

206

6 K14

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем ВЫЧИСЛИТЕЛЬНЫЙ ЦЕНТР

Ю.М.Казаринов, В.С.Киселев, И.Н.Силин

P - 1206

ФАЗОВЫЙ АНАЛИЗ НУКЛОН-НУКЛОННОГО РАССЕЯНИЯ

при энергии 147 то эв поэта, 1963, тус, вз с 637-642. Ю.М.Казаринов, В.С.Киселев, И.Н.Силин

į

P - 1206

63

ФАЗОВЫЙ АНАЛИЗ НУКЛОН-НУКЛОННОГО РАССЕЯНИЯ ПРИ ЭНЕРГИИ 147 М ЭВ

Объединенный инститалых исслевования отпалиотала

Дубна 1963 г.

1814/2 40

• 1

Со времени выполнения фазового анализа нуклон-гуклонного рассеяния при энергии 147 Мэв в литературе появилось несколько работ, заметно пополнивших наши сведения относительно характернстик *пр* и *pp* -рассеяния при этой энергии^{/1-5/}. Следует заметить, что новые данные достаточно удовлетворительно ложились на кривые, рассчитанные по фазовым сдвигам единственного решения, полученного ранее^{/8,7/}. Однако желание уменьшить ошибки фазовых сдвигов заставило авторов использовать дополнительную информацию и уточнить ранее найденное решение. Это интересно было сделать, в частности, также и для того, чтобы более точно выяснить насколько хорошо результаты фазового анализа согласуются с фазовыми сдвигами, найденными иными путями^{/8,9,10/}. К сожалению, фазовый анализ Перринга^{/3/}, выполненный сравнительно недавно, был проведен без вычисления ошибок и не давал однозначного ответа на этот вопрос.

Данные, использованные для проведения фазового анализа, приведены в таблице 1. В результате анализа произведено уточнение фазовых сдвигов при ℓ_{mex} =3, когда амплитуда нуклон-нуклонного рассеяния берется в одномезонном приближении, начиная с моментов ℓ =4 и выше. Найдено решение при ℓ_{max} = 4.

Измеренная величина	Энергия, при которой ве- лись измере- ния /Мэв/	ЧИСЛО ТОЧЕК	литера- турный источн.	примечание	
σ pp	I 47	21	II		
Р _{рр}	I4 7	I4	II ·	Данные,	
D _{pp}	147, 143	9	12 ,13	использо- ванные ранее /6/	
R _{pp}	140 , 142	14	I4 , 5		
σ	156	23	16		
P _{np}	I43	8	17		
App	139	6	I		
A pp	I4 3	6	2		
R	140	I	3	Новые	
Apn	140	5	4	данные	
R	I40	5	4		
P _{pt}	140	12	5		

Табляца 1

¢

Рассчитаны кривые для экспериментально измеряемых величин / рис. 2-5/ и элементы матрицы перехода. Рассмотрена устойчивость решений при небольших измерениях эффек-

З

тивной энергии /147-143/ Мэв /. При $l_{mex} = 3$ производился также поиск решений при случайных смещениях найденного решения по фазам S , Р и D -волн на $\div 5^{\circ}$ и по фазам F -волн на $\div 2,5^{\circ}$. Новых решений при этом найдено не было.

Результаты в пределах ошибок согласуются с результатами анализа, ранее выполненного авторами /6/, также, как и с результатами Перринга /3/. Обнаружена чрезвычайная устойчивость решения при переходе от $\ell_{mex} = 3$ к $\ell_{mex} = 4$, как сами фазовые сдвиги, так и их ошибки при этом в подавляющем большинстве случаев практически не меняются / таблица 2/. Решение устойчиво и при небольших изменениях энергии /147-143 Мэв /. Отношение $\frac{\chi^2}{\chi^2}$ = 1,24 при ℓ_{max} = 3 и $\frac{\chi^2}{\pi^2}$ = 1,04 при ℓ_{max} = 4. Константа связи t^2 = 0,056 ± 0,006 и 0,060 ± 0,009 при ℓ_{max} = 3 и 4, соответственно. Здесь следует заметить, что при проверке программы, составленной ранее для выполнения фазового анализа на электронной счетной машине, в одной из формул, была обнаружена ошибка, которая приводила к небольшому завышению константы связи^{X/}. Для получения правильных значений f² приведенные в работах^{/6,18/} величины константы связи необходимо умножить на $(1 + \frac{T}{2m})^{\frac{1}{2}} (1 + \frac{T}{m})^{-1}$, где m -масса нуклона, T -кинетическая энергия. После исправления для f² в наборе 1 получаются следующие значения: 0,070 + + 0,008: 0,069 ± 0,005: 0,073 ± 0,007 для l mex = 3 при энергиях 95, 210 И 310 Мэв, соответственно. Среднее значение f² в указанном интервале равно 0,067 + 0,003 и, таким образом, в предположении, что масса виртуального мезона равна 140 Мэв, слегка отличается от 0,08. f = 0,08 соответствует несколько большему значению массы виртуального мезона / ≈ 150 Мав / /16/.

Сравнение результатов, приведенных в таблице 2, с фазовыми сдвигами, найденными Брайтом и др.^{/8,9/} при экстраполяции первого решения Стаппа^{/19/} с энергии 315 М эв в сторону меньших энергий, так же, как и с фазовыми сдвигами, рассчитанными по потенциалам Хамады- Джонсона^{/10/}, показывает, что полученное решение заметно отличается от результатов этих работ. Если различие в фазовых сдвигах волн с высокими орбитальными моментами можно, по-видимому, в некоторой степени, объяснить разными способами использования одномезонного приближения /OPEC/^{XX/}, то различие в S и P - фазах вряд ли обусловлено указанной причиной. Как нам кажется, различие в значениих δ_{3} , в частности, может, по-видимому, быть связано с разными величинами параметра смешивания $\epsilon_1 / \epsilon_1 = 5,0$ в работе Брайта и др.^{/9/}; 3,9 в работе Хамады-Джонсона^{/10/} и -0,93 ± 1,1 в данной работе /.

Следует заметить, что после уточнения фазового анализа при энергии 147 Мэв стало ясно, что энергетическая зависимость параметра смешивания ϵ_1 , полученного при прямом фазовом анализе в интервале энергий 40-310 Мэв, отличается от зависимости

^{x/}T.к. константа связи при поиске решений варьировалась, эта ошибка не влияла на величину других параметров.

xx/Изменение l с трех до четырех, правда, практически не меняет фазовых сдвигов / табл. 2/.

Таблица 2

ļ

009
08
343
523
016
231
59
66
/87
242
295
952
[46
332 .
363
227
102
303
555
[47
[28

€.

 $\epsilon_i(T)$, полученной в указанных работах группы Брайта и Хамады-Джонсона, значительно больше, чем разрешают ошибки /рис.1/. ϵ_i Брайта и Хамады-Джонсона монотонно возрастает с энергией, оставаясь все время положительным. Параметр смешивания, найденный в работах по фазовому анализу, положителен при энергии 300 Мэв, быстро уменьшается при снижении энергии, проходит через нуль при энергии, близкой к 150 Мэв. При меньших энергиях ϵ_i определен менее достоверно, но отрицательные значения ϵ_i , по-видимому, более вероятны. Так, например, при энергии 95 Мэв из пяти низкорасположенных

решений 161 только одно, соответствующее набору 2 Стаппа при Т = 315 Мэв, $\mathbf{x}^{\mathbf{x}}$ по имеет с, >0 . При энергии 40 Мэв, где экспериментальные данные еще более бедны. можно найти решение с положительными (1 . Однако это решение дает положи- C_{nn}^{np} на угле 180°, и, следовательно, противоречит тому, что на тельную величину для углах, близких к 180°, наблюдается преимущественно синглетное рассеяние ^{/6,20/}. Это могло произойти вследствие того, что, опираясь при различие в поведении ε, определении с. (т) в области малых энергий на параметры дейтрона /нефизическая область на оси энергии/, авторы работ , по-видимому, считают, что с ростом энер- ϵ_t монотонно возрастает, как это должно быть при T $\rightarrow 0^{/21/}$. Последнее, ГИВ возможно, в области энергий 10-20 Мэв не имеет места.

В заключение авторам приятно выразить благодарность С.М. Биленькому, Л.И.Лапидусу, А.А.Логунову, Р.М.Рындину и Л.Л.Неменову за обсуждение вопросов, затронутых в работе.

Литература

- 1. S.Hee, R.Wilson. Prog. Report, Harvard, June 1962.
- 2. O.N. Jarvis, B.Rose, J.P. Scanlon, E. Wood. Report AERE-R 4159, Harwell 1962.
- 3. J.K.Perring. Report AERE R 4160, Harwell 1962.
- 4. R.A.Hoffman, J.Lefrancois, E.H.Thorndike, R.Wilson. Phys. Rev. 125, 973 (1962).
- 5. G.N.Stafford, G.Whitehead. Proc. Phys. Soc. 79, 430 (1962).
- 6. Ю.М.Казаринов, И.Н.Силин. ЖЭТФ 43, 1385 (1962).
- 7. Ю.М.Казаринов, И.Н.Силин. препринт Р-1011, Дубна 1962 г.
- 8 G.Breit, M.H.Hull, Jr., K.E.Lassila, K.D.Pyatt. Phys. Rev. 128, 826 (1962).
- 9. H.H.Hull, Jr., K.E.Lassila, H.M.Ruppel, F.A.McDonald, G.Breit. Phys. Rev. 128, 830 (1962).
- 10. T.Hamada, I.D. Johnson. Nucl. Phys. 34, 382 (1962).
- 11. I.Palmieri, A.M.Cormack, N.F.Ramsey, R.Wilson. Ann. of Phys. 5, 299, 1958.
- 12, G.F.Hwang, T.R.Ophel, E.I. Thorndike, R.Wilson. Phys. Rev. 119, 352 (1960).
- 13. R.Rose. Proc. 1960 Ann. Intern. Conf. at Rochester, 1960, p.100
- 14. L.Bird, D.N.Edwards, R.Rose, A.C.Taylor, E.Wood. Phys. Rev. Lett. 4, 302 (1960).
- 15. E.H.Thorndike, I.Lefrancois, W.Shaer, R.Wilson. Phys. Rev. 120, 1819 (1960).
- 16. W.H.Hess. Rev. Mod. Phys. 30, 368 (1958).
- 17. A.F.Kuckes, R.Wilson. Phys. Rev. 126 1226 (1961).
- 18. Ю.М.Казаринов, И.Н.Силин. ЖЭТФ 43, 692 (1962).
- 19. H.P.Stapp, T.I.Ypsilantis, M.Metropolis. Phys. Rev. 105, 302 (1957).
- 20. M.H.Mc Gregor. Phys. Rev. 123, 2154 (1961).
- 21. J.M.Blatt, L.C. Biedenham. Phys. Rev. 86, 399 (1952).

Рукопись поступила в издательский отдел

8 февраля 1963 года.

i

величин от угла рассеяния. Коридор ошибок в том случае, когда ошибки превышают 5%, показан вертикальными отрезками.

 Экспериментальные данные, по которым проводился фазовый анализ.

Рис. 4. Расчетные зависимости экспериментально измеряемых величин от угла рассеяния. Коридор ошибок в том случае, когда ошибки превышают 5%, показан вертикальными отрезками.

Т - Экспериментальные данные, по которым проводился фазовый анализ.

Рис. 5. Расчетные зависимости экспериментально измеряемых величин от угла рассеяния. Коридор ошибок в том случае, когда ошибки превышают 5%, показан вертикальными отрезками.

۰.

5- Экспериментальные данные, по которым проводняся фазовый анализ.

Замечание при корректуре

Для окончательного выяснения того, насколько хорошо фазовые сдвиги, найденные Брайтом и др. и Хамадой и Джонсоном, удовлетворяют экспериментальным данным, было проведено уточнение фазовых сдвигов, приведенных в работе Хамады и Джонсона^{/10/}, по данным таблицы 1. В результате получено решение, фазовые сдвиги которого в порядке, указанном в таблице 2, соответственно равны: 0,059 + 0,009

18,0 <u>+</u> 0,6,	31,6 <u>+</u> 0,8 ,	6,8 <u>+</u> 0,5,	-24,2 <u>+1,8</u> ,	-18,0 <u>+</u> 0,2,	
14,8+0,2	-3,7 <u>+</u> 2,36,	-18,6 <u>+</u> 0,7,	5,7 <u>+</u> 0,2,	19,2 <u>+</u> 1,2,	-3,9 <u>+</u> 1,2,
-2,7 <u>+</u> 1,4,	-0,2 <u>+</u> 0,3 ,	ر 0,2 <u>+</u> 0,2 ر	ر 1,6 _+0,2	0,2 <u>+</u> 0,2 ,	3,3+1,1,
-3,7+0,9,	0,4+0,1,	2,5+0,7,	-0,2+0,5. Реше	ние имеет е	>0 . Фа-
зовые сдв	иги близки к	приведенным в т	аблице 2. Однако за	иетные в двух	трех случаях
отклонения	приводят к з	начению χ^2 , в	ероятность появления	которого не п	ревышает нес-
кольких пр	оцентов.				

<u>5</u>: