Laboratory of High Energies

ON THE SPIN OF THE A-PARTICLE

M. I. Shirokov Mc279, 1956, 731, N4, e734.

December, 1956.

^{*} Published in J.ETP vol. 31, ser. 4, 734, (1956).

On the spin of the $\sqrt{}$ -particle

Some general formulae relating to the determination of the spin of the Λ^0 -particle by angular distribution of its decay products, which have been obtained by the method $\Lambda^{1,2}$, are given in this theoretical note.

The spin state of an assembly of \bigwedge^0 -particles is described by giving values of tensor moments \top_{V}^{Q} (see for definition $\begin{bmatrix} 1 \end{bmatrix}$), which enables us to describe any (the most general) spin state of the assembly.

The angular distribution of decay products of the \wedge^0 -particle (\wedge^0 -p+ π) may be written as follows

$$\mathcal{F}(v, \varphi) = \frac{w}{2\sqrt{37}} \sum_{q=0,2}^{25-1} (2q^{q+1})^{-1/2} Q(S, q) \cdot \sum_{\nu=-2}^{q} (-1)^{\nu} \cdot \gamma_{q,-\nu}(v, \varphi) \cdot T_{\nu}^{q}$$
 (1)

where ω is the complete decay probability of the \wedge° by the scheme $\wedge^{\circ} + \mathcal{O} + \mathcal{I} = \mathbb{C}$; S is the \wedge° spin.

The coefficients = are tabulated in $[^3]$. It may be shown that the $= (\ell' S \ell' S_j' / 2q) = (-1)^{q/2} (2\ell'+1)(2S+1)W(\ell' S \ell' S_j' / 2q) \cdot C_{\ell' o \ell' o}^{q' o}$ does not depend upon ℓ' (equal to $S + \ell' / 2$ or $S - \ell' / 2$).

 $\mathcal{F}(\mathcal{F},\mathcal{F})$ does not depend therefore upon the parity of the Λ° -particle. Formula (1) is written in the Λ° rest system; the axis \mathcal{F} of the system is assumed henceforth to be paralled to the unit vector $\hat{\Gamma}_{\Lambda}$ which is directed along the $\hat{\Lambda}$ -partic-

le movement in the laboratory system (formula (1) is, of course, true at any choice of the axis Ξ).

By integrating $\mathcal{F}(\mathcal{V}, \mathcal{V})$ with respect to $\cos \mathcal{V}$ we may obtain from (1) a distribution in an angle \mathcal{V} . The angle $\mathcal{V}(\mathcal{O} \leqslant \mathcal{V} \leqslant \mathcal{V})$ may be defined as one between the normal \mathcal{N} to the plane of the reaction in which the \mathcal{N} -particle has been produced (more exactly, $\mathcal{N} = [\vec{n}_0 \times \vec{n}_{\Lambda}]$, where \vec{n}_0 is the unit vector of the incident particles of this reaction) and the unit vector $\vec{n} = [\vec{n}_p \times \vec{n}_{\Lambda}]$, \vec{n}_p is the direction of the movement of the decay proton.

$$\mathcal{F}(\varphi) = \frac{w}{4\pi} \cdot T_o^o \left\{ 1 + \sqrt{z} \sum_{m=2}^{2S-1} \sum_{q=m}^{2S-1} \left[\cos m \varphi \cdot (\operatorname{Ret}_m^q) + \sin m \varphi \cdot (\operatorname{Imt}_m) \right] Q(S,q) \mathcal{I}_{qm} \right\}$$

$$\mathcal{J}_{qm} = \left[\frac{(q+m)!}{(q-m)!} \cdot \frac{2q+1}{2} \right]^{1/2} \cdot \frac{m}{2} \cdot 2^{(1-m/2)} \cdot \frac{(q/2-1)!(q-m-1)!!}{(q/2+m/2)!(q+1)!!} \tag{2}$$

m and q take only even values, $t_m^{q} = (2q+1)^{-1/2} \cdot T_m^{q}/T_0^{o}$. Unlike the analogous formula in $[^4,^5]$, formula (2) contains an expression of the coefficients H_m and B_m (see $[^4,^5]$) through characteristics of the initial spin state of the Λ^o -particle.

If T_m with even q are real, i.e. if $J_m t_m^q = 0$. (as is shown in $[^2]$, this will happen, for instance, when $^\circ$ is created in a reaction whose incident particles and target particles are entirely unpolarized) $\mathcal{F}(\gamma)$ will contain only terms with $cosm\gamma$ The same expression (no matter whether T_m^q are complex of real numbers) will hold for the distribution in an angle η between

the plane of \bigwedge^0 -creation and its decay plane. (cf. $[^5]$ formula (2)). By appropriate integration we may also obtain from (1) the distribution $\widehat{f}(Q)$ which is a distribution over the number of particles emitted in a unit solid angle at an angle Θ to the axis \widehat{Z} (\prod_{A}), averaged over all azimuths Ψ (see $[^6]$):

$$\mathcal{F}(\theta) = \frac{w}{4\pi} \cdot T_o^o \left\{ 1 + \sum_{q=2,4...}^{2.5-1} Q(S,q) P_q(\cos\theta) \cdot T_o^q / T_o^o \right\}$$
 (3)

When comparing (2) and (3), we see that $\mathcal{F}(Y)$ (or $\mathcal{F}(Y)$) is determined by the tensor moments $\mathcal{T}_m^q = 2, 4...25$ -1, m = 2, 4...q while $\mathcal{F}(Q)$ depends upon quite other tensor moments: $\mathcal{T}_0^q = 2, 4...25$ -1, m = 2, 4...q and \mathcal{T}_0^q are not completely independent characteristics of the Λ^0 spin state. But if \mathcal{T}_0^q or \mathcal{T}_m^q do not take their maximum values, there may be rather an arbitrary (within certain limits) distribution in an angle η when $\mathcal{F}(Q)$ is fixed (cf. [7] formulae (17) and (18)). Therefore, the distributions in \mathcal{T}_0 and \mathcal{T}_0^q and \mathcal{T}_0^q which were given in \mathcal{T}_0^q do not contradict each other, which has already been emphasized in \mathcal{T}_0^q where the cases \mathcal{T}_0^q and

 $S = \frac{5}{2}$ have been discussed. These distributions indicate, perhaps (poor statistics!), that \wedge° -particles observed are not completely polarized perpendicularly to the plane of the reaction $\mathcal{I} + \rho + \wedge^{\circ} + \partial^{\circ}$ (cf. footnote $\frac{*}{27}$).

The observed cases of reactions $\mathcal{I} + P \rightarrow \wedge^{\circ} + \theta^{\circ}$, $\wedge^{\circ} \rightarrow P + \mathcal{I}$ belong to energies 1 and 1,5 BeV. Increasing statistics at these

energies, we may chiefly hope to define more accurately only the lower limit of the \bigwedge^0 spin value. Let us show that the measurement of the angular distribution of the decay products of the \bigwedge^0 which is created at the threshold of the reaction $\widehat{\mathcal{II}} + P + \bigwedge + Q^0 (\sim 755 \text{ MeV})$ will just give the \bigwedge^0 spin value itself if two natural assumptions are made, namely:

1) θ -particle spin is zero (which does not contradict the available data, at least) and 2) forces between \wedge^0 and θ are short-ranged.

The latter implies that we may neglect all elements of $R=\max(\ell_A \ell_B S' \ell' J' R'' k_0 k_0)$ with $\ell'>0$ when compared to the element with $\ell'=0$ near the threshold* (see for notation ℓ^1), the

Angular distribution of $\[\]^{\circ}$, $\[\theta \]$ at 1 BeV indicates that at least $\[\ell \]^{\circ}$ is present. $\[\]^{6} \]$ Hence the range of forces $\[\]^{\circ}$ - $\[\theta \]^{\circ}$ is equal to $\[\]^{\circ}$ 2.10 and we are justified in neglecting the above elements in the energy interval of an incident $\[\]^{\circ}$ -mesons from 755 MeV to 780-800 MeV in the laboratory system. It is possible, of course, that the element $\[\[\]^{\circ}$ $\[\]^{\circ}$ $\[\]^{\circ}$ $\[\]^{\circ}$ delta is small owing to some peculiarities of the mentioned reaction. In this case the angular distribution of $\[\]^{\circ}$ will be non-

isotropic.

matrix R is connected with the known S-matrix in the following way R = S - 1).

With these assumptions made, let us re-write formulae (7), (8), (9) in [1] (the target is considered to be unpolarized). The \$\lambda^{\circ} -particle tensor moments will be then expressed as the sum over \$\mathcal{I}_1, \mathcal{I}_2, \mathcal{l}_1, \mathcal{l}_2, \mathcal{T}\$ (see for notation [1]). Using properties of the coefficients \$G_{\mathcal{L}_1}\$ and \$G_0\$ in this expression, we obtain that \$\mathcal{I}_1 = \mathcal{I}_2 = \mathcal{l}_1\$ and \$\mathcal{T} = \mathcal{q}_1\$. Further, \$\mathcal{l}_1, \mathcal{l}_2 = \mathcal{l}_1 \pm \frac{1}{2}\$ and since space parity is conserved and \$\mathcal{l}_1 + \mathcal{l}_2\$ must be even, \$\mathcal{l}_1 = \mathcal{l}_2 = \mathcal{l} = \mathcal{l}_1 + \frac{1}{2}\$ or \$\mathcal{l}_1 = \mathcal{l}_2 = \mathcal{l}_1 - \frac{1}{2}\$ depending on the parity of the \$\Lambda^0\$ with respect to the proton (note that \$\theta^0\$-parity is equal to (parity \$\mathcal{I}^1\$) = \text{\$=+1\$}\$). So there is no summation over \$\mathcal{I}_1, \mathcal{l}_2, \mathcal{l}_1, \mathc

 $T_{\tau o}(\vec{n}_{\Lambda}, p_{\Lambda}) = A \cdot (2S+1)(2q+1)^{-1/2} \cdot Q(S,q) \cdot Y_{q\tau}(\vec{v}_{\Lambda}, \vec{v})$ (4)

A is a constant proportional to the total cross section of the reaction $\mathcal{I} + \rho \rightarrow \wedge^0 + \theta^\circ$ at $E_{\mathcal{I}} \cong 755 \div 780$ MeV. It must be kept in mind that the indices \mathcal{I} are related to \mathcal{I}_{Λ} as quantization axis and \mathcal{I}_{Λ} is the angle between the direction of the emergence of Λ^0 -particles and the \mathcal{I}_{Λ} -meson beam.

Substituting concrete expressions (4) for the \bigwedge^0 tensor moments into (2) and (3), we shall obtain distributions in an angles \bigwedge and Θ which will depend only upon the \bigwedge^0 -particle spin (and upon \bigvee_{Λ}).

We shall not give here these general formulae* It is interesting to note, however, that, if these formulae are integrated with respect to \mathcal{O}_{\wedge} , the distribution in an angle θ will be insotropic whereas the distribution in an angle η (or ψ) will be the following:

Following:
$$as-1$$

 $I_{S}(\eta) = C\left\{1 + \sum_{m=2}^{2S-1} cosm\eta \cdot \sum_{q=m}^{2S-1} \left[Q(S,q) \cdot \mathcal{I}_{qm}\right]^{2} (2q+1)^{-1}\right\}$
(5)

For example, $I_{3/2}(\eta) \sim 1 + \frac{1}{3} \cdot \cos 2\eta$

If the tensor moments (4) are inserted in (1) - $\mathcal{F}(\vartheta, \varphi) = \frac{Aw}{2\sqrt{\pi}} \sum_{q} (2q+1)^{-1} [Q(S, q)]^2 \sum_{q} \Upsilon_{q}^* (\vartheta, \varphi) \cdot \Upsilon_{q}, \nu(\vartheta, \Im) = \\ = Aw [8\pi\sqrt{\pi}]^{-1} \sum_{q=0}^{2} [Q(S, q)]^2 \cdot P_q(\cos \gamma) = \mathcal{F}_S(\gamma)$ (6)

we shall obtain a general formula for the distribution in an angle γ is the angle between the directions $\sqrt[4]{1}$ and $\sqrt[4]{1}$ or, as may be shown, the directions of the flight of the decay proton and the incident π -meson beam. The formula $f_{3/2}(\gamma)\sim 1+3\cos^2\gamma$ was first given in [8], $f_{5/2}(\gamma)\sim 1-2\cos^2\gamma+5\cos^4\gamma\sim 1+4/5\cos^2\gamma+1/3\cos^4\gamma$

^{**} When $S = \frac{3}{2}$ we have $\mathcal{F}_{3/2}(\eta) \sim 1 + 0.5 \sin^2 \theta$, $\cos 2\eta$ and $\mathcal{F}_{3/2}(\theta) \sim 1 - (1 - 3\cos^2 \theta).(5 - 3\cos^2 \theta).(5 - 3\cos^2 \theta).(7 - 3\cos^2 \theta)$ At an angle $\theta = 90$ we have $\mathcal{F}_{3/2}(\eta) \sim 1 + 0.5 \cos 2\eta$ while $\mathcal{F}_{3/2}(\theta) \sim 1 - 0.2 \cos^2 \theta$ i.e. probability does not increase at all at $\cos 3\theta = \pm 1$ though the distribution in an angle θ is the same as that from completely polarized θ particles.

The author takes pleasure in thanking Prof. M. A. Markov who suggested the subject of this note.

References

- 1. A.M. Baldin and M.L. Shirokov, JFTP, vol. 30, ser. 4, p. 784 (1956).
- 2. M.I. Shirokov "Polarized-particle reactions",
 - 3. Biedenharn L.C., Oak Ridge Nat. Lab. Report N 1501 (1953).
 - 4. Treiman S.B. and oth. Phys. Rev. 97, p. 224 (1955).
 - 5. Treiman S.B. and Wyld H.W. Phys. Rev. 100, p. 879 (1955).
 - 6. Walker W.D. and Shephard W.D. Phys. Rev. <u>101</u> p. 1810 (1956).
 - 7. Morpurgo G. Nuovo Cimento. V. 111, p. 1069 (1956).
 - 8. Wolfenstein L. Phys. Rev. 94, p. 786 (1954).

0