1-117

V.G. Grishin,
I.S. Saitor,
I.V. Chuvile。

1.958

Experimental data on $\pi-p$ and $p-p$ scattering at the energies above 1 BeV in the lab. system have been analysed considering the nucleon as an optically uniform sphere with sharp edges.

It is shown that the data presently available may be described by means of the sphere of the radius $\mathrm{R}=(1,08 \pm 0,07) \times 10^{-13} \mathrm{~cm}$ which is independent either of the type of the colliding particles or of their energy. The optical characteristics of this sphere are evaluated. The contributions from the imaginary and the real parts of the scattering amplitude are estimated。

One may assume that for the $1,37 \mathrm{BeV}$ pions and for the proton energies above ~ 5 BeV the contribution from the real part of the soattering ampitude is small and the analysis of the scattering phenomena at high energies may be carried on using either the general scattering theory without taking tnto account the spin characteristics of the interaction as it was done in $|5-8|$ or using the model of a purely absorbing sphere.

The possible behaviour of $\pi^{-}-p$ and $p-p$ interaction cross sections with the increase of the energy of the colliding particles is discussed.

```
Introductilon
```

In 1949 Fernbach, Serber and Taylor |l| used the optical analogy in the analysis of the high energy neutron scattering from the nuclei.

The nuclear matter was regarded as a refracting and absorbing medium. When the neutron passes through this medium its wave vector which is equal to k_{o} outside the nucleus be... comes equal to the complex value $k=h_{0}+k_{1}+i k_{k}$
where
K - is the absorption coefficient,
k_{1} - is the change of the real part of the neutron wave vector. Then by analogy to the optics the nuclear matter may be oharacterized by the compdex refractive index $n=\frac{k_{0}+k_{1}+i k_{0}}{k_{0}}$ Such an optical model of the nuoleus was
widely used in the analysis of the experimental data on the the
scattering of fast particles from nuclei and gave a lot of valuable results.

The optical model formalism of the nucleus was further used in the analysis of pion and proton soattering from protons at 1 BeV and above. $|2-4|$ such a consideration may be.called the optical nucleon model. Sog the analysis of Jl-p soattering at $1.37 \mathrm{BeV} \mid 31$ shows that the experimental data may be described by the nucleon model as a uniform sphere of the radius $R=$ $=(1,18 \pm 0,1) \cdot 10^{-13} \mathrm{~cm}$. This model is characterized by $K=0,67 \mathrm{x}$ $x 10^{13} \mathrm{~cm}^{-1}$ and $k_{1}=0$, i。e., it is a purely absorbing sphere. The data on $p-p$ scattering for $0,8 \mathrm{BeV}, 1,5 \mathrm{BeV}$ and $2,75 \mathrm{BeV}|2|$ have been analysed in the same way. The authors of this paper assumed the proton to be a uniform, purely absorbing
sphere ($k_{1}=0$) with the radius R which is independent of energy, and considered the incoherent scattering to be insignificant. Under the above mentioned assumptions this sphere is characterized bj $\mathrm{R}=0,93 \cdot 10^{-13} \mathrm{~cm}$ 。 and $\mathrm{K}=4,3 \times 10^{13} \mathrm{~cm}^{-1}$, $3,7 \times 10^{13} \mathrm{~cm}^{-1}$ and $2,7 \times 10^{13} \mathrm{~cm}^{-1}$ at the proton energies of $0,8 \mathrm{BeV}, 15, \mathrm{BeV}$ and $2,75 \mathrm{BeV}$ respecilvely. It follows from these results of the analysis that the proton is more "traneparent" for a pion than for a proton and the region of $\pi-p$ interaction is larger than that of pop interaction.

Recently the data on elastic $p-p$ scattering at 2.24 BeV , $4,40 \mathrm{BeV}$ and $6,15 \mathrm{BeV}^{|4|}$ have been published which were analysed from the standpoint of a rather simple concept of the optical model which regards the nucleon as a disk with different parameters. It appeared that a certain choice of the parameters of such a disk has led to the agreement with the experiment.

In this paper an attempt to analyse all the available experimental data on $p-p$ and $\pi-p$ scattering has been taken In the Bev- energy region on the basis of the nucleon optical model. The analysis was performed under the assumption that:
a) the interaction region is determined by the optical uniform sphere with sharp edges.
b) the incoherent elastic scattering may be neglected.

In the light of the parformed anelysis some items of using the general scattering formalism for the solution of the problem under consideration have been examined by analogy to ${ }^{|5-8|}$.
2. Experimental Data and Formalae used in the Analysis

The data including the magnitudes of the total cross sections (σ_{t}), of elastic scattering cross sections (σ_{t}) and inelastic scattering cross sections (σ_{l}) for $p-p$ and $\pi-p$
interncticas at high exergies are giver in Table lo The values of the wave lergth of the noldent partiole in the centre of meso sytem aregiver in the gecond olvan of the Pableo Phe Values of G_{i} fer $E_{\mathrm{p}}-4040 \mathrm{BeV}$ and $\mathrm{E}_{\mathrm{p}} 6_{2} 15 \mathrm{BeV}$ are not messured experimentailyo They are obtained om the basis of the spoulatices set fort 12 [8], othese maghtudes becm to ba quite reascmabloo

 at 50. BeV [12], Morecrer, es the calouitation shows the resulte oi the anelyses are deperdert uper the ckange of c, rather weany in the wide Pelue liturvilloeg the oboloc of the magnitude of the Ineiastie arats soction ismot cxiticalo

Bestas the vailues of the charateristios of p-patd J-p
 piow and proter elastio seatterigg or protors fcr the entrgies
 che cf the orltexia that the ckiloc of the paranoters of the syster descriting the seadering is correveo

As is kam if we negleat the incherem elastio sattering and
 the the zeatewing exces ecturns ara deteminea by the parameters

 Ixstic scattering

$$
\begin{equation*}
\sigma_{l}=\pi F^{2}\left\{1-\frac{1-(1+2 k R) \cos (-2 k B)}{2 h^{2} R^{2}}\right) \tag{I}
\end{equation*}
$$

the total cross section of the elastic scattering

$$
\begin{equation*}
\sigma_{d}=\pi R^{2}\left\{1+\frac{1-(1+2 k F) e^{-2 k R}}{2 k^{2} R^{2}}\right. \tag{2}
\end{equation*}
$$

$-\frac{\left(\frac{1}{4} k^{2}-k_{1}^{2}\right)+e^{-k R}\left[2 k_{1} R\left(\frac{1}{4} k^{2}+R_{1}^{2}\right)+k k^{2}\right] \sin 2 k_{1} R-e^{-k R}\left(\frac{1}{4} k^{2}-k_{1}^{2}\right)+K R\left(\frac{1}{4} k^{2}+k_{1}^{2}\right) \cos 20 R k_{1} R}{\left(\frac{1}{4} k^{2}+k_{1}^{2}\right)^{2} R^{2}}$
the differential cross section of the clastic scattering

$$
\begin{equation*}
\frac{d \sigma}{d \omega}=\mid f(\vartheta)^{2}, \tag{3}
\end{equation*}
$$

where the scattering amplitude is determined by the expression

$$
\begin{equation*}
f(v)=i k_{0} \int_{0}^{R}\left[1-e^{\left(-k+2 \iota k_{1}\right) s}\right] y_{0}\left(k_{0} \rho \sin v\right) \rho d \rho ; \tag{4}
\end{equation*}
$$

in which ts the scattering angle, $s=\sqrt{R^{2}-\rho^{2}} \quad$ and

$$
y_{\rho}\left(R_{0} \rho \sin v\right) \quad-x^{2} \text { are the zero -order of Bessel's }
$$ function. Rather a clumsy formula 2 is obtained for the cross section of the elastic diffraction scattering. It is known, how ever, that by opaque $\frac{G_{0}}{\pi R^{2}} \leqslant 0,9 \quad$ corresponding to $k R \leqslant 2 ; 3$ and $\frac{k_{1}}{k}<1$ the expression for the diffraction scatter. ing cross section may be reduced to the simpler form [9]:

$$
\begin{equation*}
\sigma_{d}=\sigma_{d}\left(k, k_{1}=0\right)\left\{1+4\left(\frac{k_{1}}{k}\right)^{2}\left[1-\frac{1}{18}(k R)^{2}+\cdots\right]\right\} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{d}\left(K_{1}, K_{1}=0\right)=\frac{\pi R^{2}}{B^{2}}\left\{B^{2}-14-2(1+B) e^{-B}+8 e^{-B / 2}(2+B)\right\} \tag{6}
\end{equation*}
$$

and $B=2 k R$, This gives the result which is different from that obtained in expression (2) not more than by 1\%. Since the experimental data satisfy the abovementioned requirements the use of
expression (5) is completely finstified. The given expressions are correct at the energies when in the centemofmassusystem of the colliding particles the condition $\lambda \ll R$ is fulfilled.
3. The Parameters of the Nucleonoptical Model for the Description of Scattering at High Fnergies

Making use of the data given in Table I and usivg the welatLons (1) and (5), the sets of the parameters of the nugtyon opical model have been obtained with the help of which one could describe the known results of the measurements of the cross sectu ions for high energy interactions of pions and protons with prow tons. Each set of the parameters was determined both for the mean values of the cross sections and for the extreme ones in accordance with the accuracy of their determining by the errors of experimental data. The radus of the interaction sphere was token as an original magnitude for the set of the parameters. The relation between the cross sections of elastic and inelastic soatter$\left(\sigma_{d}=\sigma_{i}\right)$
ngade it possible to determine immediately the lower Imit; of the interval of the considered radii by the values somewhat greater than the radius for the "black" sphere. The minimum values. of R were determined from the dependence of the opacity $\frac{\sigma_{i}}{\pi R^{2}}$ upon $K R$ and upon $\frac{G_{d}\left(K_{1} k_{1}=0\right)}{\pi R^{2}}$, They are given in lable II.

However, the data about the elastic cross sections and inelastic cross section are not sufficient for choosing one or another set of the parameters of the optical model. Additional experimental data, for instance the results of the measurements of differential cross
sections of elastic scattering are necessary for this. Calculatw. ing the differential cross sections of elastic scattering for each set of the values R, K and k_{I} according to the formulae (3) and (4) one may prefer either one or another set by means of comparing the calculated angular distributions of elastic scattering with those measured experimentally. The némerical integration was performed using Simpson's formula with the accuracy $\sim 1 \%$ for small angles and some percents for large scattering angles. While making these calculations it became clear that the changes of O_{i}. by $20 \% ; R$ and σ_{d} being constant, lead to the changes in the magnitudes of $\frac{d \sigma}{d \omega}$ within the accuracy of numerical integration. Thus, in these calculations the chofce of the values of σ_{l} is not critical.

The value of the radius of the interaction sphere R being fixed the angular distributions of elastic scattering have been calculated for the extreme values of $\quad \sigma_{d} \ldots$ Thus, the region of the possible angular distributions for the intermedia te values of σ_{d} has been determined in accordance with the accuracy of experimental data concerning this magnitude. The results of the calculations and their comparison with experimental data are given below.
a) p p scattering at $1,5,2,24$ and $2,75 \mathrm{BeV}$

For 1,5 and 2,75 BeV the experimental results have been obtained using the diffusion hydrogen chamber [3] . These data have a poor statistical accuracy and because of this the experie mental angular distributions are described equally satisfactorily by the nucleon optical model with the parameters changing in wide limits (see Fig。 la and b)。

However, the available counter data $[4]$ for $E_{p}=2,24 \mathrm{BeV}$ permit to determine the limits of the possible values of the g he re radius for this energy region. It appears that the uniform shere may have the maximum radius $1,15 \times 10^{-13} \mathrm{~cm}$ since $\mathrm{R}=1,20 \times 10^{-1}$ Ga leads to the explicit discrepancy with the results of the experiments (see Fig. Ra). It should be noted that for $R<1,15 \times 10^{-13} \mathrm{~cm}$ the nucleon optical model agrees with the experiment only for the ane Elis not more than 30 . The minimum radius for $E_{w}=2,24$ Bed does not contradict to the value $0,93 \times 10^{-13} \mathrm{~cm}$ which the authors of the paper give for the energies of 1,5 and 2,75 Bey, The purely absorbing sphere ($K_{1}=0$) may have only the radius R less than $1,0 \times 10^{-13} \mathrm{~cm}$ 。

It is necessary to note that some suggestions by Rarity on the application of the nucleon optical model for pop collisions at $\mathrm{E}_{\mathrm{p}} \approx \mathrm{I} \mathrm{BeV}$ are correct to some extent also at the energies under consideration
b) pop scattering at 4,4 and $6,15 \mathrm{BeV}$

Experimental data for $\mathrm{E}_{\mathrm{p}}=4,4 \mathrm{BeV}[4]$ if $v<30^{\circ}$ are described satisfactorily by the uniform sphere with the radius from $0,95 \mathrm{x}$ $\times 10^{-13} \mathrm{~cm}$ up to $1,15 \times 10^{-13} \mathrm{~cm}$ since the values $\mathrm{R}=0,92 \times 10^{-13} \mathrm{~cm}$ and $\mathrm{R}=1,2 \times 10^{-13} \mathrm{~cm}$ lead to explicit discrepancy with expertmental results (see Fig. $2 b$ and $3 a$)。

The purely absorbing sphere may have the radius R not more than $1,10 \times 10^{-13} \mathrm{~cm}$.

The measured angular distribution of the elastic scattering if $E_{p}=6,15 \mathrm{BeV}$ is described satisfactorily by the uniform sphere with the radius R from $1,0 \times 10^{-13} \mathrm{~cm}$ up to $1,15 \times 10^{-13} \mathrm{~cm}$.

The discrepancy with the experiments for $R=0,95 \times 10^{-13} \mathrm{~cm}$ and for $R=1,20 \times 10^{-13} \mathrm{~cm}$ is seen in Fig. 3 b and 2 c 。 At all possible values of the radius the sphere may be purely absorbing at this energy.
c) $\pi-p$ scattering at $E \pi=1,37 \mathrm{BeV}$

The available experimental data on pion-proton scattering [${ }^{3}$] are in good agreement with the representation of a nucleon as a uniform sphere the radius of which changes within a wide intervalo We would remind that these data are obtained with the use of the diffusion chamber and have an insufficient statistical accuracy. Due to this the restriction of the region of R values were made using the dispersion relations which point out that the contribution from the real nart of the scattering amplitude to the elastic scattering cross section at 0° at $E_{\pi} \quad 1,37 \mathrm{BeV}$ is of the order of 7% [10]. Appired to the optical model of the uniform sphere it means that the reatus of the sphere R may have the values from 1,01 $\times 10^{-13} \mathrm{~cm} u p$ to $1,25 \times 10^{-13} \mathrm{~cm}$ 。
4. On the Applicability of the Nucison optical Model with $\dot{K} K_{1}=0$

Attempts have been recently made to analyse the scattering in the $B e V$ - energy-region from the standpoint of the general scattering theory. $[5-8]$. These works. were based upon the assumptions that the imaginary part of the scattering amplitude (see, for instance [14] $)_{\phi}$

$$
\begin{equation*}
f(v)=\frac{1 \lambda}{2} \sum_{e=0}^{\infty}(2 e+1)\left(1-\beta_{e}\right) \mathcal{P}_{e}(\cos v) \tag{7}
\end{equation*}
$$

is much greater than the real one；that the considered scattering characteristics are independent of the spins of the interacting particles and the＂charge－exchange＂effect in $\pi \rightarrow$ p scattering is small。 In formula（7）方 ℓ is the orbital momentum，$\rho_{e}(\cos \vartheta)$ are the Legendee polynomials．$\beta_{e}=\exp .\left\{2 i \eta_{e}\right\}$ ，where η_{e} is the phase shifts．The relations obtained under these assumpt－ ions are very simple and convenient for analysing the scattering at high energies。 This fact stimulated to draw our attention to the problem about the limits of the application of these assertio ions．This was considered in this section．The parameters of the optical model which does not also take into account the dependence of the considered scattering characteristics upon the spins are interrelated with the scattering phase in the following way［I］

$$
\begin{equation*}
\eta_{e}=\left(k_{1}+\frac{1}{2} i k\right) s_{e} . \tag{8}
\end{equation*}
$$

Here $2 \mathrm{~s}_{\mathrm{e}}$ is the range length of an incident particle with the orbital momentum $\hbar l$ in the nucleon mattor．

The oase under consideration when k_{i} is equal to zero indicates． that the phase shift η_{e} must be purely imaginary and the magnituw de β_{e} equal to $e^{-k j e}$ must be real and positive for any form of the winucleon matter distribution．That is，the case $k_{1}=0$ in the nucleon optical model is equivalent to the assumptions made in the abovementioned consideration of the scattering from the stanc－ point of the general scattering theory。 let us make a simple assumpt－ ion when considering the limits of the applicability of the cese $K_{1}=0$ ．Since it can be seen from the experimental data that the differential cross section of the elastic interaction $\frac{d G}{d \omega}$ is a
monotonus function, tending to zero one may assume that if $\frac{d \sigma}{d \omega}$ is equal to zero for a certain angle v_{0} then for all $v>v_{0}$ it is equal to zero.

Then $f(\vartheta)$ will be a positive function for all angles and β_{e} is simply expressed through the measured differential cross section of elastic scattering:

$$
\begin{equation*}
\beta_{e}=1-\frac{\int_{0}^{\pi} \rho_{e}(v) \sqrt{\frac{d \sigma}{d \omega} \sin v d v}}{7} \tag{9}
\end{equation*}
$$

We have calculated β_{0} using formula (8) for all the discussed energies of the interaction and making use of the analytic form $\frac{d \sigma}{d \omega}$ from [8]. It was assumed that the angular distributIon is known with the accuracy of $\pm 15 \%$ for all angles. The results of the calculations are given in Table III。

Thus the performed consideration of $p-p$ scattering which does not concretize the form of the interaction region leads to the negative values of β_{o} for the energies below $\sim 5 \mathrm{BeV}$.

It means that the original suggestions of this consideration are not correct and the phase shift is not purely imaginary at the energies below 5 BeV ioe.g the nucleon optical model with $K_{1}=0$ is not applicable in the frame of the made assumptions.

For the energy $E_{p}=4,4 \mathrm{BeV}$ the application of these assumptions seems to be possible for the minimum values of σ_{d}.

In the terms of the uniform sphere model the purely absorbIng sphere must have $R \geqslant 1.0 \times 10^{-13} \mathrm{~cm}$.

It follows from the abovementioned consideration that for $E_{p}=\frac{\pi}{6}, 15$ gev the assumptions both about $K_{1}=0$ and about the spin independence of the scattering characteristics for the case of the maximum possible value of σ_{d} are not correct. Thus,
the radii below $I_{\varepsilon} 0 \times 0^{-13}$ an in the purely absorbing sphere are forbidden

An analogous consideration of $\pi-p$ scattering at $E_{\pi}=1,37 \mathrm{BeV}$ gives $\beta_{0}-010,08$. It means that the assumption about the absence of the potential scattering $\left(k_{1}=0\right)$ for pions at this energies does not contradict to the experimental data.

5. The Discussion of the Results of the Analysis

At the energies $E_{p}=1,5$ 2,75 ReV the comparison of the theoretical calculations for the model of the purely absorbing sphere with the experimental angular distributions does not give any evidence that it is not applicable due to insufficient accuracy of the experimental data However, this comparison also shows that there are no grounds to suggest that the region of plon-proton interaction is greater than that of proton -proton interaction

The authors of the paper [4] have shown on the basis of the experimental data that the "for m-factor" is rather probably independent of the energy at 2,24, 4,4 and 6,75 Bel for the optical model taken in the most general form When passing to the concrete form of the optical model of the nucleon the independence of the mformfactor" upon the energy makes it possible to speak about the constantia or about the wack change of the radius of the uniform sphere as the most probable case. In view of this the choice $R=0,93 \times 10^{-13} \mathrm{~cm}$ for the energies $\mathrm{E}_{\mathrm{p}}=1,502,75 \mathrm{BeV}$ becomes hardly probable since at $E_{p}=6,15 \mathrm{BeV}$ the minimum radius describing the experimental data becomes equal to $1,0 \times 10^{-13} \mathrm{~cm}$.

More general consideration based on a smaller number of as-
sumption s which follow from the eqerimeatal data (see section IV) is a convincing argument against the analysis of $p-p$ scatter e ing in the frame of the purely absorbing sphere model at the proton energy being below $\sim 5 \mathrm{BeV}$ in the lab, system:

All the experiment al data on elastic $\pi-p$ and x soattoro ing available at high energies may be satisfactorily described by the nucleon optical motel, ti f the interaction region will be areseated in the form of the un form sphere with sharp edges. The radins of the sphere may the the same for all the considered energies and for both modes of interaction. The magnitude of this radius is within the limits from $1,01 \times 10^{-13} \mathrm{~cm}$ up to $1,15 \times 10^{013}$ on . The corresponding values of inf absorbing coefficient K as well as of the contribution from un real part of the scattering amplitude to the elastic cross sectucu are given in Table IV for

$$
R=(1,08 \pm 0,07) \times 10^{-13} \mathrm{~cm}
$$

It can be seen from table IV that the uniform sphere becomes "lighter" with the energy increase and approximates the purely abs sorbing one The satisfactory agreement with the experimental rec suits which to uniform sphere model gives if $\mathrm{k}_{1}=0$ for $\mathrm{E}_{\mathrm{p}}=6,15 \mathrm{BeV}$ and $\mathrm{E}_{\mathrm{J}}=1,37 \mathrm{BeV}$ reaffirms the suggestions about the possibility of making the analysts assuming that the mentioned energies the imaginary part of the scattering miltude $f(V)$ is consderakly grater that the wal one and the considered characterise ties of the scatterime er - independent of the spins of the interact. ing particles. Stope the stare mentioned assumptions are correct. thea for the analyele of ra pattering above 5 BeV one may make
use of the consideration like it was done in [8].
An analogous statement may be made on $\pi-p$ scattexing start $=$ Ing from a certain pion energy below 1,37 BeV. This boundary must be more specific by measuring $\pi-p$ scattering at smaller energies. Evidently (the knowledge of only the magnitudes σ_{i}, σ_{e} and $\frac{d \sigma}{d \omega}$ does not give the possibility of getting the complete data about the properifes of the scattering amplitule. It is necessary to have a mem re complete set of the experimental data. In particular the inrestigation of the polarization dfects might essentially clear up the problem under discussion.

The obtained value for the radius of the interaction region $R=(1,08 \pm 0,07) \times 10^{-13} \mathrm{~cm}$ which can be assumed to be indepeno dent neither of the energies of the interacting particles nor of their type corresponds to the model of the sphere with sharp edgeso It is known, howerer, that under the assumption of more "smearing" destrinutions (for instance a Gaussian one) of the nucle on matter the roof-mean-square radius of the interaction region will have the magnitude which is less than the mentioned one. Its concrete value wili be certainly dependent upon the form of the distributy ion accepted for the calculations. However, the various speculations point out that the value of the root-mean-square radius of the interaction region for $\mathrm{p}-\mathrm{p}$ and $\pi-\mathrm{p}$ scatterings will be close to the macnitude of the electromagnetiddimension of the nucleon, obtained from the measurnents of the electron scattering from the protons [15].

It is known that at high energies the oross section of pion and protion interactions with nucleons are tending to the constant limit because the nucleon dimensions are finite (we neglect the Coulomb interaction). Making use of the dispersion relations,
$P_{0} V$ ．Varilor $[16]$ has calculated the limiting value for the to－ tal cross section of pion interaction with the nucleons．It was found to be $\approx 30 \mathrm{mb}$ ．The total cross section is already equal to the limit one for the considered pion energy of 1,37 BeY。 There are some grounds that the values of elastic and inelastic cross sections of $\pi-p$ interaction will not change with the energy increase．As it became clear above the elastio cross secta ion at these energies may be considered as the consequence of the inelastic one。

CThe increase or decrease of the inelastic interaction will be resulted in the increase or in the decrease of the elastic scattering，respectively，that will lead to the change of σ_{t}（see， e．g．，fommulae（1）and（6））．

If the above mentioned considerations are correct then at $E_{\sigma_{i}} \infty_{\infty}, \sigma_{t}=30 \mathrm{mb}, \sigma_{i} \approx 24 \mathrm{mb}$
and $\sigma_{e} \approx(6+7) \mathrm{mi}$ ．
It is known for the nucleon－nucleon interaction that

$$
\sigma_{i}=(21+4) \mathrm{mB} \text { if } \quad E_{N}=50 \mathrm{BeV} \quad \text { It means that }
$$

the inelastic cross section changes slowly with energy As the above performed consideration has shown the elastic cross seote Ion of $p-p$ interaction at $E_{p}=6,15 \mathrm{BeV}$ may be interpreted as the consequence of the inelastic scattering．If the inelastic cross section of the interaction changes slowly or remains oonso tant with the energy the increase of the elastic cross section will be also approximately constant．Then，starting from the consideo rations set forth above one may expect that if $E_{p} \rightarrow \infty \quad \sigma_{i} \approx 24 \mathrm{mb}$ and $\sigma_{e} \approx 7 \mathrm{mb}$ at $\sigma_{t} \approx(30 \div 31) \mathrm{mB}$ ．

Thus, we arrive at thomalusion that at hish energies of the colliding particjes the total elastic and inclastic cross sections of pion ard nucleon interactsone with nucleons have ifentieal values.

We are rrateful to Isacva ToA and Shurtrova LoAof for their essistance in the numerical olculations.

> IableII

Table III

$$
\mathrm{T} \text { ableIV }
$$

Fig. 1 Solid curves show the region of possible angular distributions of elastic $p-p$ scattering in the centre-of mass-system for the values of the radius a) $R=1,3 \times 10^{-13} \mathrm{~cm}$ and b) $\mathrm{R}=1,2 \times 10^{-13} \mathrm{~cm}$.

- The dashed curves show the angular distributions calculated for the purely absorbing sphere of the radius $R=0,93 \times 10^{-13} \mathrm{~cm}$ for both energies. The experimental angular distributions are presented in the histogram[2].

Fig. 2 The solid curves show the region of the possible angular distributions of elastic pop scattertige in the centre-of-mass-system for $R=I, 10 \times 10^{-13} \boldsymbol{t H n}_{9}$ the dashed curves determine the region of angular distributions for $R=1,20 \times 10^{-13} \mathrm{~cm}$. Experimental points are taken from [4].

Fig. 3 Solid curves show the region of possible angular distributions of elastic pop scattering in the centre of-mass-system calculated with the help of the purely absorbing sphere model starting from the following data:
a) $\quad \sigma_{1}=24,2 \mathrm{mb} \quad \sigma_{d}=(9,7 \pm 1,5) \mathrm{mb} \quad \mathrm{R}=(0,97+1,05) \times 10^{-13 c}$
b) $\sigma_{1}=23,8 \mathrm{mb} \sigma_{d}=\left(7,5 \pm 1,5 \mathrm{D} \mathrm{m}=(1,0+1,13) \times 10^{-13} \mathrm{~m}\right.$

The dashed curves show the angular distributions calculated for the case of a purely absorbing sphere with the minimum radius:

$$
\begin{aligned}
& \text { a) } R=0,92 \times 10^{-13} \mathrm{~cm} . \\
& \text { b) } R=0,95 \times 10^{-13} \mathrm{~cm} .
\end{aligned}
$$

$$
\frac{d \sigma}{d \omega} \frac{m b}{\text { ster }}
$$

a) $E_{p}=1,5 \mathrm{Bev}$.

Fig. $1 a$
$\frac{d G}{d a} \frac{m b}{s t e r}$
b) $E_{p}=2,75 \mathrm{BeV}$.

Fig. 18.

$$
\begin{aligned}
& \frac{d 6}{d \omega} \frac{m b}{s t e r} \quad \text { a) } E_{p}=2,24 \mathrm{Bev} \quad \frac{d 6}{d \omega} \frac{m b}{\operatorname{stez}} \quad \text { 8) } E_{p}=4,408 \mathrm{or} \\
& \text { Fig } 2 a \\
& \text { Fig db } \\
& \text { c) } E_{p}=6,15 B e v
\end{aligned}
$$

$\because \frac{d \sigma}{d \omega} \frac{m b}{\text { ster }}$
a) $E_{p}=4,40 \mathrm{BeV}$

Fig. $3 a$
$\frac{d \sigma}{d \omega} \frac{m b}{s t e r} \quad$ B) $E_{P}=6,15 \mathrm{BeV}$.

Fig. 38
References
－
1．S．Fernbach，Ro Serber，ToB．Tayloro Phys。Rev．75， 1352 1949。

2．R．P．Shutt，AoM．Therndike et。al。 Phys。Revo 103，1489，1956．
3．L．M．Eisberg，RoM．Lea，et．al．Phys．Rev．97，797，1955。
4．B．Cerk，A．Wenzel，Ti．Causey，Physo Revo 107，859，195\％。
5．D．ITO and So Minami．Prog．Theor．Phys．14，198， 1955.
6．SoZ。Belenki JETP，30，983，1956．
7．D．ITO，T．Kebayashi，M．Yamazaks and So Minami Progo Theoro Phys．18，264，1957．

8．VoGo Grishin，IoS．Saitov JETP，33，N 10，1957。
9．HoA．Bethe and R．R．Wilson．Phys．Rev．83，690，1951．
1）．Re Cod，O．Piccioni and Clark．Phys．Rev．103，1082，1956．
11．FoF。 Chen，AoN．Shapiro et。all．Physo Rev．103，211，1956．
12．A．E．Brenner，Robert W．Wiliams，Phys．Rev．106，1020，195\％．
13．W．Rarita Phys．Rev．104，221，1956．
14．A．Akhiezer and I．Pomeranchuk＂Some Problems of the Theory of a nucleus＂GTTI， 1950.
15．E．E．Chambers and R．Hofstadter，Phys．Rev．103，1454，19\＄6． 16．PoV．Vavilov JETP，32 940，1957．

