

3.

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

Р. Рончка

P-1137

НОВАЯ. ФОРМУЛИРОВКА СТАТИСТИЧЕСКОЙ ТЕОРИИ МНОЖЕСТВЕННОГО РОЖДЕНИЯ ЧАСТИЦ

Дубна 1962 г.

Р. Рончка^{х/}

НОВАЯ ФОРМУЛИРОВКА СТАТИСТИЧЕСКОЙ ТЕОРИИ МНОЖЕСТВЕННОГО РОЖДЕНИЯ ЧАСТИЦ

х/ Прикомандирован из Института ядерных исследований, Варшава, Польша.

,

Аннотация

В этой работе учтено сохранение линейного момента и момента количества движения в статической теории множественного рождения частиц. Получены удобные формулы для вероятности перехода в случае периферических столкновений.

> R.Raczka A NEW FORMULATION OF THE STATISTICAL THEORY OF MULTIPLE PARTICLE PRODUCTION

Abstract

The angular momentum and momentum conservation in the statistical theory of multiple particle production is taken into account. Convenient formulas for the transition probability have been obtained for the case of peripheral collisions.

Введение

Описание переферического столкновения с помощью модели множественного рождения частиц Ферми в импульсном представлении является довольно трудным. Однако, из опыта следует, что периферическое столкновение играет существенную роль в реакциях элементарных частиц высокой энергии /1/. Поэтому желательно модифицировать первоначальную теорию Ферми, чтобы учесть этот аспект столкновения. За последние годы многие авторы /например Коба, Кук, Церулус и Барашенков/ дали новую версию статистической теории множественного рождения частиц, в которой учли сохранение углового момента или "периферичности" столкновений /2/.

В данной работе, используя представление углового момента для релятивистских частиц^{/3/}, мы даем новую формулировку модели Ферми, в которой учитываем сохранение полной энергии, импульса и момента количества движения, а также другие симметрии.

Исходя из той же статистической гипотезы, которая используется и в обычной формулировке Ферми в импульсном представлении, мы получаем более простое выражение для вероятности перехода. Более того, мы получаем явную зависимость вероятности перехода от полного момента количества движения системы, если только он определен, или параметр столкновения, если мы имеем столкновения с различными моментами количества движения.

В разделе 1 мы выразили вероятность перехода для произвольной реакции через новые квантовые числа. В разделе 2 дана новая формулировка модели Ферми и конечные формулы для вероятности перехода. В разделе 3 дан второй возможный подход к стат тистической теории множественного рождения частиц. Наконец в разделе 4 демонстрируются простейшие приложения.

1. Выражение вероятности перехода через новые переменные

В соответствии с теорией S -матрицы, вероятность перехода из начального состояния "*i*" к некоторому набору возможных конечных состояний N частиц в импульсном представлении дана в выражении

$$W_{N} = (2\pi)^{3N+2} \sum_{\nu_{1},...,\nu_{N}} \int \left[\prod_{i=1}^{N} \frac{d_{3}k_{i}}{2k_{0i}} \right] \delta^{(4)} (P - \sum_{i=1}^{N} k_{i}) | \langle k_{i} \nu_{1} T_{1} T_{x_{1}},...,k_{N} \nu_{N} T_{N} T_{x_{N}} | M | i \rangle | , \quad /1/$$

где мы описываем вектор одночастичного состояния импульсом \vec{k}_i , проекцией спина ν_i и изоспином T_i , T_{s_i} , $[k_i = (k_{0_i}, -\vec{k}_i), k_i^2 = k_i^2]$. Если мы учтем сохранение полного изоспина и тождество частиц, то получим (4/2):

$$W_{N} = (2\pi)^{-3N+2} \frac{P_{TT3}^{*}}{\Pi(Ni!)} \sum_{\nu_{1}, \dots, \nu_{N}} \int \left[\prod_{i=1}^{N} \frac{d_{3}\vec{k_{1}}}{2k_{0}} \right] \delta^{(4)}(P - \sum_{i=1}^{N} ki) | < k_{1}\nu_{1}, \dots, k_{N}\nu_{N}| M |i>|^{2}.$$
 (2/

Общие формулы для $P^*_{TT_3}$, когда $T_{z_1},...,T_{z_N}$ определены, даны Шапиро^{/5/}и Церулусом^{/6/}.

Теперь мы выражаем вероятность перехода через переменные углового момента представления для N релятивистских частиц^{3/}. Чтобы описать состояние N частиц, мы используем следующие квантовые числа: P, J, J_x , ℓ_2 , s_2 , j_2 , ϵ_2 ,..., ℓ_{N-1} , s_{N-1} , j_{N-1} , ϵ_{N-1} , ℓ_N , s_N , ϵ_N .

Физическое содержание этих переменных очевидно из следующих выражений:

Используя векторы состояния, определенные этими квантовыми числами, мы можем построить инвариантный единичный оператор в гильбертовом пространстве прямого произведения векторов *N* одночастичных состояний.

$$I_{N} = \sum_{J,J_{\pi},\alpha_{N}} \int \left| \overrightarrow{P}, J_{\pi} \left[\epsilon_{N}, J \right] \alpha_{N}, \epsilon_{2}, \dots, \epsilon_{N} \right| d\epsilon_{2} \dots d\epsilon_{N} \frac{d_{3}\overrightarrow{P}}{2P_{0}} < P J_{\pi} \left[\epsilon_{N} J \right] \dots \left| . \right| .$$

Здесь a_N обозначает набор дискретных квантовых чисел ll_2 , s_2 , j_2 ,..., $l_{N-1}s_{N-1}j_{N-1}$, l_Ns_N Теперь, используя тождество

$$|\langle k_{1}\nu_{1},..,k_{N}\nu_{N}|M|i\rangle|^{2} = \langle k_{1}\nu_{1}|I_{N}|M|i\rangle\langle i|M^{*}|I_{N}|k_{1}\nu_{1}\rangle,$$
 (5/

мы можем ввести новые временные в выражение /2/ для вероятности перехода.

$$W_{N} = \mathscr{E}_{i} P_{TT_{3}}^{*} \sum_{\nu_{1},\dots,\nu_{N}} \sum_{j'J'_{x}\alpha_{N}} \sum_{J''J'_{x}\alpha_{N}} \int \prod_{i=1}^{N} \frac{d_{3}\vec{k}_{i}}{2k_{o_{i}}} - \int \delta^{(4)} \left(P - \sum_{s=1}^{N} k_{s}\right) \cdot \int \left[\prod_{s=2}^{N} d\epsilon'_{s} d\epsilon''_{s}\right] \times \\ \times \int \frac{d_{3}\vec{P}'}{2P_{0}'} \frac{d_{3}\vec{P}''}{2P_{0}'} \cdot \langle k_{i} \nu_{i} | \vec{P}' J'_{x}[\epsilon_{N}'J'] \dots \rangle \langle P' J'_{x}[\epsilon_{N}', J'] \dots | M | i \rangle \times \\ \times \langle i | M^{*}| P'' J''_{x}[\epsilon_{N}'', J''] \dots \rangle \langle P'' J''_{x}[\epsilon_{N}'', J''] \dots | k_{i} \nu_{i} \rangle.$$

После довольно громоздких вычислений получаем следующее выражение:

$$W_{N} = g_{i} P_{TT_{3}JJ_{x}a_{N}}^{*} \int d\epsilon_{N} \cdot \cdots \int d\epsilon_{2} \frac{d_{3}P}{2P_{0}} \delta^{4}(P-P_{i}) < P_{j} J_{x}[\epsilon_{N}, J] a_{N}, \epsilon_{2}, \dots \epsilon_{N}|M|i>|^{2} / 7/2$$

Это выражение, в самом деле, полностью эквивалентно выражению /2/ для вероятности перехода в импульсном представлении и, благодаря свойствам вектора состояний

 $|P, J_{2}[\epsilon_{v}, J] a_{N} \epsilon_{2}, ..., \epsilon_{N} >$, может рассматриваться в произвольной лоренцовой системе.

Однако, чтобы получить физическое толкование индексов *J* и *J*₂, мы рассмот – рим выражение /7/ в с.ц.м. *N* -частиц. В этой системе *E* = ϵ_N , и, проводя интегрирование дельта-функций, получаем:

$$W_{N} = g_{I} P_{TT_{g}}^{*} (2E)^{-1} \sum_{\substack{JJ_{g}a_{N} \\ i=I}} \int_{K_{g}}^{E-\kappa_{N}} d\epsilon_{N-1} \cdots \int_{i=I}^{\sigma} d\epsilon_{2} | < \vec{P} = 0, J_{g}[E, J]a_{N}, \epsilon_{2}, ..., \epsilon_{N} |M| i > |^{2}/8/$$

После интегрирования дельта-функций законы сохранения полной энергии и импульса наложили, естественно, определенные пределы интегрирования по переменным $\epsilon_2, ..., \epsilon_{N-1}$. Используя определение ϵ_2 (3) и законы сохранения, получаем соотношение:

$$\epsilon_{\mathfrak{s}-1}^{2} = \epsilon_{\mathfrak{s}}^{2} + \kappa_{\mathfrak{s}}^{2} - 2\epsilon_{\mathfrak{s}}E_{\mathfrak{s}},$$

здесь E_s представляет энергию "s "частицы в с.ц.м. 1,2 ..., s частиц. Далее с помощью соотношения

$$E_{\theta_{max}} = \left[\epsilon_{\theta}^{2} + \kappa_{\theta}^{2} - \left(\sum_{i=1}^{n} \kappa_{i}\right)^{2}\right] \left(2\epsilon_{\theta}\right)^{-1}$$

$$/9/$$

И

мы можем установить все пределы интегрирования в выражении /8/.

2. Мод.ель

2.1. Формула для вероятности перехода с использованием статистической гипотезы

В физике элементарных частиц высокой энергии, когда в конечном состоянии имеется много релятивистских частиц, мы не можем почти ничего сказать о поведении квадрата матричного элемента. С другой стороны, ясно, что в таких процессах, когда в конечном состоянии мы имеем большое число частиц, квадрат матричного элемента слабо зависит от квантовых чисел отдельной частицы. Итак, можно положить, как и в первоначальной формулировке Ферми, что все конечные состояния N частицы, допускаемые законами сохранения, равновероятны. В самом деле, такая статистическая гипотеза соответствует замене квадрата матричного элемента некоторой постоянной, которая зависит, однако, от числа частиц N в конечном состояния. В такой формулировке по соображениям размерности эта постоянная может иметь вид R^{N-2} , где R^{-1} имеет размер массы. Применяя это предположение, из формулы /8/ получаем

$$W_{N} = g_{I} \frac{P^{*}R^{N-2}(2E)^{-I} \sum_{j=1}^{N-1} \int d\epsilon_{N-1} \cdots \int d\epsilon_{2}}{\int J_{s} \ell_{2} \ell_{2} \ell_{2} \int \sum_{k=1}^{N-1} K_{I} + K_{2}} .$$
 /10/

В теории Ферми постоянная, которая заменяет квадрат матричного элемента, рассматривалась как некоторый небольшой объем взаимодействия ^{/7/}. В настоящей формулировке постоянную *R* мы можем рассматривать как некоторый "радиус" взаимодействия. В самом деле, независимо от того, как мы назовем эти постоянные, они всегда являются произвольным параметром модели и их значение может быть установлено только из сравнения с экспериментальными данными.

В принципе возможно, что благодаря тому, что постоянная связи для различных классов частиц различна, мы должны предположить, что рассматриваемая постоянная зависит от вида частиц в конечном состоянии. Одновременно как и в первоначальной формулировке Ферми мы можем положить, что радиус взаимодействия для *п* -мезонов и нуклонов отличается от радиуса для *К* -мезонов и странных частиц.

Чтобы рассчитать число приемлемых состояний /10/, мы сначала проинтегрируем по непрерывным переменным

$$\sum_{\substack{N=1\\s=1}}^{E-\kappa_s} d\epsilon_{N-1} \cdots \int_{1}^{\epsilon_3-\kappa_3} d\epsilon_2 = \frac{(E-\sum_{s=1}^N K_s)^{N-2}}{(N-2)!} .$$
(11/

Далее заметим, что угловые моменты $s_2, ..., s_N$, $j_2, ..., j_{N-1}$ играют роль промежуточных угловых моментов, полученных при сложении $\ell_2, ..., \ell_N$, $\sigma_1, ..., \sigma_N$ / см. ^{/3/}/. Чтобы провести суммирование по дискретным индексам $\ell_2, s_2, \gamma_2, ..., \ell_N, s_N$, мы рассчитаем сначала полное число независимых собственных состояний угловых моментов, полученных из сложения угловых моментов $\ell_2, ..., \ell_N, \sigma_1, ..., \sigma_N$ на J. Это число собственных состояний дано известным коэффициентом Коба $^{/8/} Z_{2N}(\ell_2, ..., \ell_N, q_..., \sigma_N; J)$. Мы получаем

$$W_{N} = g_{I} P_{TT_{3}}^{*} \frac{\left[\left(E - \sum_{s=1}^{N} \kappa_{s}\right)R\right]^{N-2}}{2E(N-2)!} \sum_{J, \ell_{2}, ..., \ell_{N}} (2J+1) Z_{2N}(\ell_{2}, ..., \ell_{N}, \sigma_{I}, ..., \sigma_{N}, J). / 12/$$

Благодаря тому, что коэффициент $Z_{2N}(\ell_2,..,\ell_N,\sigma_1,..,\sigma_N;J)$ обращается в нуль, если мы не можем сложить угловые моменты $\ell_2,..,\ell_N,\sigma_1,..,\sigma_N$, чтобы получить данную величину J, мы можем просуммировать по всем возможным значениям $\ell_2,..,\ell_N,J$. Мы можем установить верхние пределы для моментов $\ell_2,..,\ell_N$ и J, используя определение ℓ (i = 2,..,N) и J и применяя классическое рассмотрение, правдоподобное в случае столкновения очень большой энергии.

$$J_{max} = p_{cms} \cdot \rho$$

$$\ell_{i_{max}} = (E - \sum_{s=i+1}^{N} \kappa_s) R,$$
(13/

где

$$p_{cms} = (2E)^{-1} \{ [E^2 - (m_1 + m_2)^2] [E^2 - (m_1 - m_2)^2] \}^{\frac{1}{2}}$$

Здесь р представляет момент сталкивающихся частиц в с.ц.м. и ρ -параметр столкновения, *R* -радиус взаимодействия.

Проводя в формуле /12/ суммирование по всем дискретным квантовым числам, мы получаем N N-2

$$W_{N} = g_{i} P_{TT_{3}}^{*} \frac{\left[\left(E - \sum_{s=1}^{N} \kappa_{s}\right)R\right]}{2E(N-2)!} \cdot f_{N}(\sigma_{i}, E, \rho), \qquad (14/$$

где

W

$$f_N(\sigma_i, E, \rho) = \frac{2}{\pi} \int_0^{\pi} dx \frac{\left\{\prod_{i=1}^N \sin\left[(2\sigma_i + 1)x\right]\right\}}{\sin x} \times \frac{1}{\sin x}$$

$$\times \{\prod_{s=2}^{N} \sin^{2} [(E - \sum_{i=s+1}^{N} \kappa_{i}) R + 1] \cdot x\} \cdot \{\frac{\sin [(2p_{cms}; \rho + 2)x]}{4 \sin^{2} \frac{x}{2}} - \frac{(p_{cms}; \rho + 1) \cos [(2p_{cms}; \rho + \frac{3}{2})x]}{\sin \frac{x}{2}}\}.$$

Если $\rho \approx R$, мы должны иметь дело с исключительно периферическим столкновением и когда $\rho \approx 0$ мы имеем центральное столкновение.

2.2 Дискуссия

Чтобы получить формулу /14/ для вероятности перехода, мы исходили из той же статистической гипотезы, что и в формулировке Ферми в импульсном представлении. Однако мы видим, что несмотря на то, что в нашей формулировке мы учитываем сохранение энергии, момента и углового момента, конечное выражение /14/ для вероятности перехода проще чем в теории Ферми в импульсном представлении. Именно, в данном случае, независимо от числа частиц в конечном состоянии, мы можем рассчитать только единственный интеграл /15/ вместо (3N-4) — кратных интегралов в предыдущей формулировке.

В самом деле, результаты полученные из модели Ферми, находятся в противоречии с экспериментальными данными для такой реакции, в которой периферическое столкновение играет существенную роль^{/1/}. Мы надеемся, что в настоящей формулировке, благодаря явной зависимости вероятности перехода от параметра столкновения, будет возможно объяснить свойства периферического столкновения.

Далее отметим, что зависимость от спинов частиц сильно отличается по сравнению с зависимостью от спинов в модели Ферми. Вместо довольно сомнительного коэффициента типа $\prod_{i=1}^{N} (2\sigma + 1)$ мы имеем зависимость типа /15/, которая налагается законом сложения угловых моментов.

Благодаря тому, что начальное выражение /7/ и /8/ и формулировка модели явно лоренц-инвариантны, вероятность перехода также лоренц-инвариантна. Чтобы получить формулы для вероятности перехода в произвольной лоренцовой системе, мы должны лишь заменить энергию E на $[p^{e_2}]^{\frac{1}{2}}$, где $p^e = [E^e, -\vec{p}^e]$ -полный момент в рассматриваемой системе.

В особом случае, когда полный угловой момент определен, мы получаем из /2/ следующую формулировку для вероятности перехода

7

$$W_{N} = (2J+1)g_{i}P_{TT_{3}}^{*} \frac{[(E-\sum_{o=1}^{N}K_{o})R]}{2E(N-2)!} \psi_{N}(\sigma_{i}, E, J),$$
 /16/

где

$$\psi_{N}(\sigma_{i}, J, E) = \frac{2}{\pi} \int_{0}^{\pi} dx \frac{\{\prod_{i=1}^{N} sin [(2\sigma_{i}+1)x]\} \{\prod_{i=1}^{N} sin^{2}[(E-\sum_{i=1}^{N} K_{i})R+1], x\} sin [(2J+1)x]}{sin x}}{sin x}.$$
(17/

Исходя из выражения /16/, мы можем явно показать, как полный угловой момент влияет на вероятность перехода в случае столкновения очень большой энергии с большим угловым моментом /см. § 4/.

2.3. Взаимодействие в конечном состоянии

Мы можем рассмотреть частично взаимодействие в конечном состоянии, учитывая при расчете вероятности перехода все каналы с резонансными состояниями частиц, что приводит к тому же конечному состоянию. Мы рассматриваем резонансное состояние вида """ как квазичастицу с массой M_{i} , спином S_i и изоспином T_i T_{zi} . Пока мы знаем десять резонансных состояний частиц, а именно,

η; ω, ρ, ζ, K*, K*, N*, Λ*, Σ*, Ξ * .

Чтобы полностью воспроизвести физические черты реакций с элементарными частицами, мы должны рассмотреть все промежуточные состояния с резонансными квазичастицами. В общем случае, когда мы имеем в промежуточном состоянии n_1 квазичастицы типа η , $n_2 \omega$, ..., $n_{10}\Xi^*$, выражение для вероятности перехода имеет вид:

$$W_{N} = g_{i}(n_{s}) P_{TT_{SC}}^{*}(n_{s}) \frac{\left[\left(E - \sum_{g \neq i} K_{s} - \sum_{g \neq i} n_{g} M_{g}\right) R\right]}{2E \cdot \left(N' - 2\right)!} \psi_{N}(\sigma_{i}, E, \rho, n_{g})$$

$$N' = N - 2(n_1 + n_2) - \sum_{i=3}^{10} n_i; \qquad N'' = N - 3(n_1 + n_2) - 2(\sum_{i=3}^{10} n_i)$$
 (18)

$$\psi_{N}(\sigma_{i}, E, \rho, n_{o}) = \frac{2}{\pi} \int_{0}^{\pi} dx \left\{ \prod_{i=1}^{N^{n}} \frac{\sin[(2\sigma_{i}+1) x]h(i)}{\sin^{3N^{n}-3}} \right\} \left\{ \prod_{k=1}^{10} \frac{\sin[(2S_{k}+1)x]f_{k}(M_{o})}{\sin^{2N}(2S_{k}+1)} \right\} \left\{ (M_{o}) \right\} \left\{ e(\rho) \right\}$$

$$\begin{split} & f_k(M_{\bullet}) = \prod_{r=1}^{n_k} \sin^2 \{ [E - (n_k - r)M_k - \sum_{s=k+1}^{10} n_s M_s] R + 1 \} x; g(\rho) = \frac{\sin[(2p_{oms}\rho + 2)x]}{4\sin^2 \frac{x}{2}} - \frac{\cos[(2p_{oms}\rho + \frac{3}{2})x]}{[p \rho + 1]^{-1}\sin \frac{x}{2}} \\ & h(i) = \sin^2 \{ [(E - \sum_{s=i+1}^{N''} \sum_{s=1}^{i0} n_s M_s) R + 1] \times \} \quad i = 2, 3, ..., N \quad h(1) = 1 \end{split}$$

3. Второй подход

Так как в случае образования множества частиц в столкновении довольно трудно сказать что-нибудь о поведении соответствующего матричного элемента, все что мы можем сделать - это учесть все симметрии частиц в конечном состоянии. Однако в предыдущей формулировке трудно рассматривать такие симметрии конечного состояния, как, например, пространственную четность или статистики Бозе-Эйнштейна и Ферми-Дирака. С другой стороны, мы знаем, что, рассматривая, например, статистику Бозе-Эйнштейна даже предварительно, мы получаем лучшее согласие теоретического предсказания с экспериментальными данными /9/.

Чтобы учесть все возможные симметрии частиц в конечном состоянии, мы заменим неизвестный квадрат матричного элемента вероятностью нахождения N частиц с определенным полным моментом, энергии и угловым моментом в некотором сферическом объеме взаимодействия. В принципе это соответствует замене

$$|\langle \vec{p}, J_{\mathbf{z}}[E, J] \alpha_{N} \epsilon_{2}, \dots, \epsilon_{N} | M | i \rangle |^{2} \rightarrow \int d\vec{p} \dots \int d\vec{p} \psi^{*}(\vec{p}) \psi_{\gamma_{N}}(\vec{p}) , \qquad (19)$$

где $\psi(\vec{p})$ -волновая функция углового момента для N релятивистских частиц.

 $\gamma_N \equiv P, J, J_x, \ell_x, s_2, j_2, \epsilon_2, ..., \ell_{N-1} s_{N-1} j_{N-1} \ell_N, s_N \epsilon_N u \vec{\rho}_2, ..., \vec{\rho}_N$ -относительные координаты. Явный вид нормализованной волновой функции углового момента для N релятивистских бесспиновых частиц суть $^{/10/}$:

$$\psi_{\gamma_{N}}(\rho) = \frac{e^{-iBi}}{B^{\frac{1}{2}}} \begin{bmatrix} N & \ell_{\bullet} \\ \Pi & i \\ \bullet = 2 \end{bmatrix} \frac{\partial q_{\bullet}}{A} \frac{\partial q_{\bullet}}{\partial \epsilon_{\bullet}} q_{\bullet} j \ell_{\bullet}(q_{\bullet}\rho_{\bullet}) \end{bmatrix} Y_{jM}(\Omega \rho), \qquad (20/2)$$

где

$$Y_{JM}(\Omega\vec{\rho}) = \sum_{\substack{\ell_{1s} \ m_{i}}} (\ell_{s}, \ell_{2}j_{s}) \ell_{ss} \ell_{2s} m_{s} \dots (\ell_{N}, j_{N-1}, J|\ell_{Ns} m_{Ns}, M) \prod_{i=2}^{N} Y_{\ell_{i}\ell_{is}}(\Omega \vec{\rho}_{i})$$

$$(21/2)$$

И

$$q_{a} = \lambda^{4} \left(\epsilon_{a}^{2}, \epsilon_{a-1}^{2}, \kappa_{a}^{2}\right) \left(2\epsilon_{a}\right)^{-1}$$

$$\lambda(a, b, c) = a^{2} + b^{2} + c^{2}, -2(ab + ac + bc)$$
 (22)

А -раднус большого объема нормализации,

В -якобиан преобразования переменных \vec{x}_1 ,..., \vec{x}_N в относительные координаты. Теперь, рассматривая предположение /19/, мы получаем из общей формулы /8/ следующее выражение для вероятности перехода:

$$W_{N} = g_{i} P_{TT_{g}}^{*} A_{i}^{N-1} (2E)^{-1} \Sigma_{j} \int d\epsilon_{N-1} \int d\epsilon_{j} \int d\epsilon_{j} \int d\vec{\rho} \int d\vec{\rho} \psi(\vec{\rho}) \psi(\vec{\rho}) /23/2$$

$$W_{N} = g_{i} P_{TT_{g}}^{*} A_{i}^{N-1} (2E)^{-1} \Sigma_{j} \int d\epsilon_{N-1} \int d\epsilon_{j} \int d\vec{\rho} \psi(\vec{\rho}) \psi(\vec{\rho}) /23/2$$

$$\int d\epsilon_{N-1} \int d\epsilon_{j} \int d\vec{\rho} \psi(\vec{\rho}) \psi(\vec{\rho}) /23/2$$

$$\int d\epsilon_{N-1} \int d\epsilon_{j} \int d\vec{\rho} \psi(\vec{\rho}) \psi(\vec{\rho}) /23/2$$

В последней формуле мы записываем, что интегрирование в переменных \vec{p} ,..., \vec{p}^* проводится по сферическому объему взаимодействия Ω. Строго говоря, мы имеем возможность принять сферический объем взаимодействия в координатах \vec{x} ,..., \vec{x}_N и,

$$W_{N} = (2J+1)g_{i}P_{TT_{3}}^{*} - \frac{[(E-\sum_{a=1}^{N}K_{a})R]}{2E(N-2)!} \psi_{N}(\sigma_{i}, E, J),$$
 (16/

где

$$\psi_{N}(\sigma_{i}, J, E) = \frac{2}{\pi} \int_{0}^{\pi} dx \frac{\{\prod_{i=1}^{N} \sin [(2\sigma_{i}+1)x]\}\{\prod_{i=2}^{N} \sin^{2} (E-\sum_{i=1}^{N} K_{i})R+1] \cdot x\} \sin [(2J+1)x]}{\sin x} .$$
(17/

N

Исходя из выражения /16/, мы можем явно показать, как полный угловой момент влияет на вероятность перехода в случае столкновения очень большой энергии с большим угловым моментом /см. 8 4/.

2.3. Взаимодействие в конечном состоянии

Мы можем рассмотреть частично взаимодействие в конечном состоянии, учитывая при расчете вероятности перехода все каналы с резонансными состояниями частиц, что приводит к тому же конечному состоянию. Мы рассматриваем резонансное состояние вида "i" как квазичастицу с массой M_i , слином S_i и изослином T_i , T_{zi} , Пока мы знаем десять резонансных состояний частиц, а именно,

 η ; ω , ρ , ζ , K^{\bullet} , K^{\bullet} , N^{\bullet} , Λ^{\bullet} , Σ^{\bullet} , Ξ^{\bullet} .

Чтобы полностью воспроизвести физические черты реакций с элементарными частицами, мы должны рассмотреть все промежуточные состояния с резонансными квазичастицами. В общем случае, когда мы имеем в промежуточном состоянии n, квазичастицы типа η, п₂ ω,..., п₁₀Ξ^{*}, выражение для вероятности перехода имеет вид:

$$W_{N} = g_{i}(n_{s}) P_{TT_{gE}}^{*}(n_{s}) \frac{\left[\left(E - \sum K s - \sum n_{s} n_{s} M_{s}\right) R\right]}{2E \cdot \left(N' - 2\right)!} \psi_{N}(\sigma_{i}, E, \rho, n_{s})$$

$$N' = N - 2(n_1 + n_2) - \sum_{i=g}^{10} n_i; \qquad N'' = N - 3(n_1 + n_2) - 2(\sum_{i=g}^{10} n_g)$$
 (18/

$$\psi_{N}(\sigma_{i}, E, \rho, \pi_{o}) = \frac{2}{\pi} \int_{0}^{\pi} dx \left\{ \prod_{i=1}^{N^{**}} \frac{\sin[(2\sigma_{i}+1) \mathbf{x}]h(i)}{\sin^{3N^{*}-3}} \right\} \left\{ \prod_{k=1}^{10} \frac{\pi}{\sin^{4}[(2S_{k}+1)\mathbf{x}]f_{k}(M_{o})} \right\} g(\rho)$$

$$f_{k}(M_{\bullet}) = \prod_{r=1}^{n_{k}} \sin^{2} \{ [E - (n_{k} - r)M_{k} - \sum_{s=k+1}^{10} n_{s}M_{\bullet}]R + 1 \} x; g(\rho) = \frac{\sin[(2p_{cm}\rho + 2)x]}{4\sin^{2}\frac{x}{2}} - \frac{\cos[(2p_{cm}\rho + \frac{3}{2})x]}{[p_{\rho}\rho + 1]^{-1}\sin\frac{x}{2}} + h(i) = \sin^{2} \{ [(E - \sum_{s=i+1}^{N''} - \sum_{s=i}^{10} n_{s}M_{s})R + 1] \times \} \quad i = 2, 3, ..., N \quad h(1) = 1 \}$$

3. Второй подход

Так как в случае образования множества частиц в столкновении довольно трудно сказать что-нибудь о поведении соответствующего матричного элемента, все что мы можем сделать - это учесть все симметрии частиц в конечном состоянии.

Однако в предыдущей формулировке трудно рассматривать такие симметрии конечного состояния, как, например, пространственную четность или статистики Бозе-Эйнштейна и Ферми-Дирака. С другой стороны, мы знаем, что, рассматривая, например, статистику Бозе-Эйнштейна даже предварительно, мы получаем лучшее согласие теоретического предсказания с экспериментальными данными /9/.

Чтобы учесть все возможные симметрии частиц в конечном состоянии, мы заменим неизвестный квадрат матричного элемента вероятностью нахождения N частиц с определенным полным моментом, энергии и угловым моментом в некотором сферическом объеме взаимодействия. В принципе это соответствует замене

$$| < \vec{p}, J_{\pi}[E, J] a_{N} \epsilon_{2}, ..., \epsilon_{N} | M | i > |^{2} \rightarrow \int d\vec{p} \ldots \int d\vec{p} \psi^{*}(\vec{p}) \psi_{N}(\vec{p}), \qquad /19/$$

где $\psi(\vec{\rho})$ -волновая функция углового момента для N релятивистских частиц.

 $\gamma_N \equiv P$, J, J_x, ℓ_x , s_2 , j_2 , ϵ_2 , ..., ℓ_{N-1} s_{N-1} j_{N-1} , ℓ_N , $s_N \epsilon_N$ u $\vec{\rho}_2$, ..., $\vec{\rho}_N$ -относительные координаты. Явный вид нормализованной волновой функции углового момента для N релятивистских бесспиновых частиц суть $^{/10/}$:

$$\psi_{\gamma_{N}}(\rho) = \frac{e^{-tEt}}{B^{\frac{1}{2}}} \begin{bmatrix} \Pi & i \left(\frac{2}{A} - \frac{\partial q_{\bullet}}{\partial \epsilon_{\bullet}}\right)^{\frac{1}{2}} q_{\bullet} j \ell_{\bullet}(q_{\bullet}\rho_{\bullet}) \end{bmatrix} Y_{JM}(\Omega_{\rho}^{\bullet}), \qquad (20/2)$$

где

$$\begin{split} Y_{J_{M}}(\Omega\vec{p}) &= \sum \left(\ell_{g}, \ell_{2} j_{g} \middle| \ell_{g_{g}}, \ell_{2} m_{g} \right) \dots \left(\ell_{N} j_{N-1}, J \middle| \ell_{N_{g}} m_{N_{g}}, M \right) \left[\prod_{i=2}^{N} Y_{\ell_{i}} \ell_{ig} \left(\Omega \vec{\rho}_{i} \right) \right] \\ & \ell_{ig} m_{i} \end{split}$$

И

$$q_{e} = \lambda^{42} \left(\epsilon_{e}^{2}, \epsilon_{e-1}^{2}, \kappa_{e}^{2}\right) \left(2\epsilon_{e}\right)^{-1}$$

$$\lambda \left(a, b, c\right) = a^{2} + b^{2} + c^{2}, -2\left(ab + ac + bc\right)$$
/22/

А -раднус большого объема нормализация,

В -якобиан преобразования переменных \vec{x}_1 ,..., \vec{x}_N в относительные координаты. Теперь, рассматривая предположение /19/, мы получаем из общей формулы /8/ следующее выражение для вероятности перехода:

$$W_{N} = g_{i} P_{TT_{3}}^{*} A^{N-1}(2E)^{-1} \sum_{j=1}^{E-K_{N}} \int_{0}^{\epsilon} g_{N-1} \int_{0}^{-K_{3}} \int_{0}^{\epsilon} d\vec{\rho} \int_{0}^{\epsilon} d\vec{\rho} \int_{0}^{\epsilon} d\vec{\rho} \psi(\vec{\rho}) \psi(\vec{\rho}) /23/2$$

В последней формуле мы записываем, что интегрирование в переменных β,..., ρ, проводится по сферическому объему взаимодействия Ω. Строго говоря, мы имеем возможность принять сферический объем взаимодействия в координатах \vec{x} ,..., \vec{x} , и, Производя интегрирование по переменным $\vec{\rho}_2$ и $\vec{\rho}_3$,мы получаем распределение "эф-

$$W_{3} \stackrel{\simeq}{=} \int_{2\kappa_{\pi}}^{M-\kappa_{\pi}} d\epsilon_{2} q_{2}^{2} q_{3}^{2} \frac{\partial q_{2}}{\partial \epsilon_{2}} \frac{\partial q_{3}}{\partial \epsilon_{3}} \left[\sum_{\ell_{1}} f_{\ell_{2}}(q_{2}) f_{\ell_{3}}(q_{3}) \right] = \int_{2\kappa_{1}}^{M-\kappa_{\pi}} d\epsilon_{2} \sum_{\ell_{2},\ell_{3}} \psi_{\ell_{2},\ell_{3}}(\epsilon_{2}) / (2\epsilon_{2})^{-1}; \qquad q_{3} = \lambda^{2} \left(M_{2}^{2}, \epsilon_{2}^{2}, K_{\pi}^{2} \right) \left(2\epsilon_{2} \right)^{-1}; \qquad q_{3} = \lambda^{2} \left(M_{2}^{2}, \epsilon_{2}^{2}, K_{\pi}^{2} \right) \left(2\epsilon_{2} \right)^{-1}; \qquad f_{\ell_{1}}(qR) = i_{\ell_{1}}^{2} (qR) - j_{\ell_{2}} j_{\ell_{1}+\ell_{1}}(qR) \qquad \ell > 0$$

$$(31/4)$$

Теперь,используя соотношение

где

мы получае

$$\epsilon_{2} = \left[M^{2} + K_{\pi}^{2} - 2ME_{\pi} \right]^{\frac{7}{2}}, \qquad (33)$$

$$= M - \frac{M^{2} - 3K_{\pi}^{2}}{2M}$$

$$W_{3} = \int_{K_{\pi}} dE_{\pi} \left[M^{2} + K_{\pi}^{2} - 2ME_{\pi} \right]^{\frac{7}{2}} \sum_{\ell_{2}, \ell_{3}} \psi_{\ell_{2}, \ell_{3}} \left[(M^{2} + K_{\pi}^{2} - 2ME_{\pi})^{\frac{7}{2}} \right]. \qquad (34)$$

Если мы положим, например, S=0 и $\pi=-1$, то мы имеем следующие допустимые комбинации ℓ_2 и ℓ_3 ; (0,0), (1,1),..., (N,N) Расчет показывает, если сумма $\ell_2 + \ell_3$ увеличивается на 2, то вклад от этой комбинации уменьшается на один порядок /13/. Чтобы получить распределение энергии мы можем, в принципе, ограничиться двумя первыми допустимыми комбинациями ℓ_2 и ℓ_3 . Обобщение описанного здесь метода для получения распределения энергии произвольной частицы в системе N частиц очевидно.

1/

Автор благодарен профессору Ю. Верле за интерес к настоящей работе и ценные советы. Автор также признателен В.С. Барашенкову за гостеприимство и полезные дискусии.

Литература

1. L.C.Grote et al. Nucl. Phys. 24, 300 (1961).

D.Cadwell, E.Bleuler, B.Elaner, L.W.Jones, B.Zacharow. (Intern. Conf. at High Energy Physics, Geneva, 1962).

R.Hagedorn. Intern. Conf. at High Energy Physics, Geneva, 1961.

2. Z.Koba. Nuovo Cim. 18, 608 (1960); Acta Phys. Pol. 20, 213 (1961).

F.Cock and J.Lepore. Phys. Rev. 120, 1028 (1960).

F.Cerulus. Nuovo Cim. 22, 958 (1961).

V.S.Barashenkov. Nucl. Phys. 15, 486 (1960); Nucl. Phys. 31, 308 (1962).

3. A.J. Macfarlane. Rev. Mod. Phys. 34, 41 (1962).

4. R.Hagedorn. Nuovo Cim. 15, 434 (1959).

5. Shapiro. Nuovo Cim. Suppl. 18, 41 (1960).

6. F.Cerulus. Nuovo Cim. Suppl. 19, 528 (1961).

7. M.Kretchmar. Ann. Rev. of Nucl. Sc. 11, 1 (1961).

8. Z.Koba. Bull. Polish. Ac. Sc. 9, 211 (1961).

9. G.Goldhaber, S.Goldhaber, W.Lee, A.Pais. Phys. Rev. 120, 300 (1960).

10. R.Roczka. Preprint JINR, Warsaw, Phys. Lett. (in print).

11 Z Koba. Bull. Polish. Ac. Sc. 9, 395 (1961).

12. T. Ericson. Nuovo Cim. 21, 605 (1961).

13. M. Majewski (private communication).