s necessary to know the S-matrix

o -
4/The”1aw»of» R conservation means something more than the
conservatlon of mean value, The requirement lR S| =_0 implies
that it the system is in the state with the deflnite R (note
that in the interaction picture the wave function of the external
‘behaV1our of the physical system does not change in time) the in-
terdétion ?%e%are-%he~wave~fﬁﬁe%%eﬁ processes 1n the system do
not take it out of this state. This property 1s not used expli-
citly but such . R 1is necessary to define the conserving Y — in-
tr1n§ic a.mes of the system (and spin of a particle, see fur-
ther).,



elements in the representation of the particles momenteg In or-
der to e%press these eiements'through the elemente (2) we must
first of all write'put the remaining variables of the eomplete
set (denoted by dots in (2)), commuting with J?@ and JZ“
and with each ethera ‘ :

The initial and final stafes of-the proeess a4+ b—c + d
are the stetes of the two free not interacting particles,
 Sématiix elements are in fact the fransition amplitudes bet~
ween such states. Therefore for the total set of variables enu-
merating the S—matrix elements we must take the quantﬁm-mechaé '

nical variables describing the free partlcles a ahd b or

—y

¢ and 4, The total a.mes J (in the system X ) is presented
— —»  —% g
in the form :I:Jl-kga where J' ~is one—particle total ama

P

in Kge o

The procedure of obtaining the consé%ing anguleriﬁeﬁeeéum‘
with respect to the centre-of-inertia which was set forth in
§ 1 may be applied for the system of any phy51ca1 nature (eag;,
for physical fields). It is only sufficient to know the specifie

representation of the operators PP - and MHV' « It is feaSonable,:

therefore, to apply this proeedure to the "elementary" particle,
the physical nature’ of which is unknown at all (according to
the notion of the “elementarify")a Apart from th% coordinate of
the centre of inertia fz and the momentum ?T we obtein
then in the only way one more internal conserving characteristio
of the microparticle S —  the a.m, of the particle relative to
its centre of lnertia '1 » Defining the spin of fhe perticle'
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as S we only attridbute more exact meaning to the notion of the

spin as an intrinsic momentum of the partioleo

TSO, J ‘[T,XP]’fS | and in the system X_,where
E :-Tja :P we obtain '
{
:[-‘:x'_';‘]fs +[’Z xP]+5 [;(, 'Z )KP]‘FS +5 = (3)
;,,?. _glk ..... ,c.\:g

Now we may'introduoe in K the operator of the total snin S =
.?Ei +.§; formally“by a complete‘analogy with the nonurelativistic
consideration. (The square of this spin is, no longer, however,
a Lorentz invariant) The eigenfunctions of its squgre and pro-
Jection S - may be expanded by the products thnm“‘ylanqg

of the eigenfunctions of the squares and of the E3 “projections
of the operators S1 and 82 respectively (the eigenvalues of Sl
arerdenoted by - FFL (L +1v Since the commntation relat-
ions for -S’—S';_,SZ are of the usual form [Sy 5 ld] =15, eteo,

the expansion coefficients will be the well-known @ebschwGordan
coefficients (L L m hﬂalt Srrm)e which are simultaneously the
transformation functions from thejrepresentation in the}variables

’Lin;tég h?{,knzld into‘t{)tars, m - representation (and vi-
ce versa),.Thercoefficient | (ﬂsignﬂﬁslrﬂ ) has an analogous
. meaning. | ‘. | |

As . variables marked by the dots in (2) we may take S, e

and the momentum module in K (or the total energy of the system

,which in K coinctdes with the relativistic invariant-the rest

ma.ss of the system).



§ 3. FORMULAE FOR CROSS SECTION, VECTOR AND TENSORS OF
POLARIZATION. RELATIVISTIC ROTATION OF SPIN

Nowwe may ekpress the S-matrix elements'in the represéntat-
ion of the momenta of particles and of their spin projections in .
terms of the elements (P(_)S ¢’ J’ M 'S'PG,S €, 1,mM)
. The transformation function from the representation 1n
the variables p)S E I M : ,' | into the representation in' :
the momenta and the spin projections is the product of th.ree o

transformation functions written out in the following formula_’_'
(compare [91, Do |

(ﬁc )mC ) mdlS'ﬁa yMa mﬁ) =

:('ljc \PC PC‘EIM‘PC)(LCLdmCmdll’CLd Slml)(zlﬁﬁ’ilml,e'SIIM)x o
/ X(SIE'ISI,E(Pa)lse)X ' 7 (4)
*(LsTmlLspm)(iglySmliatymgmg)( Byl Ya o Po ).

Expression (2) and the law of total energy conservation are used,
Pc and Pa are the momenta of the particles ¢ and d*

and a and b corregpondingly in K 19@, “fc : Fc 17(1, ‘Ya ) Pa

are their spherical angles and modules. It is implied that [3
+1s the function of Pa:\LPztéﬂg +\r3' a—ea ‘\JPC 389 *‘\‘PC +R€d

/ , .
The sum over E)P.') Sl m’J‘ M ¢ P;S;m - 1s implied,

-] ' : .
(99PIEppy)= “’%W ‘P Yo (890 (PIP)

where YeP (J, f) - is the spherical functilon.

See the other notations in [3] (particularly in Appendix II),
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Making use of the formula P/:§5f75i. we may obtain °
now the.density métrix }V of the reaction pfbducts,in the,ie—
presentation of their momenta and spin projections ( JE T
the dénsitquatrix of the beam-target in the same representation).
The problems of normalizafion and the obtaining of the éross
section in the system Ks are solved in the same way as in the
nonrelativistic case (see l“3!)? The Statistieal p@l&riz&ﬁi@ﬁ
tensors ﬁayrﬁe 1ntroduced_instead'@f the density métri@e&

Just in a similar mannerowAllvthe\fcrmulae will be of ths sams

form as the nbnrelativisﬁic ones ljlo.The difference is that

thg spin projections frullrng))hnc)rnd (orft} v ) as well

as the total spin are refered to the Ks system, The same spin

state is of another form in the other Loreﬁtz frame K (for instan-
~cey in the Laborétory one)o |

Let a certain spin stéfe be defined in Kso In order to knoy
how it is described in K it is necessary to fiad thé‘transforv
mation function from the representation in the eigenvalues of
82 and Sz in the system Ks-to fhe representation in the eigén
values of §° and §Z which are the square and the projectlon of
the same operator but in the frame K. as S2 is fhe Lorents in-
vafiant the operator gois a vector rotated in comparison With??a
Therefore, the transﬁormationzfunction 1S the same as that ob-

tained when solving the task of describing the‘given spin sta-
| te in ﬁhe'iotatéd'fréme of space axes: |

~ L -ime, m-m | i, |
(m\m)zDrfﬁ)m(QDE)G)Cb‘):Q 1 | P (003062 t(5)



| ””n(005e) aﬁe determined in llOl‘ (formula (22) page
77, Note that the mat#ix P . written out on pege 78 1n the
f’explicit form does not correspond to (22) and 1s not correctD
If the rotation is 1nterpreted‘as the rotation of the vector
with respect to the fixed coordinate’frame 1t consists of i)
‘the rotation of the vector around the Z axiseat the angié (P\_
2)the rotation eround the y axis at the angle 9 2) the

~ rotation around 2 at - QQ u. All the rotations are contrac—
lockwise, It 1s shown in the Appendix how to ‘£ind the axis

vof the rotation and the angle ef the.rotatioh QR of the:
spin vector when transforming from K_ into Ko To transform the
spin state of>thefreaCtion product from Ks into the labe. sys-

tem we obtain such Euler dhgles of rotatibn{qﬁf%q%}gl+yﬁ%.v}

ﬁvﬁuqﬁ({+x+xﬁ+x) | |
L A LA ®
(1+ Xp)“ ') 3

BT e v e
where V*'P!/wf\w R/ W) y=efe; fu=01-p°) ‘)Zf:w/H'
, / ' N ,

(/' 4s the energy of the redction product in the lab, sys-
y ' ' S '
temy J and Y are the spherieal angles of itg momentum
i~ 8 ;

P 4n Kg , deffned with respect to the frame of axes
with the axis ‘ﬁ]UB /the axes x and y are chosen arbit-

o
rary/.

In Stapp's formula (48) in 14 for s1n @ there is an
error/ or a misprint/ the factors X Kﬁ are‘absent there

( Y (@) X(&) in his notations). If we repeat Stapp's calculat-

ions (iniaccordance with his arguments) we shall obtain'namely

formula (6). The rotation at the angle $2  must be made around
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—,

the vector [Ei*_;] - contraclockwise, %—- is the velocity of
the’labq system relative to the c.m.s. of the reaction (see Ap-
pgfﬁdix)o | ‘ ‘

The relativistic effect of the spin state rotation which

) . _
was set forthﬁgpove in no way display 1tself when transforming

the angular distributinon into the lab. system (since the angu-
lar distributidn is the zero Eank polé&ization tensoil It 1s‘
only neoessary to make the usu&? (kinemat;o) T€1atiVibtjm trans»
formation of the angles from Ks into the labo systema Thﬂ non=
relativistic theory of the angular distributiocn in the reactions

with the}nonpolarized beam and target remains also correct in

. the relativistic reglon (only the meaning of the quantities in-

volving into the formulae changes or specified). -
As for the vector and, moreover, the‘ténsors oflﬁolau
rization they are not directly meawsured in the experi—
ment.
In order to measure the polarization vector of the
product ¢ of the reaction a + b— ¢ + d it is
necessary to scatter ¢ on tge target e and to mea-
sure the asymmetry in the angular distribution of the
iscattered ¢. Then we obtain some ¢nformauion about
the polarization vector ﬁ in the co.maSo K;
of the reactibn ¢+ € -2~ C + € o The §olarization
vector which we are locking for is obtained ffom_§§'
with the-help‘of rotation. The angle of the rotatioﬁ is
‘found using formula /6/. Indeed, in the successive Lorenté=ﬁ
transfdrmations from Ks intb the lab, system (with the |
‘ hplp of the known Vﬂlocity ? ) and further into the
 systmm k! (the velocity ﬁ ) the rotation really

occurs only in the first transfrrmation, since the mo-



mentum ﬁé ' of the particle ¢ in the labo system is parallel :
=3

to ' 3 80 that sin @, ~ sin( = Q. This problemrc
2 Pc,, |

is examined in 141

in more detall; note that the considerat-
ion given there may be applied to any spina

- And in peneral the relativistic rotation of the spin is
essential, apparently, only when considering the cascades of
‘the reactionso In the next paragraph we shall he concerned with
the relativistic change of the angular correlations inptheécas-
cades’of the a + b-ép-c + d S Cc——e + f typeo~§n—ee

In conclusion we note that in the. transition from K in—»

’to the ssystem K 0? where the particle is at rest, the descript’
ion of spin state does not undergo any changes since in this
case !%]&P ~ and then @ =0 Therefore one may consider
that the quantities D) m&’ etco describe the spin~states oi
particles in their rest systems K . Such an interpretation is
‘ preferential than the former ones‘the spin state of the particw
les 1is described by the quantities the determination of which is
independent of the system K y 1o ee, of what target the particle
reacts with, what 1s its energy or what is the energetic ban

lance of the reaction5/e

%/ In connection with this interpretation the following

puzzle may occure Since there exists only one system where the

particle is at rest then in any reaction m signify the same:

the projections of spins in their rest systems. Therefore, it looks

like as if no transformations of spin state are not really necess

sary. -

, The pgint is that if V is the velocity of the system K2 re-—
lative to Kl and V 5 the ve%%city of ,K, relative to K,,then the
velocity V (whica is function of V and V3> of coﬁrse) appeared
not to be 3arallel to V,if D@,s\@2]¢a (seei!t], §22). The trans-—
formation from K, into K3 must have the form of the Lorentz
transformation with the space rotation /ibid.,formula(58)/.If the
particle was at rest in K, , then in K3 it has the velocity V,
and it is possible to pass with the help of the usual Lorentz b
transformation with this velocity into the system K, where this
particle is again at rest.The calculations show that the product
of the transformations from K, into K3 and further inte Ky has
the form of a purely space rotationgs,n-D S“) if Dy, = ; /of

‘course,. the space axes of the Lorentz systems K{,KQ»Kspﬁ are as-
sumed to be parallel/. :
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§ 4. RELATIVISTIC ANGULAR COHRELATIONS IN THE CASCADES
OF THE a+ b=c + 4, c —— e + f TYPE

©

Let us consider first the known cascade N"+P«*N‘+K)\4+-N+J?

If the first reaction occurs near the threshold the qorrelat—

fon in the angle between the direction of the incident J7 -

mesons and that of the decay nucleon makes it possiblé to deter-
mine the spih é of the hyperon Y . This correlation may be
obtained if the explicit expression for the statistical tensors
. of thg hyperon polarization f>(%7)V) will be substituted into

the expression

_|e'

s |
£ }r———:; 2q +1) Qqqﬁ: Yppaqy)

for the angular distribution of the hyperon decay products in
its rest system Kif . /see |12|
system K, of the reabtion_JT*jD-—*-W/+'K near the threshold

/the axis 2Z is directed along the JT -meson beam)

P4V~ Q4,920,0

The nonrelativistic correlation in the angle K is obtained

(8)

simply by substituting (8) into (7):
2j-) '
&mw )~ [ (2<£+| ZQaq,q)Yw (¥,0)~
| (9)
2j-
3;0& () q)PcL(casp

and IBL’ In the centre of 1nertia



As a matter of fact, it is necessary to substitute into (7) S
v not1ps(q_v) but the statistical tensors of the hyperon referﬂ ;tif*
ed to the system KY’ H |

‘ @; . - “o

P((lwv);gDV,V" (fe, (V)= Yo fe (g, V)= o
e, - (10)

;\lqﬂ/aq+1 \/KL,V (Q,L[’C)Q(j,(],).

Here WC» andv‘ﬁC are the spherical angles of the hyperon
direction of emission in the system K,. The angle & i3 detor-
mined by formula (6), since in the transformation'from KS into_'i
the 1abn‘system»and further into KY’ the rotation occursuonlyix.
in the'transitimn}from KS into the lab, system. /Let us note

that F(U Y) 1is obtained by the transformation of the measured
distributi on frbm the lab. system into KIa ’ but nst by the‘tfans»
formation from Ks into the hyperon rest system/. |

Substituting (lO) into (7) we obtain

)~ . _
(W)NY (2q+1) Q4(j,9) 3_ Yo b Y (R ¥ -
2)t | . (11)
= Yum ‘Z;bQ <J,<1)Pq(§os )
where x is now the angle between the direction of the emis—

sion of the decay products and the direction.{§2(ﬂ ), WC}

Thus, the form of the correlation remains the old one if we

chshge ths détermination of the angle X . ‘QP‘ do@s‘not"
exceedi1;5° for the expggiment under discussion. If one constructs

the distribution in K selecting only the cases with the fixed
\7 “’90 | and the fixed ?C , the difference between the

nonrelativistic and relativistic correlations may be 3% farJ %Q

T o6 vemmmenmui nycu: L
ARCPHEIX Hccaenopas: - ]

BUBMOTENA |
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and'5% for J :5yé . Aétually, all the cascadé‘cases are used
in the expferiment for the construction of }(X) . If (11)
is integrated by WQ the difference of the obtained correlat—
ion FC(X)Q(ﬂc)) from the nonrelativistic (9) will not exceed
0.1% for all values of )Y  and f% (J 5-5/2),> |

In the case of the K +P—=Y+JT, Y= N+JT cascade the
anguiar correlation does not involve any unknown parameicrs and
is dependent only upon the spin J of hyperon if the energy Qf
K -mesons does not exceed 20-30 MeV. But this energy must be
sufficiently high ( » 0,01 MeV) in order the K-mesoatom not
to be produced (see in more detail 191330 In the c.mo8, of the

reaction K + p——Y + JT whth Z axis parallel to the di-
—— : - -
rectio§ﬁJWY, of the hyperon emission and the axis %H[nKX'n¥%
" where N is the direction of the incident K-meson beam

K ¢

| P54~ QL4 9 |

- In the same set of the axes but in the rest system KY of the
hyperon '

| 1 |
Pt %’ Do (O’Q7O)f)s‘(q.x"3 )=

)

i PR (12)
=\¥T/2g +1 Y1 (R,0Q¢,q). -~

The.difference of the relativistic correlation E;(ﬁ)?) ffom
the nonrelativiétic 1s in generdal the same: substituting /12/
into /7/ we obtain the correlation 5&((9) in the angle O vet-
ween the direction _?; of the deca& product emission and thé

-
vector obtained by rotating th at the angleEQ around the
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vector [?&(k ?#Y’] /l.e., in the plane of the reaction/. Thé -

" " nonrelativistic correlation had the same form but @ was the

- —s

angle between 1N and FL{-

113]

~Although the cbrrelation proposed by Adair (see-alsq

191 'aSSumes‘the>enefgies greater than those néar the thrqshold
1t does not change in the relativistic consideration: thefégses
when the hyperons aré emitfed at smaii angles to the direction of
tiie incident beam are used in Adair's method and then S = O.
Since the most general»cawe of the cascade a + b——c + 4,
¢ —~ e + T when ail the spins gfe arbitrary and the correlat-—.
ion is'dependént upon the‘ﬁnknoWn parameters is'of no practical
1nterest’we simply note without proving that the nonrelativistic
| form of the angular corrélation may b’evconserved° For thlis we must
find a parﬁicular aet of axes for each case 6f the cascade (using
measured angles of the direction of emission of the particle c).
The emergence angles of the aecay products of*C‘afe calculafed-'
in respect to this set of axes. The distribution over éuch recél—2 
culated angles has the old nonrelativistic form.
of cduiSe, to make‘up for it, the prescription for the‘

construction off the angular ¢orrelation is changed.
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Appen d‘i b e

1, fﬁe expression of § in terms of M“V and »'PH °
Let & 'be the rest mass of the partlcle and ur‘dpa+3£?
e

—Mh:.[%x P] +5

- = - [PXS]
N:’ZW"LP/EM )

N
e
. e
1
s

The fogur vector l’}; /an ,uv(a‘?. JuvPA f
( quvrh 1s the completely antisymmetrical tensor of the

fourth rank, g,eaq-<1 ) then has the form:

P25, RS . @
thing that (T:fﬁ)::ur(g-f5) ; we find from (4.2) -
’..,,"”['_,’"\ _ I -a»—-—»- —»—~ ‘ 4.3
S="/% - re T PP (8.3)

All these operatoriequationé ought to be understood in the
momentum representationo '

From the secondyrelatibn in /2.1/ we obtain now

B S o
Tw :ﬁi—lp/g_w _Lpxrl (8e4)
M+ )

‘2. The vector S in the new system K, which moves
relative to KS with the velocity ﬁ (in the units of the
veloocity of'light) may be found now in the following way. |

Substituting into thé‘right and into the left sides of

[11]

the following expres®sions /see s § 18, formula (25)/
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::ﬁ{u‘: nid xp P/l}

ST

"o XP{ /-G ”} TR e

—~

‘the. expressions (A:2) of. I ana: ' in: terms of s 3 Ppi7"
and S g PP' respectively and . substituting for Pp_their ex—
pressions. throggh Pr /which have the same form /A 5/) we' ob—
tain the expressions of S throggh~ S .vFirst of all we as-
certain that s if the- linear combination of’ veotor 7§ 515’ and.P
A\ It means that the: vector S is ‘obtained: from S by means of "
"theirotation.aroundfthe axissperpendioularfto. ?; and ?z
There remains:only*tOffind:outitheimagnitudejand;the’Signnot“'
theiangle»of‘the»rOtationﬂaroundfthiS'axis. For“this:we’chooseﬂi,
a convenient set of: the- spatial axes /it is- clear that the angle
of the rotation must not depend upon the choice of the: axes/ 3
'i“P gnynlp F] . . The rotation,of{acvector around‘the~

axls Y contraclockwise at an angle 2 ;mustfhave the form .

5, =C05Q5, +5inRS, -

4 §_£=-sm525,<«oos9? 5. . | (4.6)
. ) ~,i Q

; o v e >~ : ; o
Representing the expression S through‘ S(in the~chosen set of‘
the axes) in the form of (A.6) and finding the coefficnet which
has Sv in the: expression for sx(as one-. having the simplest form/ we:

',obtain formula (6) in § 3 for sinS? .:
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