

11

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ НЕЙТРОННОЙ ФИЗИКИ

Ю.П. Попов, Ю.И. Фенин

P-1010

АНАЛИЗ УСРЕДНЕННЫХ СЕЧЕНИЙ ЗАХВАТА НЕЙТРОНОВ

MEJT+, 1962, T43, 66, C2000-2007.

Ю.П. Попов, Ю.И. Фенин

.

P-1010

АНАЛИЗ УСРЕДНЕННЫХ СЕЧЕНИЙ ЗАХВАТА НЕЙТРОНОВ

Направлено в ЖЭТФ

единенный и исследо ПИОТЕКА

Дубна 1962 год

.

Описан метод анализа усредненных сечений захвата нейтронов в области энергий -1- 50 Кэв с целью получения характеристик взаимодействия *р* -нейтронов с ядрами. Проведен анализ сечений захвата, измеренных в Физическом институте им. П.Н. Лебедева на спектрометре нейтронов по времени замедления нейтронов в свинце для ядер *Br*, *Rb*⁸⁵, *Nb*, *Mo*⁹⁸, *Mo*¹⁰⁰, *Rh*, *Ag*, *In*, *Sb*, *J*, *Cs*, *Ir*. Полученные значения силовых функций *р* -нейтронов сравниваются с данными других авторов и предсказаниями оптической модели атомного ядра.

Yu P. Popov, Yu.1. Fenin

ANALYSIS OF AVERAGED NEUTRON CAPTURE CROSS SECTIONS

Abstract

A method is described of analysing the averaged neutron capture cross sections in the energy region of $\sim 1-50$ KeV in order to obtain the characteristics of *p*-neutron-nuclei interaction.

An analysis has been made of the capture cross sections measured at the Lebedev Physical Institute by means of a neutron spectrometer based on the showing down time in lead for the nuclei of Br, Rb⁸⁵, Nb, Mo⁹⁸, Mo¹⁰⁹, Rh, Ag, In, Sb, J, Cs, Ir.

The obtained values of the strength functions of *p*-neutrons are compared with the data of other authors and with the predictions of the nuclear optical model.

Введение

Широкое развитие спектрометрии нейтронов в резонансной области позволило перейти от простого набора экспериментальных данных к обобщениям и сравнению с моделями атомного ядра. Однако полученные данные относятся в основном к взаимодействию с атомными ядрами нейтронов с нулевым орбитальным моментом, *s* -нейтронов. Отдельные сведения о взаимодействии нейтронов с большими орбитальными моментами^{/1-3/} нельзя считать надежными, поскольку они в основном опираются на разделение резонансов, относящихся к *s*-и *p* -нейтронам, по величине приведенной нейтронной ширины. Однако большая ширина распределения нейтронных ширин^{/4/} при малом числе наблюденных уровней делает такое разделение резонансов не совсем однозначным.

В настоящее время более существенные сведения о взаимодействии p -нейтронов с ядрами, по-видимому, может дать анализ усредненных сечений захвата нейтронов в области энергий 1-100 Кэв. Полученные в результате такого анализа силовые функции для p -нейтронов (S_1)^{/5,6/} подтверждают наличие гигантского резонанса в зависимости S_1 от атомного номера A, предсказанного оптической моделью ядра^{/7,8/}, и указывают на наличие заметного спин-орбитального взаимодействия. Однако различие в значениях S_1 , полученных в Окридже (США)^{/6/} и в Дюкском университете (США)^{/5/}, для большинства элементов в районе гигантского резонанса доходит до 2-3 раз. Это не дает уверенности в величине спин-орбитального взаимодействия, приведенной Вестоном и др.^{/5/}, и в выборе параметров потенциала с поверхностным поглощением Крюгера и Марголиса^{/9/}, полученных сопоставлением с данными Вестона и др.^{/5/}.

П.Э. Немировский^{/10/}, Мосин-Котин и др.^{/11/} решали задачу обратным путем. Они рассчитывали усредненные сечения захвата нейтронов, исходя из определенных модельных представлений и параметров низкорасположенных нейтронных резонансов, и сравнивали их с экспериментальными результатами. Для ряда ядер согласие получилось хорошим. В то же время попытки провести расчеты сечений в киловольтной области для ядер с редко расположенными уровнями не всегда дают надежные результаты^{/12/}.

В настоящей работе проводится анализ экспериментальных данных по энергетической зависимости усредненных сечений захвата нейтронов, полученных в Физическом институте им. П.Н. Лебедева с помощью спектрометра по времени замедления чейтронов в свинце /13-15/ в области энергий ~ 1-50 Кэв. Целью анализа является определение средних резонансных параметров, описывающих захват нейтронов с орбитальным моментом (= 1. Вклад р - нейтронов в этой области энергий, с одной стороны, сравним с вкладом s -нейтронов, а с цругой стороны, -гораздо больше вклада нейтронов с высшими орбитальными моментами. Хо- тя процедура такого анализа описывалась /5,6/, представляет интерес рассмотреть ее нес-колько подробнее, обращая внимание на обоснование используемых предположений и упро-шений.

Метод анализа

Рассмотрим усредненные сечения радиационного захвата нейтронов $\overline{\sigma}_{\gamma}$ в киловольтной области энергий. Будем считать, что вклад прямых процессов в это сечение мал. Исключения можно ожидать только для магических и близких к ним ядер /например, *Rb* /. В случае $D^{J} << \Delta E << E \overline{\sigma}_{\gamma}$ можно хорошо описать усредненной по энергетическому интервалу ΔE формулой Брейта-Вигнера для изолированного резонанса /например, $^{10/}/.$

$$\overline{\sigma}_{\gamma} = \sum_{\ell,J,j} \overline{\sigma}_{\gamma}^{\ell J j} = 2\pi^2 \overline{\pi}_{\ell,J}^2 \frac{2J+1}{2(2l+1)} \sum_{j} \frac{\overline{\Gamma_n \Gamma_{\gamma}}}{D^J \Gamma^{\ell J j}} , \qquad (1)$$

где $\mathbf{\hat{x}}$ -длина волны нейтрона с энергией E, I и J -спины ядра-мишени и составного ядра, j -полный момент нейтрона, равный $/\ell \pm \frac{1}{2}/j$; $\Gamma_n^{\ell jj}$, $\Gamma_{\gamma}^{\ell j}$ и $\Gamma_{\gamma}^{\ell j}$ соответственно парциальная нейтронная ширина, соответствующая определенному значению j, радиационная и полная ширины резонансного уровня; D^{J} -среднее расстояние между уровнями с одинаковым значением J.

Мы не будем рассматривать неупругое рассеяние нейтронов, так как в исследуемой, области энергий и ядер этот процесс отсутствует^{X/}, т.е. полная ширина складывается только из нейтронной и радиационной

$$\Gamma^{\ell j} = \Gamma_n^{\ell j} + \Gamma_{\gamma}^{\ell} = \Sigma \ \Gamma_n^{\ell j j} \cdot \alpha_j^{j l} + \Gamma_{\gamma}^{\ell} \,. \tag{2}$$

Здесь а ^{JI} -коэффициент, соответствующий правилу треугольников при сложении моментов I и j в суммарный J

$$a_{j}^{JI} = \begin{cases} 1 , \text{ при } / j - I / \leq J \leq j + I \\ 0 , \text{ во всех остальных случаях.} \end{cases}$$
(2a)

Этот коэффициент введен в явном виде, чтобы подчеркнуть, что при данном J и I только определенные j дают вклад в $\Gamma_n^{\ \ell J}$.

Черта сверху в формуле (1) означает усреднение по распределениям ширин от резонанса к резонансу. Для нейтронных ширин мы воспользуемся распределением Портера-Томаса⁴⁴ с числом степеней свободы $\nu = 1$, которое является общепринятым и хорошо описывает эксперимент:

$$P(\Gamma_n) d\Gamma_n = (2\pi \Gamma_n \overline{\Gamma_n})^{-\frac{1}{2}} exp \left\{-\Gamma_n / 2 \overline{\Gamma_n}\right\} d\Gamma_n , \qquad (3)$$

(a)

x'Исключение составляет уровень с $E_0 = 29$ Кэв Nb^{93} со спином 1/2. Однако поскольку основное состояние имеет спин $9/2^+$, неупругий процесс может идти для нейтронов с большими моментами; как минимум необходим захват p_- с испусканием d -нейтрона или наоборот. Такой процесс маловероятен и по оченкам, основанным на коэффициентах прилипания, приведенных в монографии $^{16/}$, составляет < 1% от сечения захвата p -нейтронов.

где P(Γ_n) dΓ_n -вероятность обнаружить уровни с ширинами от Γ_n до Γ_n + dΓ_n,
 если средняя ширина равна Γ_n. Противоречие с распределением Портера-Томаса при ν = 1, которое получили в Сакле^{/17/} при измерении резонансов P_r, нельзя считать окончательно доказанным. Оно может быть обусловлено пропуском ряда слабых резонансов.

В связи с тем, что формула (1) содержит большое число неизвестных параметров, и все они не могут быть определены из имеющихся в нашем распоряжении экспериментальных данных, попытаемся упростить формулу (1) с тем, чтобы свести число неизвестных параметров к минимуму.

1) Для ядер, имеющих внутреннюю ось симметрии, что достигается уже при малых отклонениях формы ядра от сферической, зависимость плотности уровней $\rho_j = 1/D^J$ от спина составного ядра имеет следующий вид /см., например, /18,19//:

$$\rho(E^*, J) = \frac{1}{D^J} = \frac{2J+1}{D} \exp\{-\frac{(J+\frac{1}{2})^2}{2c\tau}\}.$$
(4)

Здесь $c = \frac{2MR^2A}{5\hbar^2}$ -классический момент инерции ядра в единицах \hbar^2 ; *М* -масса нуклона; *А* -массовое число; *R* -радиус ядра; *г* -температура ядра в энергетических единицах. При энергии возбуждения ядра $E^x \approx E_{cg} = 6 \div 8$ Мэв /энергия связи нейтрона в ядре/ величина *г* = 1 Мэв для *A* ≈ 100 и слабо зависит от E^x и *A*. По модели Ферми-газа *г* ≈ $\sqrt{E^x}$. Плотность уровней $\rho(E^x)$ при *E* << E_{cg} можно считать не зависящей от энергии. Зависимость $\rho(J)$, описываемая формулой (4), не противоречит опытным данным^{/2,20/}.

2) Радиационный захват обычно сопровождается большим числом γ -переходов на различные уровни составного ядра (мы не рассматриваем прямые процессы, так как их вклад для немагических ядер невелик). Поэтому можно ожидать, что Г_у слабо меняется от резонанса к резонансу. Зависимость Г_γ (J) можно оценить, воспользовавшись выражением для дипольных переходов^{/21/}:

$$\Gamma_{\gamma} \approx \int (E_{e\beta} - E^{x})^{3} \sum_{j'} \frac{\rho_{j'}(E^{x})}{\rho_{j}(E_{e\beta})} dE^{x} .$$
(5)

Рассмотрим $\sum_{J'} \frac{\rho_{J'}(E^x)}{\rho_{J}(E_{cb})}$. Так как подынтегральное выражение представляет собой спектр γ -лучей с максимумом в области $E^x = E_m \approx \frac{1}{2}E_{cb}$, то для оценки зависимости Γ_{γ} от J достаточно рассмотреть $\rho_{J'}(E_m)$. Запишем разность показателей экспонент, входящих в $\sum_{J'}$ в виде

$$\frac{(J+\frac{1}{2})^2}{2cr} - \frac{(J'+\frac{1}{2})^2}{2cr} = \frac{(J+\frac{1}{2})^2}{2cr} - \frac{(J'+\frac{1}{2})^2}{2cr} (1+\delta) , \qquad (5a)$$

где г и r_m соответствуют E_{cb} и E_m , а $\delta = \frac{r - r_m}{r_m}$. По модели Ферми-газа $\delta = 0,4;$ а по модели жидкой капли с учетом поверхностных волн $\delta = 0,3^{/18/}$.

Наиболее существенная зависимость $\Gamma_y(J)$ будет при максимальных значениях Jт.е. в нашем случае $J \approx 6$. Принимая во внимание, что в исследуемой области ядер и энергий $(2cr)^{-r} \approx 0.015$, можно разложить $\sum_{J'}$ в ряд. Ограничиваясь членами первого порядка малости, получим

$$\sum_{J'} \frac{\rho_{J'}(E_m)}{\rho_{J}(E_{cb})} = 3 \left[1 - \frac{(J + \frac{1}{2})^2}{2 cr} \delta \right].$$
(56)

Такая оценка показывает, что даже для ядер с I = 9/2, если прямые переходы играют малую роль, Γ_{y} для максимального и минимального значений J отличаются не более чем на 15-20%. Поэтому в пределах этой величины мы можем считать Γ_{γ} не зависящим от J.

В дальнейшем, в двух вариантах расчетов мы будем предполагать, что для уровней с различной четностью величины $(\Gamma_{\gamma}/D)_{\rho}$ одинаковы. Для ядер с нечетным Z на это, повидимому, указывают результаты измерений в Дюкском университете^{/5/}, хотя их еще нельзя считать окончательным экспериментальным подтверждением. Этот вопрос требует дальнейшего исследования. Поэтому в третьем варианте расчетов силовой функции S_1 мы полагали $(\Gamma_{\gamma}/D)_{\rho}$ и $(\Gamma_{\gamma}/D)_{\rho}$, независимыми переменными.

3) Поскольку мы не знаем распределения средних нейтронных ширин по *J* и *j*, то естественно ввести некие средние по *J* и *j* величины, которыми описывается сечение и сравнивать их с параметрами, сосчитанными по какой-либо модели.

Определим /для средних по E / среднюю по j величину < Γ_n (ℓ , J) > :

$$\Gamma_{n}^{\ell J} = \langle \Gamma_{n}(\ell J) \rangle \cdot \sum_{j} a_{j}^{JI} = \langle \Gamma_{n}(\ell J) \rangle \epsilon_{J}^{I\ell}, \qquad (6)$$

где

 $\epsilon_{J}^{f'} = \begin{cases} 2, \text{ если } |J-I| \leq \ell \pm \frac{1}{2} \leq J+I \\ 1, \text{ если выполняется только одно из условий} \\ /J-I/ \leq \ell + \frac{1}{2} \leq J+I \text{ или } /J-I/ \leq \ell - \frac{1}{2} \leq J+I , \\ 0 - во всех остальных случаях. \end{cases}$ Такое определение имеет смысл, если $\Gamma_{n}^{\ell J \ell} + \frac{1}{2}$ не сильно отличается от $\prod_{j=1}^{\ell} \frac{f' J^{\ell} - \frac{1}{2}}{16/2}$

Такое определение имеет смысл, если $\Gamma_n^{\ell j \ell + \frac{1}{2}}$ не сильно отличается от $\Gamma_n^{\ell j \ell - \frac{1}{2}}$ (отличие обуславливается спин-орбитальным взаимодействием).В оптической модели^{/16/}, где использована константа спин-орбитального взаимодействия, даюшая правильную величину расщепления нижних уровней ядер, это взаимодействие не велико, и соответствующие коэффициенты прилипания $T_{j/2}$ и $T_{j/2}$ отличаются максимум в 2 раза. Однако если окажется, что $\Gamma_n^{\ell j j}$ сильно зависит от j, то придется задавать другие значения $\epsilon_j^{l \ell}$ или считать его варьируемым параметром.

Введем средний по J параметр $<\Gamma_n(\ell)/D>$, соответствующий $<\Gamma_n(\ell J)/D_J$, такой, что

$$\bar{\sigma}_{\gamma} = 2\pi^{2} \chi^{2} \sum_{\ell I} \frac{2J+1}{2(2I+1)} \cdot \frac{\epsilon_{I}^{I\ell} < \Gamma_{n}(\ell)/D > (\Gamma_{\gamma}^{\ell}/D^{J})}{\epsilon_{I}^{I\ell} < \Gamma_{n}(\ell)/D > + (\Gamma_{\gamma}^{\ell}/D^{J})} \cdot F\left(\frac{\Gamma_{\gamma}^{\ell}/D^{J}}{2\epsilon_{I}^{I\ell} < \Gamma_{n}(\ell)/D >}\right), \tag{7}$$

где из-за усреднения по расвределению Портера-Томаса для лейтровных ширия^{/227} появзмется

$$F(a) = \left(\frac{1}{n}\right) \cdot \frac{1}{1} = (1+2a) \cdot 1 - \sqrt{\pi a} e^{a} \left[1 - \operatorname{erf}(\sqrt{a})\right]$$
(7a)

И

$$erf(\sqrt{a}) = \frac{2}{\sqrt{\pi}} \int_{0}^{\sqrt{a}} e^{-t^{2}} dt$$

Функция $F \equiv 1$ при $\Gamma_n = \tilde{\Gamma}_n$ или при $\tilde{\Gamma}_n < \Gamma_y$, т.е. $a \to \infty$. Усреднение проводится ся по распределениям нейтронных ширин $\Gamma_n^{\ell f}$, хотя последние являются суммами по j. В отсутствие спин-орбитального взаимодействия парциальные нейтронные ширины с различными j для одного резонанса одинаковы и от резонанса к резонансу меняется их сумма, т.е. $\Gamma_n^{\ell f}$. Можно полагать, что малый добавок спин-орбитального взаимодействия не повлияет на такую корреляцию парциальных ширин. В противоположном предельном случае независимых $\Gamma_n^{\ell f f}$ надо брать кратный интеграл по распределениям для каждого j. П.Э. Немировский $^{/10/}$ отмечает, что в этом случае отличие в F будет не более 10%.

Введение не зависяшего от J параметра $< \Gamma_n(\ell) / D >$ не противоречит ряду экспериментальных данных. Так, в работе $^{/20/}$ для W^{103} получено, что величина $<\Gamma_n(OJ)>/D^J$ не зависит от J. Кроме того, если рассматривать силовые функции s -нейтронов /пропорциональные $<\Gamma_n(O)/D>$ /, то можно заметить, что для соседних ядер с

A = 232-243, сильно различающихся по I /а следовательно, и по J /, средние значения силовых функций $\overline{f_o}$ /23/ отличаются всего в 1,5 - 2 раза. Для I = 5/2 $\overline{f_o} = 1,1.10^{-4}$, для I = 1/2 $f_o = 1,0.10^{-4}$, для I = 0 $\overline{f_o} = 1,8.10^{-4}$, а если опустить значение $f_o = 3,7.10^{-4}$ для Pu^{242} , которое резко отличается от других f_o для ядер с I = 0, то получим $\overline{f_o} = 1,4.10^{-4}$.

Введем не зависящий от *E* параметр $S_{\ell} = \langle \Gamma_n(\ell)/D \rangle \cdot (\sqrt{E} \cdot v_{\ell})^{-1}$ где $v_0 = 1$ и $v_1 = (R/\lambda)^2 \cdot [1 + (R/\lambda)^2]^{-1}$. Тогда из сравнения выражения (7) с экспериментальными значениями $\overline{\sigma}_{\gamma}$ можно найти S_0 , S_1 , $(\Gamma_{\gamma}/D)_0$ и $(\Gamma_{\gamma}/D)_1$ для данного ядра-мишени.

Чтобы показать смысл средних величин S_ℓ , получающихся в результате такого анализа, рассмотрим случай $\Gamma_\gamma >> \Gamma_n$, т.е. $\Gamma_\gamma \cong \Gamma$ и $\overline{\sigma_\gamma} \cong \overline{\sigma_e}$, т.е. сечению образования составного ядра. Из (7) с учетом F = 1 получим

$$\overline{\sigma}_{e} = \sum_{\ell} 2\pi^{2} \chi^{2} S_{\ell} \frac{\sqrt{E \cdot v_{\ell}}}{2(2l+1)} \sum_{j} (2j+1) \epsilon_{j}^{I\ell} = \sum_{\ell} 2\pi^{2} \chi^{2} (2\ell+1) \sqrt{E} v_{\ell} \cdot S_{\ell}.$$
(8)

Сравнивая (8) с выражением для сечения образования составного ядра, которое получается в оптической модели ядра^{/16/}, мы получаем, что определенная гаким образом величина S₀ является силовой функцией ^{x/}.

x/Это верно с точностью до $\pi/2 < \Gamma_n(\ell)/D >$, что в нашей области энергий не превосходит - 10% /16/.

$$S_{\ell} = \frac{(\ell+1) T_{\ell} + \frac{1}{2} + \ell \cdot T_{\ell} - \frac{1}{2}}{2\pi (2\ell+1) \sqrt{E} v_{\ell}}$$

где T_j -коэффициенты прилипания, вычисляемые в оптической модели. В связи с тем, что мы находим S_ℓ не только из ограниченной области, в которой $\Gamma_n <<\Gamma_\gamma$, то вообще говоря, S_ℓ может несколько отличаться от силовой функции, определяемой в оптической модели. Однако при увеличении Γ_n сечение захвата все менее чувствительно к S_ρ , а при $\Gamma_n >> \Gamma_\gamma$ вообще от S_ℓ не зависит. Таким образом, наиболее подходящей для определения соответствующей силовой функции является область малых энергий, где $\Gamma_\gamma^\ell > \Gamma_n^\ell$.

4) В области энергий нейтронов до 60 Кэв, где расположены анализируемые экспериментальные точки, основной вклад в сечение дают нейтроны с l = 0 и l = 1. Вклад нейтронов с l = 2, который при малых энергиях растет как E s/2, можно оценить, взяв соответствующие коэффициенты прилипания по оптической модели. При E = 60 Кэв для l = 0 и l = 1 < Γ_n(l)/D > >> (Γ_γ/D)_l, и поэтому (см. выражение (7)) сечение определяется величинами (Γ_γ / D)_l; для d -нейтронов положение обратное, и их вклад в сечение определяется коэффициентами прилипания. В этом приближении мы оценили для каждого ядра энергетическую границу, начиная с которой вклад d -нейтронов в суммарное сечение захвата превышает 10%. Оказалось, что для анализируемых ядер такая граничная энергия находится при ~ 50 Кэв. Несмотря на малую точность такого определения относительного вклада d -нейтронов, можно отметить, что наиболее благоприятной областью энергий нейтронов для анализа параметров s- и p -нейтронов является интервал~1-50 Кэв.

Результаты анализа и обсуждение

Теоретическая формула (7) сопоставлялась с экспериментальными кривыми сечений для Br^{79,61}, Rb.⁸⁸, Nb⁹³, Rh¹⁰⁹, In^{13,115}, Sb^{121,123}, J¹²⁷, Cs¹³³, Ir^{191,193/13/}, Mo⁹⁸, Mo^{100/14/}, Ag^{107,109/15/} (данные по серебру уточнены в дипломной работе С. Романова (ФИАН СССР 1962 г.). При этом полагалось $R = 1,45 \cdot A^{1/3} \cdot 10^{-13}$ см. Значение 2 сг (ф-ла (4)) влияет только на величину (Γ_{γ}/D) и (Γ_{γ}/D), но не на их соотношение, что подтвердил и контрольный обсчет с r = 0,5 Мэв. Поэтому для удобства сравнения с результатами, полученными другими авторами по отдельным резонансам или из усредненных сечений, экспонента в ф-ле (4) не учитывалась.

Методом наименьших квадратов на электронной счетной машине определялся набор параметров, дающий наилучшее согласие с экспериментом. Варьироваться могли такие параметры как $S_o, (\Gamma_\gamma / D)_o, S_I, (\Gamma_\gamma / D)_I$. При анализе учитывались только случайные ошибки экспериментальных точек (~ 3+5%). Возможная ошибка в нормировке (~ 10%) приведет лишь к параллельному сдвигу всей кривой, что мало скажется на точности обсчета по методу наименьших квадратов. Расчеты, проведенные для случая J_{J}^{127} , показали, что при сдвиге экспериментальных точек на \pm 10% параметры оставались в пределах их ошибок. Слабая зависимость от нормировки отмечалась и в работе 5/. Поскольку усредненные сечения являются плавной функцией энергии (см.рис. 1-2), то однозначно можно определить лишь небольшое число параметров. В нашем случае, как правило, уже 3 варьируемых параметра обеспечивают согласие с экспериментальной кривой в пределах заданных ошибок, поэтому введение дополнительных варьируемых параметров может привести лишь к неоднозначности результатов. Наиболее интересным с физической точки зрения является, по-видимому, определение силовой функции для p -нейтронов $S_1^{\bullet} = < \Gamma_n(1) / D > .$

В первой серии расчетов принималось $(\Gamma_{\gamma}/D)_{0} = (\Gamma_{\gamma}/D)_{1} = S_{\gamma}$ (см. выше), а силовая функция S_{0} бралась из результатов других авторов ^{23/}. Так определялись два параметра S_{1} и S_{γ} . Однако надо отметить, что точность определения S_{0} при A 100, т.е. в области минимума $S_{0}(A)$, еще очень плоха, а для некоторых ядер эксперимен – тальные данные вообще отсутствуют, поэтому приходилось пользоваться экстраполяцией S_{0} из значений для соседних ядер. В связи с этим была проведена вторая серия вычислений, в которых определялось 3 параметра S_{0} , S_{1} и S_{γ} . И,наконец, поскольку нельзя считать окончательно доказанным, что $(\Gamma_{\gamma}/D)_{0} = (\Gamma_{\gamma}/D)_{1}$ даже для ядер с нечетным Z, хотя на это есть указание $\frac{5}{1}$, третья серия расчетов проводилась при закрепленном значении S_{0} ; определялись S_{1} , $(\Gamma_{\gamma}/D)_{0}$ и $(\Gamma_{\gamma}/D)_{1}$. Результаты всех трех серий расчетов сведены в таблицу.

В таблице во 2-4 столбцах приведены значения параметров и ссылки, указывающие в каких работах они получены. В последующих 4-х столбцах даны параметры, полученные нами; каждая строка относится к определенной серии обсчета.

Если рассматривать результаты различных серий расчетов с точки эрения определения силовой функции для p -нейтронов, то оказывается, что во всех трех сериях значения S_1 совпадают в пределах их ошибок (исключение составляет $Ag^{107,109}$ и Rb^{88})^{X/} носмотря на то, что величины S_0 , а также соотношение $(\Gamma_{\gamma}/D)_0$ и $(\Gamma_{\gamma}/D)_1$ могут иногда существенно меняться (см. таблицу). Такое положение позволяет говорить об однозначности определения S_1 путем анализа усредненных сечений захвата в области энергий

~ 1-50 Кэв. В качестве окончательных значений S₁ принято среднее значение из вычислений по трем сериям, а интервал ошибок определялся границами ошибок крайних значений S₁ (последний столбец).

Анализ результатов определения остальных параметров, приведенных в таблице, показывает, что полученные нами значения S_0 , как правило, близки к результатам других измерений и экстраполяции со стороны соседних элементов, хотя есть и систематические расхождения в 1,5-2 раза (In, Sb, J). Здесь, пожалуй, не стоит останавливаться на этих различиях, поскольку настоящий анализ не претендует на надежное определение S_0 , так как в анализируемом диапазоне энергий отсутствует наиболее подходящая для этого область энергий, где для s -волны $\Gamma_n < \Gamma_v$.

Х/ По ряду соображений результаты анализа усредненных сечений захвата для Rb⁸³ менее надежны, чем для остальных ядер. Ядро Rb⁸⁶ является околомагическим с малой плотностью уровней, т.е. здесь возможен большой вклад прямых переходов, и в области нескольких Кэв плохо выполняется условие D^J << Δ E << E.</p>

Благодаря корреляции S_0 й $(\Gamma_{\gamma}/D)_0$ эти расхождения сказываются и на результатах анализа при раздельном варьировании $(\Gamma_{\gamma}/D)_0$ и $(\Gamma_{\gamma}/D)_i$, приводя к тому, что для этих ядер получается $(\Gamma_{\gamma}/D)_0 < (\Gamma_{\gamma}/D)_i$. Весьма вероятно, что это неравенство отражает не физическую сторону явления, а скорее неточное задание значения S_0 . Сопоставление абсолютных величин радиационных силовых функций с результатами спектроскопии нейтронов в резонансной области (например, $^{24/}$) показывает, что они близки. О бельшем говорить пока рано, поскольку для большинства ядер точность определения (Γ_{γ}/D) по параметрам отдельных резонансов явно недостаточна.

Для дальнейшего уточнения силовых функций для *р* -нейтронов (как нейтронной, так и радиационной), получаемых из анализа усредненных сечений захвата, помимо уточнения кривой сечения захвата сушественную роль играет знание точных значений S₀ и (Γ_y /D)₀, которые, судя по ряду последних работ по спектроскопии нейтронов в резонансной области /3,17,25,26/, могут быть получены с хорошей точностью.

Сравнение наших результатов по определению силовой функции для *p* -нейтронов с другими данными приведено на рис. 3. Видно, что наши значения хорошо согласуются с данными Гиббонса и др.⁶⁷ (за исключением Sb , Br) и, как правило, расходятся с данными⁵⁷. Это расхождение нельзя объяснить различием методик определения S₁ по кривым сечения захвата (авторы работы⁵⁷ производили анализ сечений вручную, считая этот метод более наглядным), поскольку наши расчеты по экспериментальным точкам работы⁵⁷ дали значения S₂, близкие к приводимым авторами.

Общая зависимость наших значений S_1 от атомного номера в первом приближении описывается теоретической кривой, рассчитанной по коэффициентам прилипания, приведенным в монографии П.Э. Немировского $^{/16/}$. Наиболее существенное расхождение с теоретической кривой наблюдается около $A \cong 100$, где экспериментальные значения S_1 для Rh и особенно для Mo^{96} и Mo^{100} лежат ниже кривой. Малые значения S_1 для Mo^{96} и Mo^{100} нельзя связывать лишь с тем фактом, что в отличие от остальных нечетно-четных изотопов они являются четно-четными. Как уже отмечалось выше (при анализе зависимости силовой функции S_0 от J), S_0 практически не зависит от четности числа протонов или нейтронов в ядре; нет оснований считать что для S_1 дело обстоит по-другому.

В то же время надо отметить, что измерения с малыми количества ми разделенных изотопов Mo^{98} и Mo^{100} , слабо захватывающих нейтроны, выполнены с худшей точностью, чем для остальных элементов $^{/14/}$. Кроме того, малая плотность уровней этих изотопов не обеспечивает надежного усреднения сечения в области малых энергий, хотя флуктуация в плотности уровней, которая привела бы в обоих изотопах к падению S_1 в 5-10 раз, маловероятна. Ошибку в определении S_1 из-за плохого усреднения сечений оценить не представляется возможным, поэтому значениям \overline{S}_1 для Mo^{98} и Mo^{100} прилисаны лишь ошибки из результатов расчетов.

Таким образом, провал значений- S, при A = 100 может указывать на более сильное спин-орбитальное взаимодействие, чем это принято в^{/16/} (в работе Вестона и др.^{/5/} спин-орбитальное взаимодействие взято на порядок большим), либо на необходимость еще

большей детализации оптического потенциала, например, введения поверхностного поглощения, как это сделано Марголисом и Крюгером⁹⁹. Необходимо отметить, что введение поверхностного поглощения и использование величины спин-орбитального взаимодействия из расшепления нижних уровней ядра еще не дает расшепления гиган тского резонанса S₁(A) при A ~ 100⁹.

В заключение авторы приносят глубокую благодарность Ф.Л. Шапиро за постоянный интерес к работе и ценные замечания. Авторы благодарны П.Э. Немировскому и В.Н.Ефимову за неоднократные обсуждения работы и И.И. Шелонцеву за составление программы и проведение расчетов на электронной вычислительной машине.

Литер атура

- 1. A.Saplackoglu, L.M.Bollinger, R.E.Cote, Phys. Rev., 109, 1258 (1958).
- 2. C.T.Hibdon, Phys. Rev., 114, 179 (1959).
- 3. J.S.Desjardins, J.L.Rosen, W.W.Havens, J.Raipwater, Phys. Rev., 120, 2214 (1960).
- 4. K.G.Thomas, C.E.Porter, Phys. Rev., 104, 483 (1954).
- E.G.Bilpuch, L.M.Weston, H.W.Newson, Annals of Physics, 10, 455 (1960). L.M.Weston, K.K.Seth, E.G.Bilpuch, H.W.Newson Annals of Physics, 10, 477, (1960).
- 6. J.H.Gibbons, R.L.Macklin, P.D.Miller, J.H.Neiler, Phys. Rev., 122, 182 (1961).
- 7. H.Feshbach, C.E.Porter, V.F.Weisskopf, Phys. Rev., 96, 448 (1954).
- 8. П.Э.Немировский, ЖЭТФ 32,1143,(1957).
- 9. T.K.Krueger, B.Margolis, Nucl. Phys., 28, 578 (1961).
- 10. П.Э.Немировский, ЖЭТФ 39, 1737(1960).
- 1. C. Mossin-Kotin, B.Margolis, S.E.Troubetzkoy, Phys. Rev., 116, 937 (1959).
- 12. Р.Л.Мэклин. Труды 11 Женевской конференции по мирному использованию атомной энергии1958 г. т.Пстр.216, Атомиздат 1959г.
- 13. Ю.П.Попов, Ф.Л.Шапиро ЖЭТФ 42, 988(1962).
- 14. С.П.Капчигашев, Ю. І.Попов (в печати).
- 15. А.И.Исаков, Ю.П.Попов, Ф.Л.Шаниро ЖЭТФ, 38, 989(1960).
- 16. П.Э.Немировский.Современные модели атомного ядра. Атомиздат (1960).
- 17. C.R.Corge, Vinh-Dinh-Huynh, J.Julien, J.Morgenstern, F.Netter, Journ. de Phys. et le Rad., 22, 719 (1961).
- 18. Г.Бете. Физика ядра,ч.11.Гостехиздат, (1948).
- 19. J.M.Lang, K.Le Couteur, Proc. Phys. Soc., 67A, 586 (1954).

Перевод:Проблемы современной физики, 11,48,(1955).

- 20. J.R.Waters, J.E.Evans, B.B.Kinsey, G.H.Williams, Nucl. Phys. 12, 563 (1959).
- 21. Дж.Блатт, В. Вайскопф, Теоретическая ядерная физика, Инлитиздат, (1954).
- 22. Успехи в области ядерной энергии, Инлитиздат, (1958).
- 23. Nuclear Data Tables, 1959.
- 24. D.J.Hughes, B.A.Magurno, M.K.Brussel, "Neutron Cross Section," Suppl. Nº1 to Sec. Ed., BNL-325, (1960)..
- 25. Ван Най-янь, И.Визи, Э.Н.Каржавина, А.Б.Попов, Ю.С.Язвицкий, Сб. материалов совещания по нейтронной физике в Дубне. Декабрь 1961 г.
- 26. Ким Хи Сан,Л.Б.Пикельнер,М.ИПшитула,Чен Линь-янь,Э.И.Шарапов.
- Сь, материалов совещания по нейтронной физике в Дубне. Декабрь 1961 г.
- 27. J.S.Desjardirs, J.L.Rosen, J.R.Rainwater, W.W.Havens, Bull. Am. Phys. Soc., II, 5. 32 (1960).
- 28. R.Ribon, A.Michaudon, Z.Dimitrijvic, Compt. Rend., 254, 2546 (1962).
- 29. D.J.Hughes, R.L.Zimmerman, R.E.Chrien, Phys. Rev. Lett., 1, 461 (1958).

			• .	• •					
Элемент	Другие авторы			- ~	(5/2)	([8/2))	S.	$\overline{\varsigma}$	
	సం	18/2	λ_1	~~~	~ ~ /0		~1	~1	
	I,4	24	0,05[6]	Ι,4	6	,5 <u>+</u> 0,3	2,3 <u>+</u> 0,3	2,7 +I,0	
R~ ^{79,81}	2,3	6,7 [24]		I,9 <u>+</u> 0,4	5	,6 <u>+</u> 0,6	3,0 <u>+</u> 0,7	-0,7	
Dl				Ι,4	6,40 <u>+</u> 0,34	5,6 <u>+</u> 0,7	2,7 <u>+</u> 0,5.		
D 0 85				0,5	I	,33 <u>+</u> 0,06	4,5 <u>+</u> 0,5		
K B ·	2,5	0,15[24]		0,II <u>+</u> 0,07	I,35 <u>+</u> 0,04		10,2 <u>+</u> 3,3	-4	
	0,35	0,9	I2 <u>+</u> 5 [6]	0,35	I	,21 <u>+</u> 0,03	10,7 <u>+</u> 0,7	2.0	
NIR93	0,1	I,0[24]	6,0 <u>+</u> 0,2[27]	0,37 <u>+</u> 0,I	I, I,	,2I <u>+</u> 0,03	I0,3 <u>+</u> I,9	10,8 +3,2	
140			4,6 <u>+</u> I[I]	0,35	1,1 <u>+</u> 0,3	I,23 <u>+</u> 0,06	II,5 <u>+</u> 2,5	-2,4	
				0,5	I,I <u>+</u> 0,2 I,0 <u>+</u> 0,I		I,3 <u>+</u> 0,6	2,1 +2,7	
M 98				0,06 <u>+</u> 0,I6			2,4 <u>+</u> 2		
110				0,5	0,5 <u>+</u> 0,7	I,0 <u>+</u> 0,I	2, 6 <u>+</u> 2,2	-1,/	
	0,5	I,0	I <u>+</u> I [5]	0,5	2	,9 <u>+</u> 0,I	0,48 <u>+</u> 0,05		
Mo^{100}				6 <u>+</u> I2	I,7 <u>+</u> 0,3		0,9 <u>+</u> 0,3	0,7+0,5	
				0,5	2,7 <u>+</u> 0,2	I,7 <u>+</u> 0,4	0,7 <u>+</u> 0,2	-0,3	
Rh ¹⁰³	0,5 <u>+</u> 0,I		4+4 [28]	0.44	$13,2\pm0,9$ 14 ± 1		6.4+0.6	5,4 +I,6	
	0,44 [25]	00		, F2 0 0/			5,. <u>.</u> 5,0		
	0,5	20 75[0/J	2,5+1,5[5]	0,53+0,04			⊃,2 <u>+</u> 0,0	-1,4	
	0,7	12[24]		0,44	18,6+2,5	13,7+1,2	4,7 <u>+</u> 0,7		

ТАБЛИЦА Результаты анализа усредненных сечений захвата *)

.

.

Элемент	Другие авт		C'	$(\Gamma_{\mathbf{Y}} f)$	$(\Gamma_{Y} (a))$	Ć	5	
	So	TS/D	S1	ె నిం	(° D)0	(0/2)]	\mathcal{N}_{1}	,S ₁
107,109	0,8 14,3		I0 <u>+</u> 3[6]	I,0	9,6 <u>+</u> 0,5		8 ,6 <u>+</u> 0,8	
Hg	0,5I <u>+</u> 0,09			0,51	28,3 <u>+</u> I,6		2,6 <u>+</u> 0,2	2
- 0	[3]			0,79 <u>+</u> 0,05	II,6 <u>+</u> 0,9		7,2 <u>+</u> 0,8	6,5 +3
				I,0	9,3 <u>+</u> 0,4	II,5 <u>+</u> 0,8	8,I <u>+</u> 0,7	-4
				0,51	23, I <u>+</u> I,8	11,4 <u>+</u> 1,2	5,1 <u>+</u> 0,7	
	0,5	3,9	8 <u>+</u> 2 [6]	0,5	3,1 <u>+</u> 0,2		4,I <u>+</u> 0,5	5,2 ^{+I} ,8
7n 113,115	0,31	6,0	2+2	0,24 <u>+</u> 0,01 4,3 <u>+</u> 0,2		3 <u>+</u> 0,2	5,I <u>+</u> 0,4	
511	0,31 <u>+</u> 0,06[29]		-0,8[5]	0,5	I,49 <u>+</u> 0,I2	4,66 <u>+</u> 0,2	6,5 <u>+</u> 0,5	-1,6
	0,52	3,0	4 <u>+</u> I [6]	0,5	2,4 <u>+</u> 0,2 3,9 <u>+</u> 0,6		I,8 <u>+</u> 0,4	1,6+0,6
<i>C ℓ</i> I2I,I23	I,I	3,7 [24]		0,30 <u>+</u> 0,03			1,3 <u>+</u> 0,3	
50				0,5	2,2 <u>+</u> 0,2	4,3 <u>+</u> 0,6	1,7 <u>+</u> 0,3	-0,6
. 127	0,84 . 6,7		3, 0 <u>+</u> I,5[6	0,84	5,4 <u>+</u> 0,2		3,8 <u>+</u> 0,4	0.0
7	1.2+0.4[29]	4.8 [24]	T.5+0.7[5]	0,49 <u>+</u> 0,02	7,4 <u>+</u> 0,4		3,4 <u>+</u> 0,3	3,8+0,9
5		·,• [=']	1,5,0,,[5]	0,84	4,0 <u>+</u> 0,2	7,9 <u>+</u> 0,4	4,3 <u>+</u> 0,4	-0,7
133	I,0 <u>+</u> 0,2[29]	3,9 [24]		I,0	3,0 <u>+</u> 0,1 2,8 <u>+</u> 0,2		2,7 <u>+</u> 0,3	2,8+0,3
Cs	2,6			I,I <u>+</u> 0,I			3,0 <u>+</u> 0,5	
-				I,0	3,0 <u>+0</u> ,I4	2,8 <u>+</u> 0,24	2,8 <u>+</u> 0,4	-0,4
₩ 191,193	2,2 <u>+</u> 0,2[29]			2,4	26,8 <u>+</u> 0,6		I,75 <u>+</u> 0,2	
17	2,3	I4 [24]		2,2 <u>+</u> 0,2	29 <u>+</u> 3		I,5 <u>+</u> 0,3	I,7 ⁺⁰ ,7
				2,4	26,0 <u>+</u> 0,7	I7, <u>+</u> 7,7	1,9 <u>+</u> 0,5	-0,5

*) Все параметры приводятся в данной таблице в единицах 10⁻⁴.

Сопоставление экспериментальных значений сечения захвата нейтронов в Rh¹⁰³ с теоретической кривой. Сплошная кривая подсчитана по параметрам, приведенным в таблице. Для параметров всех трех серий расчетов кривые усредненных сечений совпали. Пунктиром проведена кривая, соответствующая второй серии расчетов, но S₁ изменено на величину ошибки - S₁ = 7.10⁻⁴ О - экспериментальные точки /13/ - /5/, Λ -/6/.

Сопоставление экспериментальных значений сечения захвата нейтронов в *In* с теоретическими кривыми. Сплошная кривая подечитана по результатам второй и третьей серий расчетов / см.таблицу/, пунктирная - по результатам первой. Приводятся также парциальные сечения захвата, обусловленные *s* - и *p* -нейтронами /вторая серия расчетов/ О -экспериментальные точки/13/, С _ /5/ и $\Lambda _ /6/$.

Рис. 3.

Зависимость силовой функции для р -нейтронов от атомного веса ядра-мишени. • - результаты настоящей работы, -взято из работы^{/5/}, Λ - /6/. Сплошная кривая подсчитана по коэффициентам прилипания, взятым у П.Э. Немировского^{/16/} /потенциал с размытым краем, объемное поглощение/. Пунктирные кривые взяты из работы^{/9/} /потенциал с размытым краем, поверхностное погло-

Пунктирные кривые взяты из работы^{/9/}/потенциал с размытым краем, поверхностное поглощение/. Кривая /б/ соответствует вдвое большему спинторбитальному взаимодействию, чем а/и /16/. Значки со стрелками вниз показывают верхнюю границу S₁.

Работа поступила в издательский отдел

15 июня 1962 г.