

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

Г.Я. Коренман, Р.А. Эрамжян

P - 1160

УГЛОВОЕ РАСПРЕДЕЛЕНИЕ И ПОЛЯРИЗАЦИЯ ЯДЕР ОТДАЧИ ПРИ ЗАХВАТЕ ЧАСТИЧНО ПОЛЯРИЗОВАННЫХ µ⁻ - МЕЗОНОВ Г.Я. Коренман, Р.А. Эрамжян

P - 1160

УГЛОВОЕ РАСПРЕДЕЛЕНИЕ И ПОЛЯРИЗАЦИЯ ЯДЕР ОТДАЧИ ПРИ ЗАХВАТЕ ЧАСТИЧНО ПОЛЯРИЗОВАННЫХ µ⁻ - МЕЗОНОВ

х) Институт ядерной физики Московского Государственного Университета.

> объедяненный институт идереных исследований БМБЛИОТЕКА

Аннотация

Получены общие формулы углового распределения и поляризации ядер отдачи при захвате частично поляризованных µ⁻-мезонов для уникальных и неуникальных 0 • J переходов. Результаты выражены через ядерные матричные элементы Мориты-Фужии. Проведен расчет поляризации основного состояния B¹² при µ⁻-захвате на C¹² в зависимости от константы наведенного псевдоскалярного взаимодействия и "слабого магнетизма".

G.J.Korenman, R.A.Eramdzyan

ANGULAR DISTRIBUTION AND POLARIZATION OF RECOIL NUCLEI IN THE CAPTURE OF PARTIALLY POLIRIZED μ MESONS

Abstract

General formulae for the angular distribution and for the polarization of recoil nuclei in the capture of partially polarized μ^- -mesons have been obtained for the unique and non-unique $0 \rightarrow J$ transitions. The results are expressed in terms of the Morita – Fujii nuclear matrix elements.

The calculation of the polarization of the B^{12} ground state in the muon capture on C^{12} has been made for different values of the induced pseudoscalar constant and "weak magnetism".

Изученню слабого взаимодействия μ^- -мезонов с ядрами посвящено большое число работ, как теоретических, так и экспериментальных. Захват μ^- мезона свободным протоном, который может быть рассчитан наиболее точно, связан со специфическими экспериментальными трудностями и не дает исчерпывающей информации о константах μ^- -захвата. Измерение полной вероятности реакции

$$\mu^{-} + (A, Z) \rightarrow (A, Z - 1) + \nu \qquad /1$$

также недостаточно для определения констант, поскольку эта величина слабо зависит от соотношения между ними /1/

Значительно лучше в этом отношении ситуация в парциальных переходах, характеристики которых / вероятность перехода, угловое распределение и поляризация ядер отдачи / весьма чувствительны к константам взаимодействия. Поэтому целесообразно развить общий формализм для расчета характеристик парциальных переходов.

В работе Мориты и Фужии² была предложена теория разрешенных и запрещенных переходов и получены формулы для вероятностей парциальных переходов в μ^- -захвате. Матричные элементы, введенные этими авторами, учитывают релятивистские поправки и удобны для численных расчетов.

Морита и Гринберг^{/3/}, используя этот формализм, получили формулу углового раслределения ядер отдачи в уникальных переходах 0 - J, $\Delta \pi = (-1)$ при захвате частично поляризованных μ^- мезонов. Аналогичный результат в более грубом приближении былполучен Роузом и Гудом^{/4/}. Более ранние работы по угловому распределению ядер отдачи обсуждаются в обзоре Примакова^{/1/}. Там же имеются ссылки на расчеты поляризации ядер отдачи, выполненные для отдельных частных случаев.

В настоящей работе получены общие формулы углового распределения и поляризации ядер отдачи в уникальных и неуникальных 0 -> J переходах при захвате частично поляризованных µ⁻ -мезонов из К - оболочки Все формулы выражены через матричные элементы Мориты и Фужии, учтены наведенное псевдоскалярное взаимодействие и "слабый магнетизм". Случай µ⁻ захвата на ядрах с ненулевым спином не рассматривается, поскольку здесь необходимо учитывать сверхтонкое расщепление уровней мезоатома, приводящее к значительной дополнительной деполяризации µ⁻ -мезона на К -оболочке⁵.

При выводе формул используется формализм матрицы плотности и спин-тензоров, позволяющий единым образом получить все характеристики парциального перехода.

В последнем разделе работы приведены результаты численного расчета средней по направлению вылета нейтрино поляризации основного состояния B^{12} при μ^- -захвате на C^{12} . Исследуется зависимость поляризации от псевдоскалярной константы и "слабого магнетизма" и обсуждаются полученные результаты.

3

Все карактеристики ядерной реакции можно получить из матрицы плотности конечных состояний ρ_i , которая определяется формулой ^{/6/}:

$$\rho = F \rho F^{\dagger}, \qquad /2/$$

где Р, есть матрица плотности начальной системы,

F есть амплитуда перехода.

Матрица плотности начальной системы, состоящей из ядра с нулевым слином и частично поляризованного μ^- -мезона на К -оболочке, определяется вектором поляризации μ^- мезона $\vec{P} = < \vec{\sigma} >$.

$$\rho_{l} = \frac{1}{2} \left(l + P \sigma \right).$$
 (9)

Выбирая ось Z вдоль Р, можно записать

$$<\mu \mid \rho, \mid \mu^{\prime} > = \frac{1}{2} \left(\delta_{\mu\mu}, + P\sqrt{3} < \frac{1}{2} \mu^{10} : \frac{1}{2} \mu^{2} \right), \qquad 14/1$$

где μ и μ есть проекция спина мезона на ось z, $< j_1 m_1 j_2 m_2; j_3 m_3 - коэффици$ ент Клебша-Гордана. Амплитуда перехода в первом порядке теории возмущений определя $ется матричным элементом <math>< f | \hat{H} | i >$ гамильтониана взаимодействия.

а) Матричный элемент гамильтоннана

Эффективный гамильтоннан слабого взаимодействия μ^- -мезона с ядром запишем, следуя Морита и Фужен^{2/}

$$H_{off} = \Psi_{f} \Sigma H_{f} - (s) \Psi_{f}$$

 $\hat{H}_{o} = C_{v} \mathbf{1}_{o} L(1) + C_{A} \vec{\sigma}_{o} L(\vec{\sigma}) + \frac{C_{v}}{2M} \{2L(\vec{a})\vec{p}_{o} + \vec{p} L(\vec{a}) + i\vec{\sigma}_{o}[\vec{p} \cdot L(\vec{a})]\} +$

$$+ \frac{C_{A}}{2M} \left\{ 2L(\gamma_{g}) \vec{\sigma}_{o} \vec{p}_{o} + \vec{\sigma}_{o} \vec{p}L(\gamma_{g}) \right\} + \frac{\mu_{p} - \mu_{n}}{2M} C_{v} i \vec{\sigma}_{o} [\vec{p} \cdot L(\vec{a})] - \frac{C_{o}}{2M} \vec{\sigma}_{o} \vec{p}L(\beta \gamma_{g}).$$

где Σ означает суммирование по всем нуклонам ядра, $L(\vec{a}) = \Psi_{\nu}^{+} \frac{1+\gamma_{4}}{\sqrt{2}} \vec{a} \Psi_{\mu}$ и т.д., Ψ_{i} , Ψ_{i} , Ψ_{ν} , Ψ_{μ} есть волновые функции в конфигурационном пространстве начального и конечного ядра, нейтрино и μ^{-} -мезона, соответственно.

Оператор f_(s) переводит s -ый протон в нейтрон, а при действии на нейтрон дает нуль.

Операторы *р* и *р* представляют собой дифференциальные операторы импульса лептонов и з -го нуклона, соответственно. Гамильтониан /5/ есть нерелятивистское по нуклонам приближение / опущены член $=\left(\frac{V}{C}\right)^2$ / гамильтониана четырехфермионного (V – A) —взаимодействия с учетом наведенного псевдоскалярного взаимодействия и "слабого магнетизма". Здесь и в дальней-шем h = c = 1.

Волновая функция µ -мезона на К -оболочке точечного ядра с малым Z (a Z << 1) записывается в виде

$$|1s_{\mu} \mu \rangle = \sqrt{\frac{1}{\pi}} (a Z m_{\mu})^{s/2} e^{-a Z m_{\mu}^{r}} (\Psi_{\mu}), \qquad /6/$$

где а -постоянная тонкой структуры, Z -заряд ядра, m_µ -приведенная масса µ -мезона.

Нейтрино описывается собственной функцией с определенным импульсом *q* и проекцией спина *v*. Разлагая эту функцию по шаровым спинорам и применяя алгебру неприводимых тензорных операторов^{/7/}, можно выразить матричный элемент гамильтониана через ядерные матричные элементы от неприводимых тензорных опреаторов:

$$< \vec{q} \nu, JM \mid H \mid 1_{s_{1}} \mu \downarrow J_{i} = 0 > =$$

$$= \sqrt{\frac{2}{\pi}} (a Z m_{\mu}) \sum_{v \neq m \lambda}^{s/2} i^{-\ell} Y_{\ell m} (\Omega) < \ell m, \frac{1}{2} \nu: j\lambda > \langle j - \lambda, \frac{1}{2} \mu: JM > \langle -1 \rangle^{\lambda+\frac{1}{2}} M_{vJ}(k),$$

$$= \sqrt{\frac{2}{\pi}} (a Z m_{\mu}) \sum_{v \neq m \lambda} i^{-\ell} Y_{\ell m} (\Omega) < \ell m, \frac{1}{2} \nu: j\lambda > \langle j - \lambda, \frac{1}{2} \mu: JM > \langle -1 \rangle^{\lambda+\frac{1}{2}} M_{vJ}(k),$$

где $\Omega = (\theta \psi)$ есть углы вылета нейтрино,

$$\begin{split} &M_{v,'}(k) = Cv \left[0 v J \right] \left\{ S_{0vJ}(k) + i S_{0vJ}(-k) \right\} - C_{A} \left[1 v J \right] \left\{ S_{1vJ}(k) + i S_{1vJ}'(-k) \right\} + \\ &+ \left\{ S_{1vJ}'(-k) - i S_{1vJ}(k) \right\} \left\{ - \frac{C_{v}}{M} \left[1 v J p \right] + \sqrt{3} Cv \frac{q}{2M} \left(\sqrt{\frac{v+1}{2v+3}} \left[0v + 1J + \right] + \sqrt{\frac{v}{2v-1}} \right] + \\ &+ \sqrt{6} C_{v} \frac{q}{2M} \left(1 + \mu_{p} - \mu_{n} \right) \left(\sqrt{v+1} W \left(11Jv : 1v+1 \right) \left[1v+1J + \right] + \sqrt{v} W \left(11Jv : 1v-1 \right) \left[1v-1J - \right] \right) \right\} + \\ &+ \left\{ S_{0vJ}'(-k) - i S_{0vJ}(k) \right\} \left\{ \frac{C_{A}}{M} \left[0vJp \right] + \sqrt{1/3} \left(C_{A} - C_{p} \right) \frac{q}{2M} \left(\sqrt{\frac{v+1}{2v+1}} \left[1v+1J + \right] + \sqrt{\frac{v}{2v+1}} \left[1v-1J - \right] \right) \right\} \end{split}$$

В формуле /8/ использованы следующие обозначения;

$$S_{n+j}(k) = \delta_{\ell_{T}} \sqrt{2(2j+1)} \quad \forall \quad (\frac{1}{2}nj\ell : \frac{1}{2}j)$$

$$j - \ell + \frac{1}{2} \qquad (-k) = S_{k} S_{n+j}(-k) ; \qquad S_{k} = (-1)$$

$$S_{n+j}(k) = \delta_{\ell_{T}} \sqrt{2(2j+1)} \quad \forall \quad (\frac{1}{2}nj\ell : \frac{1}{2}j)$$

Символ К определяет совокупность полного и орбитального моментов нейтрино:

$$\ell = k$$
, $j = \ell - \frac{1}{2}$ при $k > 0$
 $\ell = -k - 1$, $j = \ell + \frac{1}{2}$ при $k < 0$

Приведенные ядерные матричные элементы [nvJ], $[nvJ_{\pm}]$, $[nvJ_{p}]$ определены так же, как в таблице $\overline{11}$ работы².

б) Спин-тензоры ядра отдачи

Спиновые состояния ядра, образовавшегося в реакции /1/, можно описать матрицей - плотности

$$\langle M | \rho_{f} | M^{t} \rangle = \sum_{\nu} \langle M, \nu | \rho_{f} | M^{t}, \nu \rangle$$

$$/10 /$$

или спин-тензорами

$$\sum_{MM'} \sum_{MM'} \sum_{j=M'} \langle JM, J-M'; aa \rangle \langle M| \rho | M' \rangle .$$
(11)

Используя формулы /2/, /4/, /7/, /10/, /11/ и суммируя коэффициенты Клебша-Гордана, получим

$$\rho_{aa} = q^2 \frac{dq}{dE_{\mu}} \sqrt{1/\pi} \left(a Z m_{\mu} \right)^3 \cdot (2J+1).$$
(12/

$$\begin{array}{ccc} Y_{a\alpha}^{*} & (\Omega) & \Sigma & g_{a}(k,k') & M_{\nu j}(k) & M_{\nu \prime j}^{*}(k') & + P \Sigma & \overline{Y}_{L\lambda}(\Omega) < L\lambda_{j} aa: 10 > h_{aL}(k,k') & M_{\nu j}(k) & M_{\nu \prime j}^{*}(k') \\ & & L & kk^{\prime} \nu \nu^{\prime} \end{array}$$

где

$$g_{a}(k,k') = i \frac{\ell - \ell'}{4} - \frac{\ell \ell' j j'}{4} < \ell 0, \ \ell' 0 : a 0 > (-1)^{J} \{j \ j' a\} \{j \ j' a\}$$

$$(13/$$

$$h_{aL}(k,k') = i \stackrel{l - l'}{l l'} \quad \hat{l l'} \quad \hat{j j'} \stackrel{a}{a} < l0, l' 0 : a0 > (-1) \stackrel{a + L + j - 4}{l l'} \quad \frac{j}{l'} \stackrel{L}{L} \quad \frac{1}{j'} \stackrel{L}{L}$$

6 и 9 -семволы определены так же, как у Эдмондса^{/7/}. Коэффициенты g_a(k,k) и h_a, (k,k) обладают следующими свойствами симметрии:

> $g_{a}(k,k^{2}) = (-1)^{a} g_{a}(k^{2},k)$ $h_{aL}(k,k^{2}) = (-1)^{a+1} h_{aL}(k^{2},k)$

 $g_{a}(k,k') = S_{k} S_{k}, g_{a}(-k,-k')$ $h_{at}(k,k') = S_{k} S_{k}, h_{at}(-k,-k')$

/18/

/15/

Первые два соотношения очевидны, вторые получаются, если использовать равенство

/17/

Используя /15/, легко показать, что произведение $M_{vj}(k) M_{v'j}^*(k')$ в первом члене формулы /12/ можно заменить на $Re\{M_{vj}(k) M_{v'j}^*(k')\}$ для четных а и на

 $i Im \{M_{v,j}(k), M_{v,j}(k')\}$ для а нечетных; во втором члене, наоборот, $i Im \{...\}$ для а четных, Re{...} для а нечетных.

Формула /12/ записана в системе координат с осью Z вдоль P. Для дальнейшего удобио иметь также ред в системе координат с ортами

$$\vec{e}_{g} = \frac{\vec{q}}{q}, \quad \vec{e}_{y} = \frac{[\vec{p} \ \vec{q}^{*}]}{[[\vec{p}^{*} \ \vec{q}^{*}]]}, \quad \vec{e}_{z} = [\vec{e}_{y} \vec{e}_{z}]$$
(18/

В этой системе координат

$$\rho_{a\alpha} = q^2 \frac{dq}{dE} (\alpha Z m_{\mu})^3 \frac{2J+1}{2\pi} .$$

 $\begin{bmatrix} \delta_{a0} \sum_{kk'vv'} \mathcal{E}_{a}(kk')_{iIm} \{M_{vj}(k) M_{v'j}^{*}(k')\} + P \sqrt{\frac{4\pi}{3}} Y(\theta, 0) \sum_{l=a} L < L0, aa: 1a > Re \{M_{vj}(k) M_{v'j}^{*}(k')\}, /19/$

где верхний символ Re и *i lm* относится к четным a, нижний к нечетным: θ есть угол между \vec{P} и \vec{q} .

Угловое распределение и поляризация ядер

отдачи

Угловое распределение выражается через спин-тензор нулевого ранга:

$$\frac{dw}{d\Omega} = J \rho_{00} \qquad (20)$$

Из формулы /19/ для а=0 следует, что

$$\frac{dw}{d\Omega} = \frac{W}{4\pi} (1 + a P \cos \theta), \qquad (21)$$

где W есть полная вероятность $\int \frac{dw}{d\Omega} d\Omega$ парпиального перехода,

а коэффициент анизотропии углового распределения ядер отдачи. Выделяя действительную и мнимую часть $M_{*j}(k)$ $M^*_{*'}(k')$ и суммируя по k и k', получим:

$$a = \frac{R^2 - T^2}{R^2 + T^2}, \qquad (22)$$

$$W = \frac{8}{3} (2J+1) q^2 \frac{dq}{dE} (a Z m_{\mu})^3 (R^2 + T^2) . \qquad (23)$$

Величины *R* и *T* в случае уникальных переходов следующим образом выражаются через ядерные матричные элементы и константы взаимодействия:

$$\begin{split} R_{u} &= C_{A}(\sqrt{\frac{J}{2J+1}} \begin{bmatrix} 1 \ J+1 \ J \end{bmatrix} - \sqrt{\frac{J+1}{2J+1}} \begin{bmatrix} 1 \ J-1 \ J \end{bmatrix}) - \\ &= C_{v} \frac{q}{2M}(1+\mu_{p}-\mu_{q})(\sqrt{\frac{J}{2J+1}} \begin{bmatrix} 1 \ J+1 \ J \end{bmatrix} - \sqrt{\frac{J+1}{2J+1}} \begin{bmatrix} 1 \ J-1 \ J \end{bmatrix}) + C_{v} \frac{1}{M} \begin{bmatrix} 1 \ J \ J \end{bmatrix} , \\ T_{u} &= C_{A}(\sqrt{\frac{J+1}{2J+1}} \begin{bmatrix} 1 \ J+1 \ J \end{bmatrix} + \sqrt{\frac{J}{2J+1}} \begin{bmatrix} 1 \ J-1 \ J \end{bmatrix}) + (C_{A} - C_{p}) \frac{q}{2M}(\sqrt{\frac{J+1}{2J+1}} \begin{bmatrix} 1 \ J+1 \ J \end{bmatrix} + \frac{1}{2J+1} + \frac{1}{2J+1} + \frac{1}{2J+1} + \frac{1}{2J+1} + \frac{1}{2J+1} \end{bmatrix} , \end{split}$$

Если в этих выражениях принять $[1J\pm 1J\pm] \approx [1J\pm 1J]$ и при возведении R и Т в квадрат отбросить члены $\approx (\frac{q}{2M})^2$, а также $\approx (\frac{[nJJ_P]}{M})^2$, то выражение для а будет совпадать с результатом Мориты и Гринберга^{/3/}.

В случае неуникальных переходов

$$R_{n} = C_{A} [1JJ] - C_{v} \frac{q}{2M} (1 + \mu_{p} - \mu_{n}) (\frac{J+1}{2J+1} [1JJ+] + \frac{J}{2J+1} [1JJ-]) - \frac{C_{v}}{M} (\sqrt{\frac{J}{2J+1}} [1J+1Jp] - \sqrt{\frac{J+1}{2J+1}} [1J-1Jp]) - C_{v} \frac{q}{2M} \frac{\sqrt{3J(J+1)}}{2J+1} ([0JJ+]-[0JJ-]) /24' / \frac{J}{2J+1} (1J-1Jp]) - C_{v} \frac{q}{2M} \frac{\sqrt{3J(J+1)}}{2J+1} (1JJ+1Jp] - \sqrt{\frac{J+1}{2J+1}} (1JJ+1Jp] - C_{v} \frac{q}{2M} \frac{\sqrt{3J(J+1)}}{2J+1} (1JJ+1Jp] - \frac{J}{2J+1} (1JJ+1J$$

$$T_{n} = \sqrt{3} C_{v} [0JJ] + \sqrt{3} C_{v} \frac{q}{2M} (\frac{J}{2J+1} [0JJ+] + \frac{J+1}{2J+1} [0JJ-]) - \frac{1}{25'} / \frac{1}{25'}$$

$$-\frac{C_{v}}{M}\left(\sqrt{\frac{J+1}{2J+1}}\left[1J+1Jp\right]+\sqrt{\frac{J}{2J+1}}\left[1J-1Jp\right]+C_{v}\frac{q}{2M}\left(1+\mu_{p}-\mu_{n}\right)\frac{\sqrt{J(J+1)}}{2J+1}\left([1JJ+]-[1JJ-]\right)\right)$$

Среднее значение циклических компонент спина ядра определяется спин-тензором первого ранга:

$$\langle J_{\eta} \rangle = \sqrt{\frac{f(f+1)}{3}} \frac{\rho_{i\eta}^{*}}{\rho_{oo}}$$
 26/

Выполняя суммирование по k и k' в формуле /19/ для a=l и переходя к декартовым компонентам вектора спина, получим:

$$\langle J_{\mathbf{X}} \rangle = \sqrt{J(J+1)} \frac{R T}{R^2 + T^2} \frac{P \sin \theta}{1 + a P \cos \theta}$$
 /27a/

< Jy > = 0 /276/

$$\langle J_x \rangle = \frac{R^2}{R^2 + T^2} \frac{1 + P \cos \theta}{1 + a P \cos \theta},$$
 /27c/

где R, T, a, θ те же, что и выше. Формулы /27 а-с/ определяют разложение вектора $\langle J \rangle$ по ортам /18/. Раскрывая двойное векторное произведение, содержащееся в \vec{e}_x , можно получить:

$$\langle \vec{J} \rangle = -\frac{\sqrt{J(J+1)} RT}{(R^{2}+T^{2})(1+aPCos\theta)} + \frac{R^{2} + P\cos\theta(R^{2}+\sqrt{J(J+1)})}{(R^{2}+T^{2})(1+aP\cos\theta)} \frac{R}{(R^{2}+\sqrt{J(J+1)})} \frac{R}{q} \frac{q}{q} .$$
 (27/

Экспериментальное определение < \vec{J} весьма сложно, проще измерить поляризацию ядер отдачи, усредненную по направлениям вылета нейтрино. По определению эта величина есть:

$$\{\langle J \rangle\}_{av} = \frac{\int \langle J \rangle \frac{d^{w}}{d\Omega} d\Omega}{\int \frac{dw}{d\Omega} d\Omega} \quad .$$
 (28/

Подставляя сюда /27 / и /21/, получим после интегрирования:

$$\{\langle \vec{J} \rangle\}_{av} = \vec{P}\beta , \qquad (29)$$

где

$$\beta = 1/3 \quad \frac{R^2}{R^2 + T^2} - 2\sqrt{J(J+1)RT}$$
(29 /

Обсуждение результатов

Из формул, полученных в предыдущем разделе, видно, что все характеристики парциального перехода в реакции /1/ выражаются через одни и те же величины *R* и *T*, являющиеся комбинациями приведенных ядерных матричных элементов и констант взаимодействия.

Вычисление ядерных матричных элементов с использованием модельных волновых функций может внести определенную ошибку в расчеты характеристик парциальных переходов. Поэтому нужно выяснить, в каких случаях выбор конкретной модели ядра может существенно сказаться на расчете коэффициента анизотропии и поляризации.

Прежде всего отметим, что в $0 \rightarrow 0$ переходах, как уникальных, так и неуникальных, коэффициент анизотропии a = -1 не зависит ни от ядерных матричных элементов, ни от констант взаимодействия. Этот результат автоматически следует из равенства R нулю для J = 0.

В случае уникальных переходов для качественного рассмотрения можно принять [1]-1]-[1]-1]-[1]-1] и пренебречь остальными матричными элементами, поскольку они, как показали Морита и Фужии⁽²⁾, на один-два порядка меньше [1]-1]. Тогда

$$a \approx \frac{(J+1) \mathfrak{g}_{2}^{2} - J \mathfrak{g}_{1}^{2}}{(J+1) \mathfrak{g}_{2}^{2} + J \mathfrak{g}_{1}^{2}} / 30/$$

$$\beta \approx 1/3 \frac{(J+1) \mathfrak{g}_{2}^{2} + 2J(J+1) \mathfrak{g}_{1} \mathfrak{g}_{2}}{(J+1) \mathfrak{g}_{2}^{2} + J \mathfrak{g}_{1}^{2}} / 31/$$

где $g_1 = 1 + \frac{C_A - C_P}{C_A} \frac{q}{2M}$, $g_2 = 1 - (1 + \mu_P - \mu_R) \frac{C_V q}{C_A 2M}$. Формулы /30/ и /31/ показывают, что в "нулевом приближении" а и β вообще не зависят от ядерных матричных элементов. Поэтому точные выражения для а и β будут слабо зависеть от ядерных матричных элементов.

Иначе обстоит дело в случае неуникальных переходов. Здесь имеются два основных ядерных матричных элемента [1JJ] и [0JJ], один из которых содержит оператор $\vec{\sigma}$, а другой не содержит. Поэтому их отношение, а вместе с ним коэффициент ассиметрии и поляризации β , может сильно зависеть от выбора ядерной волновой функции.

Поскольку одним из важнейших аспектов изучения парциальных переходов в μ -захвате является получение сведений о наведенном псевдоскалярном взаимодействии и "слабом магнетизме", то необходимо выяснить влияние $\kappa = \frac{C_P}{C_A}$ и $\mu = 1 + \mu_P - \mu_n$ на значения величин α и β .

Зависимость коэффициента анизотропии^{*а*} в уникальных переходах от ^{*к*} и ^{*μ*} исследовалась многими авторами^{(3,4,8/}. При этом, однако, не было отмечено следующее обстоятельство. Существуют предельные значения κ_i и κ_2 такие, что при $\kappa_1 < \kappa < \kappa_2$ величина *а* положительна / если нейтрино левовинтовое/, а если $\kappa < \kappa_1$ или $\kappa > \kappa_2$, то *а* отрицательна. Это опровергает существующее мнение^{(4/}, что знак *а* полностью определяется спираль ностью нейтрино.

В таблице 1 приведены приближенные значения к, и к, вычисленные из условия

 $(J+1) g_2^2 - J g_1^2 = 0$

для различных значений

J

На рисунке 1 представлена зависимость от к и µ средней поляризации основного состояния В¹² в реакции

при $\frac{C_A}{C_W} = -1,24$, $\frac{q}{2M} = 0,05$

$$\mu^{-} + C^{12} \rightarrow B^{12} + \nu$$

Кривые 1 и 2 вычислены, соответственно, с учетом и без учета "слабого магнетизма". При этом использованы значения ядерных матричных элементов, вычисленные для рассматриваемого перехода Моритой и Фужии^{/2/} по оболочечной модели в схеме *j-j* -связи.

Кривая 3 соответствует "нулевому приближению" / формула 31/ с учетом " слабого магнетизма".

Из рисунка 1 видно, что средняя поляризация ядра отдачи в рассматриваемой реакции

 а) слабо зависит от "слабого магнетизма", а также от точного учета ядерных матричных элементов.

б) существенно зависит от псевдоскалярной константы и при к ≥ 31 - 33 становится отрицательной.

Из эксперимента известно⁹, что поляризация B^{12} положительно по отношению к направлению пучка μ -мезонов. Если спиральность μ -мезона при $(\pi, \mu\nu)$ -распаде положительна, то указанный эксперимент позволяет сделать вывод, что $\kappa \leq 33$. К сожалению, более определенную оценку κ из данных поляризации B^{12} пока сделать нельзя из-за неточности эксперимента.

Авторы выражают благодарность В.В.Балашову за постоянное внимание и интерес к работе и В.Б.Беляеву за полезные обсуждения.

Литература

- 1. H.Primakoff. Revs. Mod. Phys. 31, 802 (1959).
- 2. M.Morita, A. Fujii . Phys. Rev. 118, 606 (1960).
- 3. M.Morita, D.Greenberg. Phys. Rev. 119, 435 (1960).
- 4. M.E.Rose, R.H.Good. Ann. of Phys. 9, 211 (1960).
- 5. С.С.Герштейн. ЖЭТФ, 37, 463, 993 /1958/.

А.П.Бухвостов, И.М.Шмушкевич. ЖЭТФ, 41, 1895 /1961/.

- 6. А.С.Давыдов. Теория атомного ядра, ФМ, 1958.
- 7. А.Эдмондс. Угловые моменты в квантовой механике. В сб. "Деформация атомных ядер". ИИЛ, 1958.
- 8. L. Wolfenstein. Nuovo Cimento XIII, 319 (1959).
- 9. W.A.Love, S.Marder, I.Nadelhaft, R.T.Siegel, A.E.Taylor. Phys. Rev. Lett, 2, 107 (1958).

Рукопись поступила в издательский отдел 13 декабря 1962 года.

1

.

Таблица І.

Предельные значения $\kappa_{1,2}$, при которых a=0 в зависимости от J при $\frac{C_A}{C_V} = 4.24, \frac{q}{2M} = 0.05$ J I 2 3 4 $\kappa_1 = -12,7$ -8,2 -6,5 -5,6 $\kappa_2 = +54,7$ +50,2 +48,5 +47,6