

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем Лаборатория теоретической физики

Ю.М. Казаринов, Ф. Легар, И.Н. Силин

P-1046

ИСПОЛЬЗОВАНИЕ КОНФОРМНОГО ОТОБРАЖЕНИЯ ДЛЯ ЭКСТРАПОЛЯЦИИ ЭКСПЕРИМЕНТАЛЬНО НАБЛЮДАЕМЫХ ЗАВИСИМОСТЕЙ В НЕФИЗИЧЕСКУЮ ОБЛАСТЬ

NCƏTA, 1963, T44, 6.4, c311-315. CERN, 1962, alsh. ~ 181.

Ю.М. Казаринов, Ф. Легар, И.Н. Силин

P-1046

ИСПОЛЬЗОВАНИЕ КОНФОРМНОГО ОТОБРАЖЕНИЯ ДЛЯ ЭКСТРАПОЛЯЦИИ ЭКСПЕРИМЕНТАЛЬНО НАБЛЮДАЕМЫХ ЗАВИСИМОСТЕЙ В НЕФИЗИЧЕСКУЮ ОБЛАСТЬ

1631/4 yr.

Собъединенный институт серных исследования БИБЛИОТЕКА

Дубна 1962 год

Аннотация

Использовано конформное отображение при решении задачи определения константы связи и спектральных функций амплитуды нуклон-нуклонного рассеяния.

Abstract

The conformal representation has been used for solving the problem of determining the coupling constant and the spectral functions of the nucleon-nucleon scattering amplitude.

Определение константы связи п -мезон-нуклонного взаимодействия, так же как и некоторые другие задачи, требует аналитического продолжения измеренных зависимостей в нефизическую область. Из результатов ряда работ видно, что надежная экстраполяция в нефизическую область требует весьма большой точности экспериментальных данных. Сравнительно недавно в работе^{/1/} было показано, что использование конформного отображения (1) в рассматриваемом случае заметно облегчает задачу

$$W = \frac{1 - \sqrt{\frac{a}{b}\left(\frac{a-x}{b+x}\right)}}{1 + \sqrt{\frac{a}{b}\left(\frac{a-x}{b+x}\right)}}, \qquad (1)$$

где $x = \cos \theta$, а и b - границы области, отображаемой внутрь единичного круга, на веще-

Ниже приводятся результаты применения указанного конформного отображения для определения перенормированной константы связи п -мезон-нуклонного взаимодействия f и спектральных функций амплитуды нуклон-нуклонного рассеяния.

Определение перенормированной константы связи

В настоящее время можно, по-видимому, считать, что экспериментальные данные по рассеянию нуклонов нуклонами не противоречат значению константы связи $f^2 = 0.08^{-6/6}$. Благодаря этому решение задачи определения f^2 дает возможность достаточно ярко продемонстрировать преимущества, связанные с переходом из плоскости $x = \cos \theta$ в плоскость Ψ , и установить практическую область применимости предлагаемого метода.

Для определения константы связи обрабатывались дифференциальные сечения упругого (*n-p*) -рассеяния при энергиях 90, 200, 380-400 и 630 Мэв и упругого (*p-p*) -рассеяния при энергиях 147 и 380 Мэв^x, приведенные в обзорах^{2,3,4/}.

Сечение (п - р)-рассеяния записывалось в виде:

$$\sigma = a_1 f^4 \left[\frac{1}{(x_0 - x)^2} + \frac{4}{(x_0 + x)^2} \right] + \frac{a_2}{x_0 - x} + \frac{a_3}{x_0 + x} + \frac{\Sigma}{\mu} A_n W^n.$$
(2)

Была сделана проверка порядка полюса в амплитуде нуклон-нуклонного рассеяния в плоскости $x = \cos \theta$ при $x = \pm x_0 = \pm (1 \pm \frac{\mu^2}{mT})$ (*m* и μ - массы нуклона и *m* -мезона, соответственно, *T* - кинетическая энергия нуклона л.с.) и найдена константа f с учетом и без учета точки ветвления при $x = \pm a_0 = \pm (1 \pm \frac{4\mu^2}{mT})$] Для этого на основании выражения (2) в точку $\pm x_0$ экстраполировались зависимости:

$$\sigma(\mathbf{x}) \left(\mathbf{x}_{0}^{2} - \mathbf{x}^{2} \right)^{3}$$
(3)

х) Обрабатывалась только ядерная часть.

$$\sigma(\mathbf{x}) \left(\mathbf{x}_{0}^{2} - \mathbf{x}^{2} \right)^{2} \left(\mathbf{a}_{0}^{2} - \mathbf{x}^{2} \right)$$

$$\sigma(\mathbf{x}) \left(\mathbf{x}_{0}^{2} - \mathbf{x}^{2} \right)^{2}$$
(4)
(5)

(5)

соответственно. Экстраполяция проводилась в плоскости 🖗 . С помощью метода наименьших квадратов зависимости (3), (4), (5) аппроксимировались либо степенным рядом , либо рядом по полиномам Лежандра $f(W) = \sum b_n P_n(W)$ $f(W) = \sum a_n W^n$

Результаты проверки порядка полюса в амплитуде рассеяния приведены в таблице 1. в таблице 2 даны найденные значения константы связи. Из таблицы 1 видно, что в большинстве случаев обработанные экспериментальные данные при энергиях 200-630 Мэв не противоречат существованию полюса первого ворядка в амплитурае нуклон-нуклонного рассеяния при $x = \pm x_0$, т.е. экстраполяция зависимости (3) в точки $x = \pm x_0$ дает в пределах ошибок нуль. При энергии 90 Мэв установить порядок особенности не удается. Возможно, что это связано с удалением полюса от края физической области при понижении энергии.

Прямой способ определения порядка полюса при энергии 630 Мэв не дает ответа. В этом случае зависимость (3) имеет весьма сложный характер и плохо описывается степенным рядом. Однако, если экстраполировать логарифм выражения (3), получается вполне удовлетворительный результат (таблица 1). Следует заметить, правда, что на этой энергии переход в плоскость ₩ , по-видимому, несколько теряет свои преимущества в связи с тем, что расстояние от границы физической области до полюса в 🦉 плоскости больше, чем в плоскости $x = \cos \theta$ (puc. 1).

Константа Г близка к значению 0,5-0,8 с ошибкой 10-15% (таблица 2). Сравнение результатов, полученных при экстраполяции в плоскостях У и И показывает, что, по-видимому, в связи с более быстрой сходимостью аппроксимирующих рядов результаты в плоскости W при энергиях больше 400 Мэв получаются с несколько меньшей ошибкой.

Определение спектральных функций

В работе 15/ показано, что конформное отображение (1), при котором вся плоскость $x = \cos \theta$ отображается внутрь круга единичного радиуса, оказывается весьма полезным для экстраполяции амплитуды рассеяния в область спектральных функций. Эффективный скачок на разрезе при этом определяется суммой четной части ряда Фурье, в который проходит степенной ряд, аппроксимирующий экстраполируемую зависимость M(W) $\sqrt{a_{o}^{2}} = x^{2}$, где M (W) - амплитуда рассеяния на окружности | W = 1. Определение эффективной спектральной функции было сделано для элементов M_{ss}, M_{11} , M_{00}, M_{01} и M_{10} матрицы перехода (п-р)и (р-р)-рассеяний при энергиях 147,и 210 и 310 Мэв. Для этого рассчитанные по фазовым сдвигам $^{/6/}$ мнимые части матричных элементов M умножались на $\sqrt{a^2 - x^2}$ и представлялись в виде ряда

$$Im M \sqrt{a_{0}^{2} x^{2}} = \sum_{0}^{N} c_{n} W^{n}.$$
 (6)

Затем вычислялась сумма ряда $-\frac{1}{2i}\sum_{o}^{N}c_{n}\cos n \phi$ для $0 < \phi < 2\pi$ (эффективный скачок на разрезе).

Энергия Мэв	Плоскость	Результаты экст в %%	Результаты экстраполяции выражения (2) в %% от (4)				
*****		A	В	С			
90	W	нет	65%	-			
(n-p)	X		0				
147	W	0	-	0			
(p-p)	X	Нет	-	0			
200 (n-p)	W	0	0	-			
	X	-	-	30%			
380 (p-p)	W	Не сходится	-	Не сходится			
	X	0	-	0			
400	W	Плохо сходится	0	_			
(n-p)	W *	0	-				
	X	_	0	0			
630	₩*	0	-	-			
(1	X		-	-			

Таблица 1

* Разложена функция $\log f(W) = \sum a_n W^n$ А-Разложение вокруг точки $\mathbf{x} = -\mathbf{x}_0$, Вся кривая $\sigma(\mathbf{x})$ В-Разложение вокруг точки $\mathbf{x} = -\mathbf{x}_0$. Половина кривой $\sigma(\mathbf{x})$ С-Разложение вокруг точки $\mathbf{x} = 0$. Вся кривая $\sigma(\mathbf{x})$

При этом было найдено, что во всех случаях Im M хорошо описывается рядом $\frac{\Sigma c_n \psi^n}{\sqrt{a_o^2 - x^2}}$ при сравнительно небольшом числе членов (2-5). Коэффициенты аппроксимирующего ряда определяются достаточно устойчиво. Увеличение числа членов слабо сказывается на величине первых коэффициентов (таблицы 3 и 4). Коэффициенты слабо зависят от энергии.

Таким образом существующие экспериментальные данные в области энергий 147-310Мэв удовлетворительно описываются с помощью 20-25 параметров. Следует заметить, что подобное описание достигается с помощью фазовых сдвигов и константы связи при семнадцати параметрах. Следовательно, представление матричных элементов $M_{\bullet\bullet}$, M_{11} , $M_{\bullet\bullet}$, M_{01} , M_{10} в виде рядов по степеням W едва ли имеет преимущества с точки зрения описания эксперимента минимальным числом параметров.

Энергия	Elmoorcoopy	A		В		С	
Мэв	THICKOCIE	f ²		f ²		f ²	
		(3)	(4)	(3)	(4)	(3)	(4)
90	W	0,079± ±0,01	0,06 <u>+</u> ±0,0I	0,074 <u>±</u> ±0,02	+0,06 <u>+</u> ±0,015		0,06± ±0,01
(n -p)	X	-		-	+ 0,086± ±0,002		
I47	W	0,18± ±0,02	0,124 <u>+</u> <u>+</u> 0,018	-	=	0,05I± ±0,05I	0,108± ±0,009
(p-p)	X	0,097± ±0,018	0,056 <u>+</u> +0,02	-	-	-	$0,07I_{\pm}$ $\pm 0,014$
200 (n-p)	W	0,105± ±0,004	0,077± ±0,006	-	0,086± ±0,005	-	0,083± ±0,007
	X	-	-	-	-	-	0,06I± ± 0,005
380 (p-p)	W	Плохо сходится		ével	-	0,206 ±0,046	0,063± ±0,063
	X	0,109± ±0,018	0,062± ±0,020	-	-	0,0835 ±0,023	0,068± ±0,015
'400 (n-p)	W	0,175± ±0,015	0,064± ±0,004	0,127± ±0,006	0,7 <u>1+</u> ±0,006	0,08I± ±0,007	0,090± ±0,006
	W*	0,04I± ±0,003	0,04I <u>+</u> ±0,003	ingen i	-		-
	X	_			0,058 <u>+</u> ±0,0065	-	0,048 <u>+</u> ±0,006
630 (n-p)	₩*	0,035± ±0,007	0,035± ±0,007		_	-	-

ПРИМЕЧАНИЕ: + При пяти членах в аппроксимирующем выражении $\chi^2 / \chi^2 = 4,65$ для – Х – плоскости и $\chi^2 / \chi^2 = 0,988$ для W – плоскости

* Экстраполировалась функция log f (W) = $\Sigma a_n W^n$

(3) - Результат экстраполяции выражения (3).

(4) - Результат экстраполяции выражения (4).

Коэффициенты аппроксимирующего ряда для $M_{II}^{PP} \sqrt{s_0^2 - x^2}$

Число коэфф.	Энергия Мэв	с,	c _g	° ş	° ,
2	147 210 310	5,42 <u>+</u> 0,034 4,63 <u>+</u> 0,02 4,499 <u>+</u> 0,061	-8,89±0,48 -6,86±0,16 -7,76±0,034		
3	147 210 310	5,4I <u>+</u> 0,046 4,59 <u>+</u> 0,03 4,54 <u>+</u> 0,087	-8,4I±I,96 -5,80±0,69 -8,82±I,50	-3,75±I4,75 -5,36±3,42 +3,96±5,46	
4	147 210 310	5,4I <u>+</u> 0,057 4,58 <u>+</u> 0,037 4,54 <u>+</u> 0,109	-8,03±4,57 -4,97±1,78 -8,41±3,88	-11,62±87,25 -16,49±22,17 +0,12 ±35,7	40,86±446,4 39,0 ±76,85 I0,6 ±9I,7I

Спектральная функция имеет ярко выраженные осцилляции (рис. 2), однако, детали ее при данной точности экспериментальных данных определить не удается (поддается определению недостаточно большое число членов ряда). В пределах ошибок нельзя сказать сходится или нет ряд Фурье на окружность |W|=1, так как найденные коэффициенты ряда увеличиваются с ростом их номера.

Авторы благодарны Я.А.Смородинскому, С.Чулли, С.Н.Соколову за полезные обсуждения.

Литература

- 1. W.R.Frazer. Phys. Rev. 123, 2180 (1961).
- 2. W.H.Xess. Rev. Mod. Phys. 30, 368 (1958).
- 3. С.Б. Нурушев, Я.А. Смородинский. Препринт ОИЯИ, Р-473, 1960.
- 4. J.R.Xoch, J.C.Kluyver, J.A.Moore. Proc. Phys. Soc. 71, 713 (1958).
- 5. И.Чулли, С.Чулли, Я.Фишер. Препринт ОИЯИ, Д-832, Дубна, 1961. Nuovo Cimento XXIII, 1129 (1962).
- 6. Ю.М.Казаринов, И.Н.Силин. Препринт ОИЯИ, Р-970, Дубна, 1962. Материалы конференции 1962 года.

Рукопись поступила в издательский отдел 30 июня 1962 года.

	11 0						
Число коэфф.	Энергия Мэв	C _o	C ₁	C ₂	C3	C4	C ₅
3	147 210 310	- -0, I8±0, 02 0, 228±0027	_ I,99 <u>+</u> 0,03 I,54 <u>+</u> 0,04	- 8,07 <u>+</u> 0,20 3,56 <u>+</u> 0,177	-	-	-
4	147 210 310	0, <u>19±</u> 0,04 -0, <u>18±</u> 0,0 <u>18</u> 0,2 <u>17±</u> 0028	2,8I±0,24 2,34±0,073 2,28±0,I3I	I4, I±0,53 8,09±0,20 3,63±0,I77	-5,46 <u>+</u> 2,50 -3,60 <u>+</u> 0,68 -4,05 <u>+</u> 0,69		
5	I47 2I0 3I0 .	0,005±0,06 -0,43± 0,03 0,052±0,04	2,72 <u>+</u> 0,24 2,34 <u>+</u> 0,07 2,24 <u>+</u> 0,I3I	22,48±1,99 14,8± 0,71 8,29± 0,74	-4,51 <u>+</u> 2,51 -3,55 <u>+</u> 0,69 -3,82 <u>+</u> 0,69	-62,9 <u>+</u> I4,37 -36,3 <u>+</u> 3,66 -18,72 <u>+</u> 2,86	
6	147 210 310	-0,43 <u>+</u> 0,03 0,51 <u>+</u> 0,04	- 2,34±0,19 2,29 <u>+</u> 0,26	- I4,8 <u>+</u> 0,7I 8,30 <u>+</u> 0,74	-3,68 <u>+</u> 3,90 -4,67 <u>+</u> 3,65	- -36,3 <u>+</u> 3,66 -I8,7 <u>+</u> 2,87	0,56 <u>+</u> I7,39 2,7 <u>+</u> II,7

.

Таблица 4

Коэффициенты аппроксимирующего ряда для $M^{np}_{,,i} \left(a_0^2 - \mathbf{x}^2\right)^{\frac{1}{2}}$

.

8

Рис, 1. Зависимость расстояния одномезонного полюса от края физической области $\frac{\mu^2}{2k^2}$ от энергии нуклонов. 1-Х-плоскость, 2-W -плоскость

Рис. 2. Эффективный скачок на разрезе для M_{11}^{PP} в зависимости от расстояния вдоль разреза. Расстояние вдоль разреза измеряется в плоскости W поляр-

ным углом ϕ : 1,2,3-скачок, найденный для $M_{II}^{PP}(a_0^2 - x^2)^{+\gamma}$ …ри энергии 147,310,210 Мэв, соответственно. 4- скачок для M_{II}^{PP} при энергии 210 Мэв.

Рис. 3. Эффективный скачок для M_{11}^{np} 1,2,3-скачок, найденный для $M_{11}(a_0^2-x^2)^{+4}$ при энергиях 147, 210, 310 Мэв, соответственно. 4-скачок для M_{11}^{pp} при энергии 210 Мэв.