

11.48

13

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ ЯДЕРНЫХ РЕАКЦИЙ

И. Брандштетр, И. Звара, Т. Зварова, В. Кноблох, М. Крживанек, Я. Малы, Су Хун-гуй

P-1148

ОПРЕДЕЛЕНИЕ ВЫХОДОВ НЕКОТОРЫХ ОСКОЛКОВ ПРИ ДЕЛЕНИИ ТЯЖЕЛЫХ ЯДЕР МНОГОЗАРЯДНЫМИ ИОНАМИ.

2. ДЕЛЕНИЕ U²³⁸ ИОНАМИ Ne²²

Pagnosume, 1964, T6, 6.4, c. 479-484

И. Брандштетр, И. Звара, Т. Зварова, В. Кноблох, М. Крживанек, Я. Малы, Су Хун-гуй

P-1148

ОПРЕДЕЛЕНИЕ ВЫХОДОВ НЕКОТОРЫХ ОСКОЛКОВ ПРИ ДЕЛЕНИИ ТЯЖЕЛЫХ ЯДЕР МНОГОЗАРЯДНЫМИ ИОНАМИ. 2. ДЕЛЕНИЕ U²³⁸ ИОНАМИ Ne²²

1257/3 "y

....

Дубна 1962 год

Объедкневный институт ядерных исследований БИБЛИОТЕКА

Аннотация

Определены выходы продуктов деления при облучении U²³⁸ ионами Ne²² в области массовых чисел от 72 до 179 и построена кривая распределения заряда. Среди изотопов Tu был найден новый изотоп Tu¹⁷³ с периодом полураспада 7,8<u>+</u>0,5 час и E_γ 0,40<u>+</u>0,02 Мэв.

I. Brandstetr, M.Krivanek, J.Maly, I.Zvara, T.S.Zvarova, Shu Hung-guei

YIELDS OF SOME FRAGMENTS IN BOMBARDMENT OF HEAVY NUCLEI WITH MULTICHARGED IONS II. FISSION OF U²³⁸ BY Ne²² IONS

Abstract

The yields of the fission products in irradiating U^{238} with Ne^{22} ions were determined in the region of the mass numbers from 72 up to 179, and the curve of the charge distribution was plotted. A new isotope of Tu^{173} with the half-life 7.8 + 0.5r and the gamma line with the energy $E = 0,40 \pm 0.02$ MeV was found among the Tu isotopes.

Важными продуктами реакций тяжелых ядер с многозарядными ионами являются трансурановые элементы с высоким Z. В большинстве случаев составное ядро, образующееся при слиянии бомбардируюшей частицы с ядром мишени, делится. Деление сопровождается испусканием большого числа нейтронов и, возможно, заряженных частиц. Кривая зависимости выходов продуктов деления от массового числа имеет одногорбый вид^{1,2/} и большую полуширину. Определению выходов продуктов деления при облучении мишеней с Z > 90многозарядными ионами были посвящены только три работы: изучалось деление U^{238} ионами C¹³/1/, U^{238} новами $N^{14/2/}$ и Th^{232} ионами O^{18} и $N_e^{22/3/}$. В первых двух работах определялись выходы продуктов деления только в средней части кривой, в последней работе – только выходы редкоземельных элементов. Из формы кривых видно, что с ростом массового числа делящегося ядра увеличиваются выходы в области тяжелых осколков.

В настоящей работе были определены делительные выходы некоторых изотопов в области массовых чисел от 72 до 179. Большое внимание уделялось определению выходов тяжелых редкоземельных элементов.

Экспериментальная часть

Облучение:

Мишень из металлического урана размером $10 \times 20 \text{ мм}^2$ и толщиной 30 мг/см² облучалась ионами Ne²² на внутреннем пучке циклотрона многозарядных ионов ОИЯИ. В некоторых случаях применялась мишень в виде слоя $U_g O_g$, нанесенного на толстую медную охлаждаемую подложку, расположенную под острым углом к пучку¹⁴. При облучении урановых фольг ток ионов (Ne²)⁴⁺ был около 1 мка, при облучении наклонной мишени с $U_g O_g$ он достигал нескольких десятков мка. Максимальная энергия ионов равнялась 145-150 Мэв. Продолжительность облучения была от 1,5 до 8 часов.

Химическая обработка

Во всех случаях кроме осколков деления выделялись также тяжелые актинидные эле-/5,6/ менты - Cf, Fm, Mv . Поэтому методики выделения продуктов деления были приспособлены для этой цели.

<u>Редкоземельные элементы</u> выделялись по методике, приведенной в работе^{/3/}. Для улучшения очистки после осаждения фторидов редкоземельные элементы (РЗЭ) переосаждались в виде оксалатов и разделялись на колонке со смолой Дауэкс-50x12 12 мк лактатом аммония. Для определения химического выхода при растворении мишени вместе с носителем LaC1. добавлялось известное количество Am³⁺.

Цирконий выделялся из фильтрата после отделения редкоземельных элементов и очищался двукратным осаждением фторцирконата бария и миндалята Zr.

3

<u>Палладий</u> из фильтрата после осаждения фторидов РЗЭ осаждался *PdI*² и после растворения *Pd* дважды осаждался диметилглиоксимом. После растворения в царской водке раствор делился на две части. В первой – повторялось осаждение диметилглиоксимата *Pd* и измерялась активность осадка, во второй – определялся *Pd*¹¹² по дочернему *Ag*¹¹².

Иод и бром отделялись от остальных осколков отгонкой и экстракцией. Иод от брома отделялся отгонкой в присутствии нитрита. После очистки осаждался Agi и AgBr.

<u>Теллур</u>. Фильтрат после отделения РЗЭ выпаривался два раза с концентр. *НВг* почти досуха, осаждался *Fe(OH)*, и теллур выделялся двукратным восстановлением до металла сернистым газом.

Галлий. После экстракции эфиром осаждался бензоиноксимом Мо потом

<u>Рутений</u>. После выделения фторидов и добавления H_2SO_4 и KIO₄ в токе воздуха отгонялся RuO₄ с последующим поглошением в 5N HC1 и восстанавливался магнием до металла.

Измерение

Выделенные изотопы были идентифицированы по периодам полураспада. В некоторых случаях определялись также у -спектры и энергия .β -излучения. β -активность препаратов измерялась на торцовом счетчике МСТ-17, у - спектры снимались при помощи сцинтилляционного спектрометра с кристаллом Nai 30 x 20 мм и стоканального анализатора импульсов. Расчет сечений образования отдельных радиоизотопов производился с учетом геометрии, поправок на самопоглощение, поглощение в слое воздуха, в окошке счетчика и на отражение от подложки. Точность определения сечений лежит в пределах ±30%, в некоторых случаях ошибка могла достигать 50%.

Результаты и обсуждения

При облучении U^{238} ионами Ne^{22} образуется составное ядро 102^{260} . При энергии налетающей частицы 6,5 Мэв на нуклон, при которой мы работали, вероятность захвата только части налетающего ядра не будет превышать $10-15\%^{/7/}$. Составное ядро легко делится, так как по данным Тарантина^{/6/}, отношение вероятности деления к вероятности испускания нейтронов в одном акте ($\Gamma f / \Gamma m$) для ядер с Z > 100 – 10. Поэтому при облучении U^{236} ионами Ne^{22} , в основном, делится ядро 102^{260} или 102^{259} . Энергия возбуждения делящегося ядра, которая в нашем случае достигает 80 Мэв, приводит к увеличению числа нуклонов (нейтронов), испускаемых при делении. К тому же делящееся ядро является нейтронодефицитным. Поэтому наиболее вероятный заряд Z_p осколков с данным массовым числом не будет, по-видимому, очень отличаться от наиболее стабильного ядра Z_A^{\prime} т.е. стабильные изотопы возникают со значительным независимым выходом; возможно даже образование ядер с недостатком нейтронов. Для определения кумулятивных выходов из экспериментальных данных необходимо знать количество испускаемых нейтронов и функцию распределения заряда при делении^{/3/}. Количество вылетающих нейтронов определялось приблизительно путем сравнения выходов изотопов У⁹⁹, Zr^{98,97}, Ru^{103,105}, Br⁸³ и Ga^{72,73} с выходами изотопов лантанидов в предположении, что кривая выходов симметрична. Кроме того, проводилась оценка этой величины по известной энергии возбуждения^{/3/}. При начальной энергии ионов Ne²² 145-150 Мэв среднее число вылетающих нейтронов, рассчитанное таким способом, составляет ~12. Зависимость распределения заряда при делении выражается статистической функцией

$$P = \frac{1}{\sqrt{\pi c}} \cdot e^{-(z-z_p)^2/c}$$

Константа С в вышеприведенной формуле была определена приблизительно по выходам пар изобар Ce^{143} / Pr¹⁴³ , Nd¹⁴⁹ / Pm¹⁴⁹ , Sm¹⁵⁶ / Ev¹⁵⁶ , Dy¹⁶⁶ / Ho¹⁶⁶ .

Методом последовательных приближений с использованием выходов всех экранированных ядер значение этой константы было уточнено и она оказалась равной 2,1 (рис. 1). Наиболее вероятный заряд рассчитывался согласно гипотезам одинакового смещения заряда ^{/9,10/} и пропорционального распределения заряда ^{/11/}; значения Z_A брались из работы Кориелла ^{/12/}. Лучшее согласие было достигнуто при применении гипотезы одинакового смешения заряда в предположении, что испускается 12 нейтронов. Разность $Z_A - Z_p$ составляет 0,5-1,5.

Из экспериментальных выходов были затем рассчитаны кумулятивные выходы для каждого массового числа. Полученные величины выходов продуктов деления приведены в таблице 1 и на рис. 2. Было идентифицировано 49 изотопов с массовыми числами от 72 до 179. Благодаря большой интенсивности пучка ионов Ne²² при облучении и четкому разделению РЗЭ (рис. 3) мы могли определить выходы деления изотопов всех редкоземельных элементов. Так же как и в первой работе^{/3/} были обнаружены только два изотопа тербия: Tb

с более высоким и *Тb¹⁶³* с более низким выходами, чем это следует из кривой выходов.

Во фракциях *Tu*, *Er* и *Ho* было доказано присутствие β^+ активных изотопов. Из нейтронодефицитных изотопов удалось идентифицировать *Tu¹⁶⁷*.

Среди изотопов Tu был найден новый β излучатель с периодом полураспада $T=7,8\pm0,5$ часов и энергией у -излучения 0,40±0,02 Мэв (возможной 0,48 Мэв) (рис. 4). Исходя из величины выхода, мы предполагаем, что это, вероятно, Tu^{173} . Это предположение хорошо согласуется с недавно опубликованными данными о получении этой активности японскими учеными $^{15/}$ предположительно при реакции Yb^{174} (у, р) Tu^{179} (химическая идентификация не проводилась).

Рассчитанное из приведенной кривой среднее сечение деления в пределах энергии частицы от 150 Мэв до 105 Мэв (кулоновский барьер) составляет приблизительно 2 барна.

Из сравнения кривых выходов продуктов деления U^{238} ионами Ne^{22} , нейтронами деления^{/14/} и U^{238} а -частицами с энергией 32,8 Мэв^{/13/} (рис. 2) видно, что кривая выходов продуктов деления U^{238} ионами Ne^{22} намного шире и максимум находится около массы 124. Это находится в согласии с оценкой испускания 12 нейтронов при делении. Видно также, что при делении из состояния с высокой энергией возбуждения увеличивается как вероятность симметричного деления, так и вероятность очень несимметричного деления.

5

В заключение авторы считают своим долгом выразить благодарность Г.Н.Флерову за интерес к работе, Н.И. Тарантину за обсуждение результатов, Ван Тун-сэну и группе обслуживания циклотрона за помощь при проведении экспериментов.

Литература

- 1. F.Brown, M.R.Price, H.H.Willis, J.Inorg. Nuclear Chem. 3, 9 (1956).
- 2. Н.И. Тарантин, Ю.В. Герлит, Л.И. Гусева, Б.Ф. Мясоедов, К.В. Филиппова, Г.Н. Флеров, ЖЭТФ, <u>34</u>, 316 (1958).
- И.Брандштетр, Ван Тун-сен, В.Ермаков, И.Звара, Т.Зварова, В.Кноблох, М.Крживанек, Я.Малы, Су Хун-гуй. Препринт ОИЯИ 1015 Дубна 1962.
- 4. В.А. Друин, И. Брандштетр, Я. Малы. Препринт ОИЯИ, Р-875
- 5. Г.Беранова, И.Брандштетр, В. Друин, В.Ермаков, Т.Зварова, М.Крживанек, Я.Малы, С.Поликанов, Су Хун/гуй. Препринт ОИЯИ Р-866. Дубна 1961.
- 6. И.Брандштетр, В.В.Волков, В.А.Ермаков, Т.С.Зварова, М.Крживанек, Я.Малы, Су Хунгуй. Препринт ОИЯИ 990 Дубна 1961.
- ⁷. H.C.Britt, A.R.Quinton, Phys. Rev. <u>124</u>, 877 (1961).
 8. Н.И.Тарантин. ЖЭТФ, <u>38</u>, 250 (1960).
- 9. L.E.Glendenin, C.D.Coryell, R.R.Edwards, Radiochemical Studies. The Fission Products N.N.E.S. div IV, 449 (1951).
- 10. A.C.Pappas, Proc. Intern. Conf. of the Peaceful Uses of Atomic Energy 7, 19 (1956).
- 11. R.H.Goeckerman, I.Perlman, Phys. Rev. 76, 628 (1949).
- 12. C.D.Coryell, Amer. Rev. Nucl. Sci. vol. 2, 305, (1953).
- 13. R.Vandenbosch, T.D.Thomas, S.E.Vandenbosch, R.A.Glass, G.T.Seaborg Phys. Rev. III, 1358 (1958).
- 14.R.N.Keller, E.P.Steinberg, L.E.Glendenin, Phys. Rev. <u>94</u>,969 (1954).
 15. Tokihoro Kuroyanagi, Haruo Yuta, Kasuke Takahashi, Haruhiko Morinaga I.Phys. Soc. Japan 16, 2393 (1961).

Рукопись поступила в издательский отдел 13 декабря 1962 года.

Изотоп	изотопа М барн	цепочки кумулятивное (М барны)	Изотоп	изотопа М барн	цепочки кумулятивное (М барны)
72 Ga	0,35	0,6	149 Pm	10,2 ¹	42
Ga ⁷³	0,50	1,2	Pm ¹⁵⁰	11,5 ¹	35
83 Br	7	14	181 Pm	21	32
90 Y	4,5 ¹	19	1 5 3 Sm	23	32
92 Y	22	20	186 S 12	5,7	18
93 Y	17,5	27	Eu 186	13 ¹	24
Z; 98	25	32	187 Eu	13	20
2r 97	30	33	G d 189	13	19
103 Ru	36,5	50	161 Tb	16	23
106 Ru	30	52	163 Tb	0,8	2,2
109 Rd	47	52	168 Dy	3,5	7,8
1 12 P d	42	68	Dy	4,3	10
127 Te	27 ¹	70	166 Ho	3,2	8,8
T e 132	12	60	167 Но	4,6	8,1
133 I	32	71	169 Er	2,9	4,2
1 2 3 8	15	71	171 Er	2,0	4,5
140 La	21,5 ¹	55	172 Er	0,65	2,6
141 La	32	55	16y Tu	1,0 ¹	8,3
Ce ¹⁴³	35	52	Tu 173	1,15 ¹	3,2
142 Pr	12,3 ¹	50,5	Ta 173	0,97	2,2
14 S Pr	13,8 ¹	50	¥ b 178	0,91	1,6
Pr 145	30	40	Y b 177	0,171	1,0
147 Nd	35 /	43	177 Lu	1,2	1,8
149 Nd	18	32	179 Lu	0 ,23	0,6
148 Pm	11.3 ¹	40,5			

Таблица 1

¹ Независимый выход.

Рис. 1. Распределение осколков по заряду при делении *U*²³⁶ ионами *Ne*²².

Рис. 4. у -спектр фракции Ти спустя 7 часов после окончания облучения.

Рис. 3. Хроматографическое разделение тяжелых редкоземельных элементов лактатом аммония при 87, С. Колонка 2х90 мм, смола дауэкс - 50 х 12, размер смолы в среднем 12 мк.