

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

Нгуен Ван Хьеу

P-1152

полюса редже и асимптотическое поведение сечений некоторых процессов слабого взаимодействия МСЭТФ, 1963, т45, 63, с 544-547.

Дубжа 1962 г.

Нгуен Ван Хьеу

P-1152

ПОЛЮСА РЕДЖЕ И АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ СЕЧЕНИЙ НЕКОТОРЫХ ПРОЦЕССОВ СЛАБОГО ВЗАИМОДЕЙСТВИЯ

2

2

Направлено в ЖЭТФ

Объединенный институт
ядерных исследованый
БИБЛИОТЕКА
The second se

Дубна 1962 г.

Аннотация

Рассмотрено асимптотическое поведение сечений некоторых неупругих процессов слабого взаимодействия в предположении о существовании вакуумных полюсов Редже с $\alpha(0) = 1$; показано, что в универсальной V - A теории слабого взаимодействия сечение рождения π -мезона от нейтрино при больших энергиях может расти быстрее чем сечение упругих процессов.

Nguyen Van Hieu

REGGE POLES AND ASYMPTOTIC BEHAVIOUR OF THE CROSS SECTIONS FOR SOME WEAK INTERACTION PROCESSES

Abstract

The asymptotic behaviour of the cross sections for some inelastic weak interaction processes has been considered by assuming the existence of the vacuum Regge poles with a(0) = 1. It has been shown that in the universal V - A theory of weak interaction the cross section for the production of a *n*-meson from a neutrino may increase quicker at high energies than the cross section for elastic processes. В универсальной теории слабого взаимодействия $^{/1,2/}$ константа взаимодействия имеет размерность квадрата длины, поэтому сечения процессов слабого взаимодействия рактут с ростом энергии до тех пор, пока еще несущественно второе приближение теории возмущений по слабому взаимодействию $^{/3,4/}$. Например, сечения упругих процессов типа $\nu + N \rightarrow \ell + N$ / ℓ -лептоны/, вычисленные в первом приближении теории возмущений без учета сильного взаимодействия барионов, растут с энергией E / в с.ц.м./ как E^2 . Для этих процессов сильное взаимодействие учитывается введением форм-факторов. При больших энергиях и малых углах ($t \approx 0$) все форм-факторы равны единице. Поэтому асимптотическое поведение дифференциальных сечений упругих процессов при малых углах полностью определяется структурой слабого взаимодействия. Дело обстоит иначе в случае неупругих процессов, например, $\nu + N \rightarrow \ell + \pi + N$. Асимптотическое поведение сечений этих процессов определяется не только структурой слабого взаимодействия, но и свойствами сильного взаимодействия мезонов и барионов.

В настоящей работе рассматривается асимптотическое поведение сечений некото – рых неупругих процессов слабого взаимодействия в предположении о существовании вакуумных полюсов Редже с а (0) = 1 (5-9/. Для простоты мы сначала рассмотрим рождение промежуточного векторного мезона (1) от *п* -мезона на ядре со спином равным нулю

$$\pi^{-} + A \rightarrow W^{-} + A$$
, /1/

а затем рассмотрим рождение 7 -мезона от нейтрино на ядре со спином равным нулю

$$\nu(\tilde{\tilde{\nu}}) + A \rightarrow \ell(\ell \ell^{+}) + \pi^{+}(\pi^{-}) + A \qquad / \Pi /$$

2. Сечение рождения промежуточного векторного мезона от п -мезона

В универсальной V-A теории слабого взаимодействия с промежуточными вектор ными мезонами лагранжиам слабого взаимодействия имеет вид /1,10/

$$L = G(I^{V} + I^{A}) W + hc + ...$$
 /1/

Здесь l_{μ} и l_{μ}^{A} -заряженные векторный и аксиальный ток, соответственно, W_{μ} оператор уничтожения положительного W -мезона и рождения отрицательного W -мезона. В формуле /1/ написаны явно только члены, содержащие операторы уничтожения и рождения заряженных W -мезонов. Нейтральных W -мезонов мы не будем рассматривать. Матричный элемент процесса /1/ имеет вид:

$$M_{I} = (2\pi)^{4} \delta^{4} (p + P - q - Q) \frac{G}{\sqrt{16 p^{0} q^{0} P^{0} Q^{0}}} \xi_{\mu}^{*} < A | I_{\mu}^{*} + I_{\mu}^{A} | \pi^{-} A > ,$$

где р и Р – 4-импульсы п –мезона и ядра А в начальном состоянии, q и Q – 4-импульсы W –мезона и ядра А в конечном состоянии, соответственно, ξ_{μ} -вектор, характеризующий поляризационное состояние W –мезона. Введем инвариантные переменные

$$s = -(p + P)^2$$
, $t = -(P - Q)^4$

Из соображений инвариантности следует, что матричные элементы токов I_{μ}^{\bullet} и I_{μ}^{A} можно написать в общем виде следующим образом:

$$< A | I_{\mu}^{\nu} | \pi^{-}A > = F(s, t) \epsilon_{\mu\nu\sigma\tau} p_{\nu}q_{\sigma}P_{\tau} ,$$

$$< A | I_{\mu}^{A} | \pi^{-}A > = G_{t}(s, t) [Q + P]_{\mu} + G_{2}(s, t) [Q - P]_{\mu} + G_{3}(s, t) q_{\mu}^{4/}.$$

Последняя амплитуда G_{j} не дает вклада из-за условия $\xi_{j}q_{j} = 0$.

Для рассмотрения асимптотического поведения амплитуд F(s,t) и $G_t(s,t)$ при $s \to \infty$ нужно переходить к t -каналу

$$\tilde{-} + W^+ \rightarrow A + \bar{A}$$
, /III /

и разложить эти амплитуды на парциальные волны. При этом удобно пользоваться произведениями $\xi_{\mu}^{*} < A \mid I_{\mu}^{*} \mid \pi A > \mu \quad \xi_{\mu}^{*} < A \mid I_{\mu}^{A} \mid \pi A >$. Эти произведения в канале /1/ можно рассматривать /с точностью до численного множителя/ как матричные элементы рождения векторного или аксиального мезонов, соответственно, от π -мезонов на ядре A, и в канале / III / - как матричные элементы рождения пары $A + \overline{A}$ в соударениях π -мезона и векторного или аксиального мезонов. Разлагая эти произведения на парциальные волны и сравнивая с /3/ и /4/, мы получим разложения амплитуд F(s,t) и $G_{i}(s,t)$. Согласно известному методу $^{/5-\Theta/}$ мы должны писать эти разложения в виде интеграла Зоммерфельфа-Ватсона и затем преобразовать контур интегрирования. Учитывая только вклад от полюсов и принимая во внимание множитель $1 + e^{-i\pi a(t)}$, мы получим следующие асимптотические выражения после указанных выкладок: $-i\pi a(t)$

$$F(s,t) \rightarrow f(t) \xrightarrow{1+e^{-i\pi a(t)}} s^{a(t)-1} , \quad /5/$$

$$G_{I}(s,t) \rightarrow g_{I}(t) \xrightarrow{1+e} s , /6/$$

$$G_{2}(s,t) \rightarrow g_{2}(t) \xrightarrow{1+e} s \cdot \frac{1+e}{\sin \pi a(t)}$$

Асимптотические выражения /5/-/7/ амплитуд F (s,t), G (s,t) и G (s,t) имеют следующее свойство симметрии

$$F(s,t) = -F(u, t),$$

$$G_{1}(s,t) = -G_{1}(u,t),$$

$$G_{2}(s,t) = G_{2}(u,t), \quad s \to \infty,$$

$$(8/1)$$

где р и Р – 4-импульсы т –мезона и ядра А в начальном состоянии, q и Q – 4-импульсы W –мезона и ядра А в конечном состоянии, соответственно, ξ_{μ} –вектор, характеризующий поляризационное состояние W –мезона. Введем инвариантные переменные

$$s = -(p + P)^{2}$$
, $t = -(P - Q)^{2}$

Из соображений инвариантности следует, что матричные элементы токов I_{μ}^{ν} и I_{μ}^{A} можно написать в общем виде следующим образом:

$$< A | I_{\mu}^{\nu} | \pi^{-}A > = F(s, t) \epsilon_{\mu\nu\sigma\tau} p_{\nu}q_{\sigma}P_{\tau} ,$$

$$< A | I_{\mu}^{A} | \pi^{-}A > = G_{1}(s;t) [Q+P]_{\mu} + G_{2}(s,t) [Q-P]_{\mu} + G_{3}(s,t)q_{\mu}.$$

$$(3/4)$$

Последняя амплитуда G_{3} не дает вклада из-за условия $\xi_{\mu}q_{\mu} = 0$.

Для рассмотрения асимптотического поведения амплитуд F(s,t) и $G_i(s,t)$ при $s \rightarrow \infty$ нужно переходить к t -каналу $^{/6-9/}$

$$\pi^- + W^+ \rightarrow A + \overline{A} \quad , \qquad /111 \quad /$$

и разложить эти амплитуды на парциальные волны. При этом удобно пользоваться произведениями $\xi_{\mu}^{*} < A \mid I_{\mu}^{*} \mid \pi A > \mu \quad \xi_{\mu}^{*} < A \mid I_{\mu}^{A} \mid \pi A >$. Эти произведения в канале /1/ можно рассматривать /с точностью до численного множителя/ как матричные элементы рождения векторного или аксиального мезонов, соответственно, от π -мезонов на ядре A, и в канале / III / - как матричные элементы рождения пары $A + \overline{A}$ в соударениях π -мезона и векторного или аксиального мезонов. Разлагая эти произведения на парциальные волны и сравнивая с /3/ и /4/, мы получим разложения амплитуд F(s,t) и $G_i(s,t)$. Согласно известному методу $^{/5-\Theta/}$ мы должны писать эти разложения в виде интеграла Зоммерфельфа-Ватсона и затем преобразовать контур интегрирования. Учитывая только вклад от полюсов и принимая во внимание множитель $1 + e^{-i\pi a(t)}$, мы получим следующие асимптотические выражения после указанных выкладок: $-i\pi a(t)$

$$F(s,t) \to f(t) = \frac{1+e^{-1\pi a(t)}}{\sin \pi a(t)} s^{a(t)-1}, /5/$$

$$G_{1}(s,t) \rightarrow g_{1}(t) \xrightarrow{1+e} s, /6/$$

$$G_2(s,t) \rightarrow g_2(t) \xrightarrow{1+e} s \cdot \frac{1+e}{\sin \pi a(t)}$$

Асимптотические выражения /5/-/7/ амплитуд F (s,t), G₁(s,t) и G₂(s,t) имеют следующее свойство симметрии

$$F(s,t) = -F(u, t),$$

$$G_{1}(s,t) = -G_{1}(u,t),$$
(8)

$$G_{2}(s,t) = G_{2}(u,t), \quad s \to \infty,$$

а перекрестная симметрия требует, чтобы

$$\begin{split} F(s,t) &= -\overset{\infty}{F}(u,t) , \\ G_{I}(s,t) &= -\overset{\widetilde{G}}{G}_{I}(u,t) , \\ G_{2}(s,t) &= \overset{\widetilde{G}}{G}_{2}(u,t) , \end{split}$$

/1/

где G_1 , G_2 и F -амплитуды рождения W -мезона от π -мезона на анти-ядре A

$$\tau^- + A \rightarrow W^- + A \quad .$$

Соотношения /8/ и /9/ совместно дают

$$F(s,t) = \overset{\approx}{F}(s,t) , \quad G_1(s,t) = \overset{\approx}{G}_1(s,t) , \quad G_2(s,t) = \overset{\approx}{G}_2(s,t), \quad s \to \infty ,$$

т.е. в области больших энергий матричные элементы процессов /I/ и /I'/ равны друг другу.

Согласно обсуждаемой во многих работах /7-9/,/11-14/ гипотезе, вакуумная траектория имеет свойство а(0) = 1. В этом случае дифференциальное сечение процесса /1/ при больших энергиях и малых углах имеет следующий асимптотический вид:

$$\frac{d\sigma}{d\Omega}\Big|_{\substack{\theta \to \infty \\ \theta = 0}} = \left(\frac{G}{8\pi}\right)^2 \frac{s}{M^2} \left[\frac{M^2 - m^2}{2}g_2(0) - g_1(0)\right]^2, \quad /11/$$

где M и m - массы W -мезона и π -мезона соответственно. При малых углах векторный ток не дает вклада, как это следует из формулы /3/. $\frac{d\sigma}{d\Omega} |_{\theta=0}$ растет как s, если $\frac{M^2 - m^2}{2} g_2(0) - g_1(0) \neq 0$.

3. Сечение рождения п -мезона от нейтрино

Теперь рассмотрим процесс П . Для определенности мы рассмотрим случай, когда в этом процессе присутствуют лептоны ν и ℓ . Массу лептона ℓ положим равной нулю. Сечение процесса с антилептонами имеет то же самое асимптотическое выражение, как и сечение процесса с лептонами. В универсальной V - A теории четырехфермионного слабого взаимодействия $^{/1,2/}$ матричный элемент рассмотренного процесса равен

$$M_{II} = (2\pi)^{4} \delta^{4} (k_{1} + P - k_{2} - q - Q) \frac{\ell}{\sqrt{2}} \frac{1}{\sqrt{8 \cdot q^{0} P^{0} Q^{0}}} . /12/$$

$$\tilde{u}_{\ell} \gamma_{\mu} (1 + \gamma_{\delta}) u_{\nu} \cdot < \pi^{+} A |I_{\mu}^{\vee} + I_{\mu}^{A}| A > ,$$

5

причем матричные элементы токов J_{μ}^{ν} и J_{μ}^{A} нетрудно получить из /3/ и /4/. Здесь k_{1} и P-4- импульсы нейтрино и ядра в начальном состоянии, а k_{2} , q и Q-4-импульсы лептона, π -мезона и ядра вконечном состоянии, соответственно. Обозначим через \mathcal{E} полную энергию в с.ц.м. процесса, через E полную энергию системы πA в с.ц.м. этой системы, $k = k_{1} - k_{2}$ и через θ угол между импульсами k и q в с.ц.м. системы πA . Дифференциальное сечение рассматриваемого процесса при угле $\theta = 0$ имеет следующее асимптотическое выражение

$$\frac{d\sigma}{d\Omega}\Big|_{\substack{\substack{\xi^{2} \to \infty \\ \theta = 0}}} = \frac{\xi^{2}}{4(2\pi)^{4}} \int_{0}^{0} dE^{2} \int_{0}^{0} dk^{2} \mathcal{F}(E^{2}, k^{2}),$$

$$\mathcal{F}(E^{2}, k^{2}) = \frac{E^{4}}{(E^{2} + k^{2})^{2}} (1 - \frac{E^{2} + k^{2}}{\xi^{2}}) [\frac{k^{2}}{2} g_{2}(0) + (1 + \frac{k^{2}}{2E^{2}}) g_{1}(0)]^{2}.$$
(13)

Введя новые переменные $x = E^2 / \xi^2$, $y = k^2 / \xi^2$, мы получим

$$\frac{d \sigma}{d\Omega} \Big|_{\substack{\xi \to \infty \\ \theta = 0}} = \frac{g^2}{4(2\pi)^4} \frac{\xi}{\delta} \int_{0}^{1-x} dx \int_{0}^{1-x} dy \quad \mathcal{F}(x, y, \xi^2), \qquad (14)$$

$$\mathcal{F}(x, y, \mathcal{E}^{2}) = \frac{x^{2}}{(x+y)^{2}}(1-x-y)\left[\frac{y}{2}g_{2}(0)\mathcal{E}^{2} + (1+\frac{y}{2x})g_{1}(0)\right]^{2}.$$

Предположим, что в малом интервале углов вблизи t=0 зависимость траектории a(t) от t линейна и обозначим вклад от этого интервале в полное сечение через $\Delta \sigma$. Из /14/ можно доказать, что если $g_2(0) \neq 0$, то величина $\Delta \sigma$ растет как $s^3 / \ln s$ ($s = \xi^2$) до тех пор, пока высшие приближения еще несущественны, а если $g_2(0) = 0$, то $g_1(0) \neq 0$, то $\Delta \sigma$ растет как $s / \ln s$. В обоих случаях сечение процесса / II / растет быстрее чем сечение упругих процессов, поскольку в последних процессах введение форм-фактора приводит к быстрому уменьшению сечения при больших t.

Заметим, что мы рассматриваем II в случае, когда слабое взаимодействие является четырехфермионным^а взаимодействием. Если все слабые взаимодействия передаются промежуточными векторными мезонами с массой порядка массы нуклона, то $\Delta \sigma$ растет как s/ln s, если $g_2(0) \neq 0$ и убывает как 1/s ln s, если $g_2(0) = 0$ Ho $g_1(0) \neq 0$. Однако сечение рассматриваемого процесса остается больше сечений упругих процессов и в этих случаях.

В заключение автор выражает глубокую благодарность проф. М.А. Маркову, Проф. Б.М. Понтекорво за интерес к работе, Б.Н. Валуеву, С.С. Герштейну и Г. Домокошу за обсуждения. 1. R.Feynman and M.Gell-Mann. Phys. Rev. 109, 193 (1958).

Перевод см. ПСФ, 4, 1958.

2. E.Sudarshan and R.Marshak. Proc. of Intern. Conf. on Mesons and Recently Discovered Particles, Padova-Venezia, 1957;

Перевод см. ПСФ 2,1959.

- 3. Д.И. Блохинцев, УФН, 62, 381 /1957/. D.I.Blokhintsrv. Nuovo Cimento, 9, 925 (1958).
- 4. М.А. Марков. Сборник "К физике нейтрино высоких энергий". Дубна Д-577 /1960/. M.A.Markov. Proc. of Intern. Conf. in High Energy Physics at Rochester, 1960, p. 578.
- 5. T.Regge. Nuovo Cimento, 14, 952 (1959); 18, 947 (1960).
- 6. В.Г. Грибов. ЖЭТФ, <u>41</u>, 1962 /1961/.
- 7. G.F.Chew and S.C.Frautschi. Phys. Rev. 123, 1478 (1960); Phys. Rev. Lett. 7, 394 (1960).
- 8. G.Domokos. Nuovo Cimento. 23, 1175 (1962).
- 9. S.C.Frautschi, M.Gell-Mann and F.Zachariasen. Phys. Rev. 126, 2204 (1962).
- 10. T.D.Lee and C.N.Yang. Phys. Rev. 119, 1414 (1960).
- 11. M.Froissart. Phys. Rev. 123, 1053 (1961).
- 12. В.Н. Грибов и И.Я. Померанчук. ЖЭТФ, 42, 1141 /1962/.
- 13. M.Gell-Mann. Proc. of UIntern. Conf. on High Energy Physics at CERN, 1962, p. 533.
- 14 G. Domokos. Proc. of Intern . Cong. on High Energy Physics, at CERN, 1962, p. 553.

Рукопись поступила в издательский отдел 13 декабря 1962 г.