

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

J. F

- · · · ·

4.3

Л.Г. Заставенко, А. Чилок

P-1112

УГЛОВОЕ И ЭНЕРГЕТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ БЫСТРЫХ # -МЕЗОНОВ, ПРОНИКШИХ ИЗ АТМОСФЕРЫ НА БОЛЬШУЮ ГЛУБИНУ В ЗЕМЛЮ Л.Г. Заставенко, А. Чилок

P-1112

УГЛОВОЕ И ЭНЕРГЕТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ БЫСТРЫХ µ -МЕЗОНОВ, ПРОНИКШИХ ИЗ АТМОСФЕРЫ НА БОЛЬШУЮ ГЛУБИНУ В ЗЕМЛЮ

бан. алненный инсти The second s и ми и зах меслециясят JJMOTEKA

Дубна **1962** год

Аннотация

Подсчитано угловое и энергетическое распределение μ -мезонов, проникших в землю сверху, на большой глубине /4 ·10⁴ г/см²/ в области углов соз $\theta < -0,4$ / соз $\theta = 1$ соответствует направлению вниз /и энергий E > 0,75 Бэв.

L.G. Zastavenko, A. Chilok

ANGULAR AND ENERGY DISTRIBUTION OF FAST μ – JESONS PENETRATING DEEP INTO THE EARTH FROM THE ATMOSPHERE

Abstract

The angula: and energy distributions of μ - mesons penetrating deep into the Earth from above (the depth is $4 \cdot 10^4 \text{g/cm}^2$) in the angle region $\cos \theta < -0.4$ ($\cos \theta = 1$ corresponds to the downward direction) and in the energy range E > 0.75 BeV have been calculated.

 μ -мезоны, проникшие на глубину сверху и затем рассеявшиеся на большие углы, являются помехой в эксперименте, предлагаемом в^{/1/}. Целью настоящей работы является оценка этих помех в области углов $\cos \theta < -0.4$ и энергий E > 0.75 Бэв на глубине 4.10⁴ г/см². Угловое и энергетическое распределение μ – мезонов высоких энергий, приходящих на поверхность Земли сверху, мы берем в виде^{/2/}

$$F_{0}(>E, \theta) = N_{0}E^{-1,\delta}(1 + E\cos\theta_{0}/E_{\pi})^{-1},$$

111

где $E_{tr} = 100$ Бэв, $\cos \theta_{2} = Max \{\cos \theta, 1/8\}$,

$$\theta < \frac{\pi}{2}$$
, $N_0 = 0,033 \text{ cm}^{-2} \text{cek}^{-1} \text{стераd}^{-1} (\text{Бэв})^{1,5}$,

энергия Е в формуле берется в Бэв'ах;

$$f_{0}(E,\theta) = \frac{dF_{0}}{dE} = N_{0}E \frac{-1.5}{(1 + E\cos\theta)/E_{\pi}}, \qquad (2/2)$$

Мы будем считать, что проходя через слой вещества 1 г/см² µ-мезон теряет энергию

$$q = 2 M_{\text{PB}} c_{\text{M}} r^{2-1}$$
, /3/

что справедливо в существенной для нас области энергий **E** < 1000 Бэв. Без учета рассеяния распределение µ - мезонов на глубине x г/см² было бы

$$F_{o}(x, > E, \theta) = F_{o}(E + qx / \cos \theta, \theta).$$
 (4/

Эта формула дает следующее значение потока сверху вниз на глубине 🗴 :

$$2\pi \int F_0(x, > E, \theta) \cos \theta \cdot d\cos \theta = \frac{10 N_0}{9 \cdot 3.5} (qx)^{-1.5}$$

для глубины 4 10^4 г/см² поток составляет 4,5 10^{-5} частиц через 1 см² за секунду, то есть 1,2 10^8 частиц через 100 м² за месяц, что на восемь порядков больше, чем ожидаемое число μ - мезонов от нейтрино^{/1/}.

Рассеяние μ — мезонов в земле приводит к тому, что функция их распределения отлична от ^{/4/} и не равна нулю в области $\theta > \pi/2$; поскольку, однако, /как естественно ожидать/ эта функция резко убывает с ростом θ , то при данной энергии Eесть конус около направления вверх $\cos \theta < a(E)$ такой, что плотность μ —мезонов, пришедших сверху $F(x, > E, \theta)$ меньше плотности нейтринных μ —мезонов $F_{\nu}(x, > E, \theta)$ в нем. Получение оценки функции $F(x, > E, \theta)$ и является нашей целью, эта оценка дает возможность найти существенную для эксперимента, предлагаемого в^{/1/}, функцию a(t).

8 2. Рассеяние µ -мезонов

Рассеяние быстрого *µ* -мезона на ядре протекает различным образом в зависимости от величины передаваемого ядру импульса; для малых передач

$$\sigma(k, \cos \theta) = \sigma_{l}(k, \cos \theta) = \begin{pmatrix} 0 & \theta < \theta_{min} \\ 4r_{o}^{2} \left(\frac{\mu c^{2}}{k}\right)^{2} \frac{z^{2}}{4(1 - \cos \theta)^{2}} & \theta_{min} < \theta < \theta_{max} \end{pmatrix}$$

$$\theta_{min} = A^{1/3} (kr_{5})^{-1} , \quad \theta_{max} = A^{-1/3} (kr_{5})^{-1}$$

$$r_{5} = 10^{-8} \qquad r_{5} = 1,3 \cdot 10^{-13}$$

A -атомный вес, **z** -заряд ядра, μ - масса μ -мезона, r₀ = e²/(μc²) ^{/4/} при больших передачах импульса ядру происходит его расщепление; для упрощенного описания имеющей место здесь сложной картины мы принимаем, что рассеяние в этом случае происходит по отдельности, на каждом из протонов ядра как на свободном, что дает в пересчете на ядро

$$\sigma(k,\cos\theta) = \sigma_{2}(k,\cos\theta) = 4r_{0}^{2}\left(\frac{\mu c^{2}}{k}\right)^{2}\frac{zF}{4(1-\cos\theta)^{2}}, \quad \theta > \theta_{max}$$

$$F = \frac{\cos^{2}\frac{\theta}{2} + 2\frac{K}{M}\sin^{2}\frac{\theta}{2}\cos^{2}\frac{\theta}{2} + \left(\frac{K}{M}\right)^{2}\left[15\sin^{4}\frac{\theta}{2} + 3\sin^{2}\frac{\theta}{2}\cos^{2}\frac{\theta}{2}\right]}{1 + 2\frac{K}{M}\sin^{2}\frac{\theta}{2}}$$

$$(6)$$

Здесь энергии μ -мезона до и после рассеяния k и p связаны соотношением: $\frac{1}{p} = \frac{1}{k} + 1 - \cos \theta ,$ в котором мы пренебрегаем Массой покоя μ - мезона /поскольку нас интересует его энергия более 0,75 Бэв/ и берем массу нуклона М равной 1 Бэв.

Чтобы получить сечение на г/см² формулы /5/ и /6/ следует умножить на число л_ядер в 1 г вещества:

$$n_0 \stackrel{\text{m}}{=} \frac{1}{2MZ} = 3,1 \cdot 10^{23} / Z$$
. /7/

На основании данных о составе земли мы принимаем, Z = 12. Из /5/ находим средний квадрат угла отклонения µ -мезона при замедлении в земле от энергии k, до энергии k, :

$$\overline{\theta}^{2}(k_{1}, k_{2}) = 8.9 \cdot 10^{-3}(\frac{1}{k_{2}} - \frac{1}{k_{1}})$$

Таким образом в нашей задаче многократное рассеяние дает отклонения = 0,1 радиана, так что следует ожидать, что функция $F(x, > E, \theta)$ в интересующей нас области $\theta - \frac{\pi}{2} \approx 1$ в основном определяется одним однократным рассеянием, с некоторой поправкой за счет многократного рассеяния. Положив в /6/ F = 1, получаем оценку среднего числа соударений с отклонением на угол > $\theta > \theta_{max}$, которое μ мезон испытывает, замедляясь от энергии $k = \infty$ до энергии $k: N(k) \approx 4 \cdot 10^{-3} (\theta^2 k)^{-1}$; для θ = 0,1 и K = 1 Бэв это число есть 4 10⁻³. Таким образом, как правило, μ -мезон замедляется до энергии 1 Бэв, не испытав рассеяния на большой угол.

§ 3. Основные формулы

/8/

Наша задача сводится к решению кинетического уравнения

$$n \nabla_{x} f(\vec{x}, \vec{n}, k) = -n_{\sigma} \sigma(k) f + n_{\sigma} \int d\Omega(\vec{n}) \sigma_{s}(k, \vec{n}\vec{n}) f(\vec{x}, \vec{n}', k) +$$

$$n_{o}\left[dp'd\Omega(\overline{n}')\sigma_{2}(k,\overline{n}\overline{n}')f(\overline{x},\overline{n}',k)\delta\left[k-\phi(\overline{n}\overline{n}',p)\right]+q\frac{\partial f}{\partial k},\right]$$

$$\sigma(k) = \int d\Omega(\bar{n}') \left[\sigma_{n}(k,\bar{n}\bar{n}') + \sigma_{n}(k,\bar{n}\bar{n}')\right],$$

$$\phi(\overline{n}\overline{n'},p) = \left[\frac{1}{2} + 1 - \overline{n}\overline{n'}\right]^{-1}$$

функция σ(k, ñn') определена /5/и /6/, n₀ - /7/, q -/3ζ в области х n₀ > 9 при условии, что f совпадает с функцией /1.2/ в плоскости х n₀ = 9 для направлений n вниз: n̂n > 9.

Уравнение /3.1/ весьма сложно для решения в лоб. Вместе с тем, принимая во внимание специфику задачи, легко видеть, что функция

$$\int d\Omega(\bar{n}') \Phi(k, \bar{n} \bar{n}') \eta(\bar{n}_{o} \bar{n}') f_{o}(q, \frac{\bar{x} \bar{n}_{o}}{\bar{n}' \bar{n}_{o}}, \bar{n}' \bar{n}_{o})$$

является разумной аппроксимацией f(x, n, k).

В формуле /9/ Ф(k, nn') — решение уравнения /8/, не зависящее от ж и удовлетворяющее условию:

$$\Phi(k, nn') \rightarrow \delta(n - n') \quad \text{при} \quad k \rightarrow \infty,$$

$$\eta(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}$$

Функция $\vec{f}(\vec{\xi},\vec{n},k)$ как функция только от двух последних своих аргументов при фиксированном значении первого, есть не зависящее от координаты \vec{x} решение уравнения /8/, такое что определенный им поток через плоскость $\vec{x}\vec{n}_0 = 0$ в на правлении \vec{n} совпадает с потоком /2/ при энергии $\vec{k}_{\xi} = q \frac{\vec{\xi} \cdot \vec{n}_0}{n}$ / μ -мезоны, имеющие на уровне земли энергию ниже этой, на глубину $\vec{\xi}$ не попадают/. С дальнейшим ростом энергии $\vec{F} > \vec{k}_{\xi}$ поток f_0 убывает - как $\vec{z}^{-2,5}$, а поток от \vec{f} почти не меняется, поскольку, однако, вероятность рассеяния на большой угол с ростом энергии падаєт, то можно надеяться, что несмотря на разницу в порождающих потоках функции \tilde{f} и f близки близки друг к другу в интересующей нас области энергий /Е~5 Бэв/.

Таким образом, замысел конструкции /9/ состоит в том, что для данной глубины ξ строится функция $\vec{f}(\vec{\xi}, \vec{n}, k)$ – не зависящее от координаты решение уравнения /8/, порождающий которое поток /вернее, часть его, существенная на глубине $\vec{\xi}$ / близок к $f_{a}(2)$.

Сделаем еще следующее замечание: на глубину под землей x >> 4·10⁴ г/см² проникают лишь µ - мезоны, имеющие на поверхности земли энергию E >>100 Бэв. В этом случае становятся существенными радиационные потери и величина q /3/ зависит от энергии.

Имея нашу таблицу функции Ф(k, cos θ) распределение µ -мезонов на такой глубине можно рассчитать в два этапа: 1/ определяем распределение на глубине ≈x-4·10⁴ по формуле вида /4/, учитывающей однако зависимость q от энергии 2/ принимая это распределение за исходное, определим далее распределение на глубине

х по формуле вида /9/. Пересчет $\Phi(k, \cos \theta)$ для иных Z , чем взятое нами значение Z = 12 , можно выполнить в предположении линейной зависимости Φ от Z.

§ 4, Результаты расчета

Наиболее сложен расчет функции $\Phi(k, \vec{n}, \vec{n'});$ он был выполнен по методу перевала, описанному в^{/3/}. В таблице 1 даны значения функции – $lg \Phi(k, \vec{n}, \vec{n'})$.

В таблице II дана функция К(k, r), через которую интересующая нас величина

$$\phi(\mathbf{x}, \mathbf{k}, \tau) = - \int_{\mathbf{k}}^{\infty} d\mathbf{p} \int_{\mathbf{n}_{o} < \tau} d\Omega (\overline{\mathbf{n}}') \overline{\mathbf{n}}' \overline{\mathbf{n}}_{o} f(\mathbf{x}, \overline{\mathbf{n}}', \mathbf{p})$$

потока μ – мезонов с энергией более k Бэв в обратном конусе $\overline{n} \overline{n}_o < \tau$ за 1 сек. через площадку 1 см² на глубине (×/80) 4 · 10⁴ г см⁻² выражается так:

$$\phi(\mathbf{x}, \mathbf{k}, \tau) \cong 4\pi \, \mathsf{N}_{\mathbf{x}} \, \mathbf{x}^{-2, 5} \, \mathsf{K}(\mathbf{k}, \tau).$$

Здесь N - константа, входящая в формулу /1/. Для нашей глубины 4 · 10 ⁴ г см⁻² x = 80

$$4\pi N_0 x^{-2.5} = 7.2 \cdot 10^{-6} \text{ cm}^{-2} \text{ cek}^{-1}$$

Например, для k = 1 Бэв и r = -0.7, $\phi = 3 \cdot 10^{-14}$ мезона в 1 сек через 1 см^2 , т.е. 8 10^{-2} μ - мезона в месяц через 100 м².

В порядке обсуждения полученных результатов необходимо отметить, что они весьма близки к результатам простейшего расчета, учитывающего только однократное расреяние

$$(\phi(\mathbf{x}, k\tau) \rightarrow \phi_{\tau}(\mathbf{x}, k, \tau)).$$

Наибольшая величина отношения ϕ / ϕ получается, как этого и естественно ожидать, при k = 3/4, $\tau = -0.4$, и равна ≈ 4 ; при изменении k и τ вглубь рассмотренной области это отношение приближается к единице и даже становится меньше ее /см^{/3/} § 3/. Поскольку различие ϕ и ϕ_I в интересующей нас области невелико, то наш расчет по сравнению с простейшим обладает в основном лишь преимуществом большей надежности. Иначе: проведенный нами сложный расчет свидетельствует о том, что простейший расчет, учитывающий только однократное рассеяние, дает решение нашей задачи с достаточной точностью.

Отметим, что мы вычисляли функцию $\Phi(k, \cos \theta)$ также в приближении, учитывающем лишь многократное рассеяние /то есть диффузию/ и однократное рассеяние. Как и расчет по методу перевала /^{/3/}83/, этот расчет не дает увеличения $\Phi(k, r)$ по сравнению с $\Phi_{i}(k, r)$, учитывающей только однократное рассеяние, в области углов, близких к предельному углу однократного рассеяния.

Нами исследована зависимость $\Phi(k, \cos \theta)$ от параметра θ_{max} : увеличение этого параметра в 1,5 раза не дает заметного роста $\Phi(k, \cos \theta)$; это согласуется с однократным характером рассеяния.

В заключение авторы выражают глубокую благодарность проф. Г.Т. Зацепину и проф. М.А. Маркову, по предложению которых выполнена настоящая работа. Авторы благодарны также большому числу сотрудников математического сектора ЛТФ и вычислительного центра ОИЯИ за помощь при проведении расчета.

Литература

1. М.А. Марков. Доклад на Рочестерской конференции 1959 г.

2. И.В. Железных. Дипломная работа. ФИАН, 1958 г.

2. Г.Т. Зацепин, В.А. Кузьмин. ЖЭТФ, <u>39</u>, 1677, /1960/.

3. Л.Г. Заставенко, А. Чилок. Применение метода стационарной фазы к решению кинетических уравнений /будет опубликовано/.

4. B Rossi and K. Greisen. Reviews of Modern Phys. 13, 240 (1941).

5. M.N. Rosenbluth. Ph. Rev. 79 615 (1950).

Рукопись поступила в издательский отдел 24 октября 1962 года.

<u>Таблица I</u>.

Φ ункции ____ $\ell g_{10} \Phi(k, \cos \theta)$.

oso K	4/3	I	I/2	I/:	3 I/5
r 0	. T 22	τ. 50	2 OT	0 110	3 30
L,9 L 0	+1,00	2,20	2,01	μ. 9T	5,50
L,0 L 7	+2,07	2,20	2,27	4,21 6 IO	2,50
L, /	+2,02	2,00	4,40	7.90	TL O O
,0	+2,12	5,72	4,07	7,90	11,00
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+2,02	4,29	0,10	10,00	17,00
, 4	+4,07	4,81	7,67	12,00	17,00
,3	+4,48	5,17	9,40	14,00	20
,2	4,89	5,51	11,40	16,00	
L,1	5,29	6,78	13,50	18	
[,0	5,50	7,20	15,50	20	
3,9	5,70	8,70	17,50		
),8	6,10	10,20	19,50		
),7	7,10	II,70	20		
7,6	8,20	13,20			
1,5	9,30	I4,70			
		n -			
		Таблица 2.			
	Φ ун	кции К (<u>к,</u> т).		
$z \sqrt{\frac{1}{\kappa}}$		4/3	 I	I/2	I/3
()_4		29-7	3.65 ⁻⁷	2.94 ⁻⁸	4.6I ⁻⁹

-(),4	8,297	3,65	2,94-0	4,6I ⁻⁵
-0,5	2,52-7	9,47-8	4,28-9	3,20-10
-0,6	7,I3 ⁻⁸	2,21-8	4,96-10	I,16 ⁻¹¹
-0,7	I,78 ⁻⁸	4,24-9	3,52-11	I,71 ⁻¹³
-0,8	3,49-9	5,39-10	9, -13	5,65-16
-0,9	2,90-10	I,I6 ⁻¹¹	3,23-16	
