

. .

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем

Л.Л. Неменов

P-1111

РЕАКЦИЯ $\pi + N - - \pi + y + N$ И КОНСТАНТА ФОТОРОЖДЕНИЯ П-МЕЗОНА НА П-МЕЗОНЕ

Л.Л. Неменов

P-1111

РЕАКЦИЯ *π*+**N**----*π*+*y*+**N** И КОНСТАНТА ФОТОРОЖДЕНИЯ П-МЕЗОНА НА П-МЕЗОНЕ

1401/3 mg.

Дубна 1962 год

Аннотация

Рассмотрен вопрос об определении константы фоторождения п -мезона на п -мезоне из анализа реакции п+N --- п+y+N .

В полюсном приближении рассчитаны дифференциальные сечения этой реакции.

L.L.Nemenov

THE $\pi + N - - - \pi + \gamma + N$ REACTION AND THE CONSTANT OF THE PHOTOPRODUCTION OF PIONS ON PIONS

Abstract

The problem as to how to determine the constant of the photoproduction of pions on pions from the analysis of the $\pi + N - - \pi + \gamma + N$ reaction has been considered. The differential cross sections for this reaction have been calculated in the pole approximation.

Излучение у – квантов при взаимодействии *п* –мезонов с веществом было впервые обнаружено^{/1/} при изучении рассеяния *п*⁺ –мезонов с кинетическими энергиями в интервале от 80 до 300 Мэв на легких ядрах. В большинстве случаев излучение вызывалось мезонами с энергией большей 200 Мэв.

В работе^{/2/} при анализе рассеяния π^- -мезонов (E_{π} -=128 Мэв и 162 Мэв) на водороде не было обнаружено ни одного случая взаимодействия с испусканием у-кванта, хотя использованный метод позволял регистрировать фотоны весьма малой энергии (E_{χ} =15 Мэв).

В дальнейшем излучение у -квантов было обнаружено при анализе взаимодействия "-мезонов с энергией 225 Мэв и 340 Мэв⁴⁴ с водородом. В работе⁴⁴ было показано, в частности, что сечение реакции:

$$+p = -- \pi^{+} + y + p$$

(1)

для случаев с энергией У -квантов, превышающей 100 Мэв, равно 0,09 мб-0,03мб -0.06мб •

В качестве возможного механизма, дающего энергичные фотоны, можно рассмотреть процесс, описываемый диаграммой Фейнмана, представленной на рис. 1. Привленение такой диаграммы для описания реакции (1) представляется целесообразным, так как аналогичный подход к реакциям $\pi + N = --\pi + \pi + N$, предложенный в работе^{/5/}, позволил удовлетворительно объяснить совокупность экспериментальных данных по этим реакциям. Как будет показано ниже, диаграмма 1 вносит характерную особенность в распределение по полной энергии в с.ц.и. $\pi \gamma$, что позволяет оценить величину вклада этой диаграммы в реакцию (1) и определить константу фоторождения π -мезона на π -мезоне.

q, q₁ - четырехмерные импульсы падающего и рассеянного *п* -мезонов, соответственно,
 P, P₁^{*} - четырехмерные импульсы нуклона до взаимодействия и после взаимодействия.
 К - четырехмерный импульс фотона.

М - масса нуклона в единицах мезонных масс (система 📅 = µ = c = 1).

Сечение процесса записывается через F -матрицу:

$$\sigma = (2\pi)^{2} \int \frac{P^{0} q^{0}}{B} |\vec{F}|^{2} (P + q - K - q_{1} - P_{1}) d^{3} \vec{K} d^{3} \vec{q}_{1} d^{3} \vec{P}_{1}$$

$$B = \{ (P^{0} \vec{q} - q^{0} \vec{P})^{2} - [\vec{q} \vec{P}] \}^{\frac{1}{2}}$$
(2)

$$F = -\frac{i}{(2\pi)^{7/2}} \frac{M}{\sqrt{P^{0}P_{1}^{0}}} \frac{1}{\sqrt{8q^{0}q^{0}K^{0}}} \frac{\epsilon \lambda \mu \nu \rho q^{\mu} q_{1}^{\nu} K^{\rho} \bullet_{t}^{\lambda}}{q_{2}^{2} - 1} \frac{\gamma F(\omega^{2})}{2} g_{\nu}(P_{1}) \gamma_{5} u(P)$$

e₁^λ - вектор поляризации фотона, g - константа мезон-нуклонного взаимодействия,
 F(ω) - скалярная функция, которая получается в теории из решения дисперсионных уравне ний и зависит от сделанных при этом приближений ^{/6-9/}. Кроме того решение этих уравне-

ний может быть не единственным. В этом случае для выбора решения необходимо использовать физические предположения о поведении фаз лл -рассеяния.

В настоящей работе использовано выражение для $F^{2}(\omega^{2})$ в виде $^{/7,10/}$:

$$F^{2}(\omega^{2}) = \frac{109,42 + 13,15 \omega^{2}}{(7,97 + 0,25 \omega^{2})(0,062 \omega^{4} - 2,37 \omega^{2} + 26,56)(57,4 + 2 \omega^{2})^{2}}$$

ввиду его простоты и правильности выбранных параметров $\pi\pi$ -резонанса. Возводя **F** матрицу в квадрат, усредняя ее по спинам начального нуклона и суммируя по спинам конечного нуклона и по поляризации у -кванта имеем:

$$/\overline{F}/^{2} = \frac{g^{2}\gamma^{2}[(Kq)^{2} + (Kq_{1})^{2} - 2(qq_{1})(Kq)(Kq)]F^{2}(\omega^{2})(M^{2} - PP_{1})}{(2\pi)^{7} \cdot 64} (q_{2}^{2} - 1)^{2}$$

Подставляя / F / в формулу (2) получаем:

$$\sigma = \frac{g^2 \gamma^2}{(2\pi)^8 \cdot 64} \int \frac{(M^2 - PP_1) d^3 P_1 d^4 q_2 \delta^4 (P - P_1 - q_2)}{B P_1^0 (q_2^2 - 1)} \times$$
(3)

$$\times \int \frac{\left[(K_{q})^{2} + (K_{q_{1}})^{2} - 2(q_{q_{1}})(K_{q})(K_{q_{1}})\right]F^{2}(\omega^{2})}{q_{1}^{o}K^{o}} \delta^{4}(q + q_{2} - q_{1} - K)d^{3}\overline{K}d^{3}\overline{q}_{1}}$$

Второй интеграл вычисляется в с.ц.м. ту и равен:

$$I_{2} = 8 \pi \tilde{K}^{3} \left[\frac{2 \tilde{q}^{0} \omega^{2} \omega + \omega}{3} - \tilde{q}^{0} (1 + qq_{2}) \right]; \quad \omega^{2} = (K + q_{1})^{2}$$

(индекс ~ указывает на с.ц.м. $\pi \gamma$). После введения $\Delta^2 = (P - P_I)^2$ второй интеграл просто выражается через инвариантные переменные:

$$I_{2} = -\frac{\pi (\omega^{2} - 1)^{3}}{12 \omega^{4}} [(\omega - 1)^{2} - \Delta^{2}][(\omega + 1)^{2} - \Delta^{2}].$$
(4)

Подставляя (4) в (3) и выражая $d \stackrel{3}{P_{1}}$ через дифференциалы инвариантных переменных, получаем окончательное выражение для дифференциального сечения:

$$\frac{d^{2}\sigma}{d\omega^{2}d\Delta^{2}} = \frac{g^{2}\gamma^{2}(\omega^{2}-1)^{3}F^{2}(\omega^{2})[(\omega-1)^{2}-\Delta^{2}][(\omega+1)^{2}-\Delta^{2}]\Delta^{2}}{(2\pi)^{3}\cdot 13,312\cdot 10^{3}M^{2}q^{2}\omega^{4}(\Delta^{2}-1)^{2}}$$
(5)

(индекс ь обозначает лабораторную систему).

Распределение по ω, получаемое из (5) интегрированием по Δ², сильно смещено в сторону максимально допустимых значений полной энергии, отличаясь от аналогичного статистического распределения (рис. 2). Процесс излучения фотона идет, в некотором смысле, через промежуточное состояние с "массой", большей 2-х π -мезонных масс. Как видно из рис. 2, при анализе экспериментальных данных можно нормировать фазовый объем на случаи с ω < 2. Вычитая из экспериментальной гистограммы нормированное таким образом статистическое распределение, можно по оставшемуся распределению вычислить константу γ. Быстрый рост дифференциального сечения с увеличением ω не противоречит результатам экспериментов /1,2/, в которых случаи реакции (1) наблюдались в основном при энергиях мезонов выше порога мезонообразования.

Автор благодарен Б.М.Понтекорво, Л.Д.Соловьеву и С.М.Биленькому за обсуждение данной работы и ценцые советы.

Литература

- 1. М.Ф. Ломанов, А.Г. Мешковский и др. ЖЭТФ, 35, 889 (1958).
- 2. П.Ф.Ермолов, В.И. Москалев. ЖЭТФ, <u>41</u>, 332 (1961).
- 3. J.Deahl, M.Derrick, J.Fetkovich, T.Fields and G.B.Yodh. Phys. Rev. 124, 1987 (1961).
- 4. Т.Д.Блохинцева, В.Г.Гребинник и др. ЖЭТФ, 42, 912 (1962).
- 5. G.J.Coebel and H.J.Schnitzer. Phys.Rev. 123, 1021 (1961).
- 6. How-sen Wong. Phys. Rev.Lett. 5, 70 (1960).
- 7. M.Gourdin and A.Martin. Nuovo Cimento 16, 78 (1960).
- 8. Л.Д.Соловьев. ЖЭТФ, 40, 597 (1961).
- 9. M.Kato. Progr. Theor. Phys. 25, N3, 493 (61).
- 10. D.Boccaletti and C.Gualdi. Nuovo Cimento, 18, 895 (1960).

Рукопись поступила в издательский отдел 24 октября 1962 года.

Рис. 1.

Рис. 2. Распределение по полной энергии в с.ц.и. πу , вычисленное в полюсном приближении (сплошная линия) и по статистической теории (пунктирная линия). Обе кривые относятся к случаю, когда кинетическая энергия первичного π -мезона равна 340 Мэв, отложены в произвольных единицах и нормированы на одну площадь (ω в единицах m_{π}).