Laboratory of High Energies

ON THE SPIN OF THE \bigwedge^{0}-PARTICLE

$$
\text { December, } 1956
$$

* Published in J.ETP rol. 31, ser. 4, 734, (1956).

$$
\begin{aligned}
& \text { by } \\
& \text { MoI。 Shirokor } \\
& \text { 2cF79, 1956, T31, n4, e734. }
\end{aligned}
$$

Some general formulae relating to the determination of the spin of the A^{0}-particle by angular distribution of its decay products, which have been obtained by the method 1,27 , are given in this theoretical note.

The spin state of an assembly of Λ^{0}-particles is describ ed by giving values of tensor moments $T_{\nu}{ }^{8}$ (see for definition []$]$), which enables us to describe any (the most general) spin state of the assembly.

The angular distribution of decay products of the Λ^{0}-particle $\left(\Lambda^{0} \rightarrow p+\pi^{-}\right)$may be written as follows

$$
T(v, q)=\frac{w}{w \sqrt{T}} \sum_{q=0,2}^{25-1}(2 q+1)^{-1 / 2} Q(S, q) \sum_{v=p}^{q}(-1)^{v} \cdot \gamma_{q}, v(v, \varphi) \cdot T_{v}^{q}
$$

where ω is the complete decay probability of the Λ^{0} by the scheme $\Lambda^{0}+0+\pi ; \quad S$ is the Λ^{0} spin.

$$
Q(S, q)=(-1)^{s-1 / 2-2 / 2} \cdot(2 s+1)^{-1 / 2}=\left(l^{\prime} s e^{\prime} s ; 1 / 2 q\right)
$$

The coefficients \geq are tabulated in $\left.{ }^{3}\right]$ 。 It may be shown that the $\equiv\left(e^{\prime} S E^{\prime} S_{j}^{1 / 2 q}\right)=(-1)^{q / 2}\left(2 e^{\prime}+1\right)(2 S+1) U \Gamma\left(e^{\prime} S e^{\prime} s ;(2 q) \cdot C_{e^{\prime} o \ell^{\prime} 0}^{q^{0}}\right.$ does not depend upon l^{\prime} (equal to $S+1 / 2$ or $S-1 / 2$)。
I ρ does not depent therefore upon the parity: of the \wedge^{0}-particle. Formula (1) is written in the \wedge^{0} rest system; the axis Z of the system is assumed henceforth to be paralle to the unit vector \hat{n}_{n} which is directed along the $n_{\text {-partic- }}$
le movement in the laboratory system (formula (1) is of course, true at any choice of the axis Z)。

By integrating $f(v, \varphi)$ with respect to $\cos \vartheta$ we may obtain from (i) a distribution in an angle φ. The angle $\varphi(0 \leqslant \varphi \leqslant 2 J)$ may be defined as one between the normal \vec{N} to the plane of the reaction in which the \wedge^{0}-particle has been produced (more exactly, $\vec{N}=\left[\vec{n}_{0} \times \vec{n}_{n}\right]$, where \vec{n}_{0} is the unit vector of the incident particles of this reaction) and the unit vector $n=\left[n_{p}^{\infty} \times \vec{n}_{n}\right]_{p} \vec{n}_{p}$ is the direction of the movement of the decay proton.

$$
\begin{align*}
& \mathcal{F}(\varphi)=\frac{w}{4 \pi} \cdot T_{0}^{0}\left\{1+\sqrt{2} \sum_{m=2}^{25-1} \sum_{q=m}^{2 s-1}\left[\cos m \varphi \cdot\left(R_{e} t_{m}^{q}\right)+\sin m \varphi \cdot\left(Y_{m} t_{m}^{q}\right)\right] Q(s, q) \mathcal{Y}_{q m}\right\} \\
& \mathcal{J}_{q m}=\left[\frac{(q+m)!}{(q-m)!} \cdot \frac{2 q+1}{2}\right]^{1 / 2} \cdot \frac{m}{2} \cdot 2^{(1-m / 2)} \cdot \frac{(q / 2-1)!(q-m-1)!!}{(q / 2+m / 2)!(q+1)!!}(2) \tag{2}\\
& m \text { and } q \text { take only even values, } t_{m}^{q}=(2 q+1)^{-1 / 2} \cdot T_{m}^{q} / T_{0}^{0} .
\end{align*}
$$ Unlike the analagous formula in $[4,5]$, formula (2) contains an expression of the coefficients A_{M} and $B_{M}($ see $[4 ; 5])$ through characteristics of the initial spin state of the \wedge^{0} - particle. If T_{m}^{q} with even q are real, ide if $y_{m} t_{m}^{q}=0$ (as is shown in [2], this will happen, for instance, when Λ^{0} is created in a reaction whose incident particles and target particles are entirely unpolarized) $\mathcal{F}(\varphi)$ will contain only terms with $\cos m \varphi$. The same expression (no matter whether T_{m}^{q} are complex of real numbers) will hold for the distribution in an angle η between

the plane of \wedge^{0}-creation and its decay plane。 (cfo [5] formula (2)). By appropriate integration we may also obtain from (1) the distribution $\bar{f}(Q)$ which is a distribution over the number of particles emitted in a unit solid angle at an angle θ to the axis $Z\left(\| \vec{n}_{A}\right)$, averaged over all azimuths φ (see $\left[{ }^{6}\right]$):

$$
\begin{equation*}
\mathcal{F}(\theta)=\frac{w}{4 \pi} \cdot T_{0}^{0}\left\{1+\sum_{q=2,4 \ldots}^{2 s-1} Q(s, q) P_{q}(\cos \theta) \cdot T_{0}^{q} / T_{0}^{0}\right\} \tag{3}
\end{equation*}
$$

When comparing (2) and (3), we see that $\mathcal{F}(\varphi)$ (or $\mathcal{F}(\eta)$) is determined by the tensor moments $T_{m}^{q} q=2,4 \ldots 2 s^{-1}, m=2,4 \ldots q$ while $\mathcal{F}(Q)$ depends upon quite other tensor moments: $T_{0}^{q} T_{0}^{T M} F_{0}^{q}$ and T_{m}^{q} are not completely independent characteristics of the Λ^{0} spin state. But if T_{0}^{q} or T_{m}^{q} do not take their maximum values, there may be rather an arbitrary (within certain limits) distribution in an angle η when $\mathcal{F}(Q)$ is fixed (cfo $[7]$ formulae (17) and (18)). Therefore, the distributions in η and cos. θ which were given in $[6]$, do not contradict each other, which has already been emphasized in [7] where the cases $S=3 / 2$ and
$S=5 / 2$ have been discussed. These distributions indicate, perhaps (poor statistics 1), that Λ^{0}-particles observed are not compietely poiarized perpendicularly to the plane of the reaction $\pi^{-}+p \rightarrow \Lambda^{0}+\dot{\theta}^{0}$ (of. footnote ${ }^{*} \neq$).

The observed cases of reactions $\pi \mp p \rightarrow \Lambda^{0}+\theta^{0}, \Lambda^{0} \rightarrow p+\pi^{-}$ belong to energies 1 and $1,5 \mathrm{BeV}$. Increasing statistics at these
energies，we may ohfefly hope to difine more accurately anly the lower limit of the $\Lambda^{0} \operatorname{spin}$ value。 Let us show that the mea－ surement of the angular distribution of the decay products of the Λ^{0} which is created at the threshold of the reaction $\pi+P \cdot 1+Q^{\circ}(=755 \mathrm{MeV})$ will gust give the Λ^{0} spla value itself If two natural assumptions are made，namely：
1）θ° particle spin is zero（which does not contradiet the avai－ lable data，at least）and 2）forces between Λ^{0} and θ° are short ranged。

The latter inplies that we may negleot all elements of $R=$ matrix $\left(L_{A} i_{\theta} S^{\prime} \ell^{\prime} \alpha^{\prime}\left|R^{\gamma /}\right| / 2 \eta_{2} \ell\right)$ with $l^{\prime}>0$ when compared to the element with $l^{\prime}=0$ near the threshol d^{*}（see for notation $\left[{ }^{l}\right]$ ，the
\％
Angular distribution of Λ°, θ at 1 BeV indicates that－at least $l^{\prime}-2$ is presento［6］Hence the range of forces $\lambda^{0}-\theta^{0}$ is equal to $\sim 2 \cdot 10^{-13}$ and we are justifled in neg lecting the above elements in the energy interral of an fnexdent Il omemons from 755 MeV to $780-800 \mathrm{MeV}$ in the Iaboratoxy sys－ tem。 It is possible，of course，that the element（ l_{n} O $i_{A} O d^{1} / R^{y K} / 1 / 00 \% \ell \alpha$ ） is small owing to some peculiarities of the mentioned reaction： In this case the angular distribution of n^{0}, θ° bil be non isotropic．
matrix．R is connected with the known S－matrix in the fol． Lowing way $R=S-1$ ）．

With these assumptions made，let us rewrite formulae（7）， （8），（9）in［ 1 （the target is considered to be unpolarized）． The Λ^{0}－particle tensor moments will be then expressed as the sum over $Y_{1}, J_{2}, l_{1}, \ell_{2}, \mathcal{J}$（see for notation $\left[{ }^{l}\right]$ ）。 Using properties of the coefficients $G_{T_{n}}$ and G_{0} in this expression，we obtain that $J_{1}=I_{2}=i_{n}$ and $\quad I=q_{n}$ ．Further，$l_{1}, l_{2}=i_{n} \pm 1 / 2$ and since space paris－ ty is conserved and $l_{1}+l_{2}$ must be even，$l_{1}=l_{2}=l=i_{A}+1 / a$ or $l_{1}=l_{2}=Q_{n}=i_{n}-1 / 2$ depending on the parity of the Λ^{0} with respect to the proton（note that θ°－parity is equal to（parity $\left.\pi\right)^{2}$
$=+1$ ）．So there sis no summation over $y_{1} \mathcal{F}_{2}, \ell_{1}, \ell_{2}, y$ at all． Denoting the Λ° spin by S instead of \dot{L}_{Λ} and taking oft the in dies $\mathbb{F} \wedge$ from q and σ° ，we have for the \wedge^{0} tensor moments witheren $q:$

$$
\begin{equation*}
T_{\tau_{0}}^{q^{0}}\left(\vec{n}_{1}, p_{A}\right)=A \cdot(2 s+1)(2 q+1)^{-1 / 2} \cdot Q(s, q) \cdot y_{q \tau}\left(v_{1}, \pi\right) \tag{4}
\end{equation*}
$$

A．Is e constant proportional to the total cross section of the 唯eaction $\pi^{+}+\rho-1^{0}+\theta^{\circ}$ at $E_{\pi} \cong 755-780 \mathrm{MeV}$ 。 It must be kept in mind that the indices τ are related to \vec{n}_{Λ} as quantization axis and \hat{U}_{A} is the angle between the direction of the emergence of λ^{0}－particles and the π－meson beam．

Substituting concrete expressions (4) for the Λ^{0} tensor moments into (2) and (3), we shall obtain distributions in an angles η and θ which will depend only upon the Λ^{0}-particle spin (and upon v_{n}).

We shall not give here these general formulae** It is interesting to note, however, that, if these formulae are integrated with respect to \mathcal{V}_{\wedge}, the distrabution in an angle θ will be iflsotropic whereas the distribution in an angle η (or φ) will be the following:

$$
\begin{equation*}
\dot{I}_{S}(\eta)=C\left\{1+\sum_{m=2}^{2 s-1} \cos m \eta \cdot \sum_{q=m}^{2 S-1}\left[Q(S, q) \cdot y_{q m}\right]^{2}(2 q+1)^{-1}\right\} \tag{5}
\end{equation*}
$$

For example, $\dot{I}_{3 / 2}(\eta) \sim 1+1 / 3 \cdot \cos 2 \eta$.
If the tensor moments (4) are inserted in (1) - .

$$
\mathcal{F}(v, \varphi)=\frac{A w}{2 \sqrt{\pi}} \sum_{q}(2 q+1)^{-1}[Q(S, q)]^{2} \sum_{V} Y_{q v}^{*}(v, \varphi) \cdot Y_{q, v}\left(v_{\Lambda}, \pi\right)=
$$

$$
\begin{equation*}
=A_{w}[8 \pi \sqrt{\pi}]^{q}+\sum_{q=0}^{2 s-1}[Q(S, q)]^{2} \cdot P_{q}(\cos \gamma) \equiv F_{g}(\gamma) \tag{6}
\end{equation*}
$$

we shall obtain a general formula for the distribution in an angle γ. γ is the angle between the directions $v_{\Lambda} \pi$ and $V_{1} \varphi$ or, as may be shown, the directions of the flight of the decay proton and the incident π-meson beam. The formusa $\mathcal{F}_{3}(\gamma) \sim 1+3 \cos ^{2} \gamma$ was first given in $[8], \tilde{F}_{5 / 2}(\gamma) \sim 1-2 \cos ^{2} \gamma+5 \cos ^{4} \gamma \sim 1+4 / 5 \cos 2 \gamma+1 / 3 \cos ^{4} \gamma$
** When $S=3 / 2$ we have $f_{j}(\eta) \sim 1+0,5 \sin ^{2} v_{\Lambda} \cdot \cos 2 \eta$ and $F_{3 / 2}(\theta) \sim 1-$ $-\left(1-3 \cos ^{2} v_{A}\right)\left(5-3 \cos ^{2} v_{A}\right)^{-1} \cos ^{2} \theta$ At an angle $v_{1}=90^{\circ}$ we have $\mathcal{F}_{3 / 2}(\eta) \sim 1+0,5 \cos 2 \eta$ while $F_{3 / 2}(\theta) \sim 1-0,2 \cos ^{2} \theta$ ioe. probability does not increase at all at $\cos \theta= \pm 1$ though the distribution in an angle η is the same as that from completely polarized λ^{0} particles.

The author takes pleasure in thanking Prof．Mo4。Markov who suggested ste subject of this note。
References

I。A。M。Baldin and Mol．Shirokov，EVJETP，vol． 30 ，ser． 4 ， p． 784 （1956）。
2．Mo Wo Shirokov＂Polarized－particle reactions＂，
JE（under press）。
3．Biedenharn LoCo，Oak Ridge Nat．Labo Report N 1501 （1953）。

4．Treiman SoBo and oth。Physo Revo 97，p． 224 （1955）．
5．Treiman SoBo and Wyld HoWo Phys．Revo 100，po 879 （1955）。

6．Walker WoD．and Shephard WoD．Phys．Rev． 101 p． 1810 （1956）．

7．Morpurgo Go Nuovo Cimento。V．III，p． 1069 （1956）。
8．Wolfenstein Lo Phys．Rev．94，p． 786 （1954）．

