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1 Introduction 

Fifty years ago the development of the theory of synchrotron radiation has been stim­

ulated significantly due to rapid progress in the construction of electron synchrotrons, 

and nowadays the development of the theory of coherent synchrotron radiation (CSR) 

is stimulated by the need to construct future generation linear colliders [1). The bunch 

length in the main accelerator of linear collider should be about it, rv 0.1 - 1 mm at the 

value of the bunch charge of few nC. These values exceed by an order of magnitude those 

used previously. The CSR effects are also important for designers of X-ray FELs {2--4]. 

These projects require even shorter bunches1 down to 0.025 mm. Such intensive and short 

bunches are obtained by multi-stage compression in special magnetic chicanes (bunch­

compressors). Analytical estimations and numerical simulations show that the effects of 

coherent synchrotron radiation become to be significant in such systems and even could 

prevent the achievement of the required beam parameters leading to the growth of the 

energy spread and emittance dilution [5,6]. The problem of coherent synchrotron radia­

tion of a short bunch in an undulator should be studied, too. Nowadays the development 

of the linear collider projects entered into the stage of construction of test facilities for 

testing main technical solutions [7] and the project of 6 nm VUV SASE FEL is now 

under construction at DESY [4]. The success of construction of theses facilities depends 

significantly on correct understanding of CSR effects influence on the beam dynamics. 

The first works on the theory of coherent synchrotron have been performed fifty years 

ago {8-10]. In these papers the main emphasis was put on the calculations in far zone of 

CSR produced by a bunch of relativistic electrons moving on a circular orbit. Another 

part of the problem, namely that of the radiative interaction of electrons within a bunch 

has been studied for the first time in refs. [11,12] and latef in refs. [5,13] where the energy 

losses along the bunch has been calculated. It was shown in these papers that the rate of 

the integral energy losses in the bunch coincides with the CSR power in far zone [8-10]. 

It should be noticed that all the results obtained in refs. [5,8-13] are valid only for 

the model situation of circular motion of a bunch. In practice accelerator systems are 

composed of bending magnets separated by straight sections and the trajectory of the 

electron bunch is not a circular one, but consists of a number of arcs joined by straight 

sections. So, a reasonable question arises about the possibility to describe this case with 

the results obtained for the model situation of a circular motion. A rough estimation for 

the applicability region of the latter results for the case of a bending magnet are as follows: 

Rh3 4:: I, 4:: R¢';,./24 , 
(1) 

where l~; is the length of the electron bunch, R is the bending radius of the magnet, 

¢m is the bending angle of the particle in the magnet ( ¢m «:: 1 ), "( is relativistic factor 

(I » 1) and Sm = R¢;:,/24 is the slippage length equal to the path difference of the curved 

trajectory inside the magnet and the straight line between entrance and exit points of the 

magnet. So, we can conclude that this applicability region is a narrow one and the results 

of refs. [5,8-13] could be used carefully in each practical situation. For instance, it could 

be shown that some accelerator systems of linear colliders and X-ray FELs falls out of 
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applicability region given by eq (1). 

In the present paper we extend the study of CSR effects for the case of the electron 

bunch of an arbitrary length h passing isolated bending magnet of small bending angle 

tPm·- We consider_ the model of_ ult~:ax:el(.l#Vistic electron bunch with a linear distribution 

of the charge (zero transverse dimensions). We perform detailed study of the CSR effects 

in the electron bunch with a stepped distribution of the charge density. To calculate the 

radiative interaction force we have developed the analytical technique of complementary 

integral which can be used also in more complicated cases (a sequence of magnets, an 

undulator etc.). Using this technique we have obtained analytical expressions in the form 

of elementary functions for the longitudinal force, for the distribution of the energy losses 

along the bunch and for the integral energy losses of the bunch. The results for the integral 

energy losses of the bunch are in complete agreement with the results of the integration 

of spectral density of _the radiation energy in fqr zone. The results obtained in this paper 

allow on~ to impose more correct limitations (with respect t6 the es_timation given by 

eq. -(1 )) on the applicability region of the results obtained in the framework of the model 

of a circle motion of the electron bunch [5,8-13]. 

The simple physical model considered in this paper, does not allow one to take into 

account a number of physical effects influencing on the process of coherent radiation. These 

effects refer to a finite transverse dimensions of the bunch, to the shielding of radiation 

due to the presence of vacuum c_hamber, to the influence of adjacent bending magnets, etc. 

Nevertheless, giving simple analytical relations, such a model allows one to get a deeper 

insight into the physics of CSR. It provides also a firm base for a quick estimation for 

an upper limit of power of CSR effects. If such an es~imation will indicate on the strong 

influence of CSR effects on the beam dynamics, numerical simulations codes; taking into 

account the realistic situation should be used to obtain more correct result. Analytical 

results could serve in this case as a primary standard for testing these numerical codes. 

The paper is organized as follows. The radiative interaction of two electrons executing 

a circular motion is analyzed in section 2 and physically transparent _method of radiative 

force calculation is presented. In section 3 this method is used for calculations of the 

radiative interaction of electrons in a bunch moving on a circle. In section 4 we study 

the _radiative interaction of two electrons passing the bending magnet of finite length. In 

section 5 and 6 we study in detail the CSR effects in the electron bunch with the stepped 

profile. The results obtained in the paper are discussed in section 7. It is illustrated how 

the technique for the calculation of radiation forces can be extended for the case of an 

arbitrary density profile of the bunch. 

2 Radiative interaction of two electrons moving on a circle 

We begin our study with the system of two particles moving on a circle of radius R. 

The electric field of a back electron produced at a source point P' at ·time t' reaches a 

front electron at timet in the point P. This is described by the Lienard-Wiechert formula. 
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where 

1-. ., (~- ~') 
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(2) 

( 4>- 4/) , L and n are, respectively, the angle, the distance, and the unit vector directed 

from point P' to point P, ii' = V'fc, iJ' is the velocity at point P'. The first term in the 

right-hand side of eq. (2) refers usually as velocity {or Coulomb) field and the second one, 

proportional to the acceleration g' = v 2 j R, refers as acceleration field (or radiation field). 

Taking into account eq. (2) we can write the expression for the rate of the energy change 

of the front electron: 

2 {3 1•-qi) /32 (~ ~') 
"(P) E"(P) _ e c cos 2 - cos "' - "' 

ev o - 2 
, 2 - , 3+ 

I (2Rsin h~~q, >) (1- j3cos (4>~4> >) 

e2 (!3 cos¥ - /32 cos( 4>- 4>')) g' sin¥ 

c2 2Rsin (o/>~4>') (1- j3cos (o/>~4>')t 

e2 g' sin( ,P -1>') 
C

2 2Rsin (</>~1>') (1- j3cos f<t>-;4>'>f 
(3) 

In this paper we use ultrarelativistic approximation for the electron motion and assume 

the bending angle of the particle in the magnet to be small. Under these conditions eq. (3) 

is reduced to: 

.... ec s 
3
+ 

2
3 

2 [ 1 _ {3 + 3u' ,: - (1 - {3) ] 

ev(P) o E(P) = R2 12u2 ( 1 - {3 +'f) 2 (1- /3 +}) 
(4) 

where the retarded angle u = (4>- ¢') and the distance (s- s') between electrons are 

connected by the relation: 

; Ru3 

(s- s) = (1- {J)Ru + 24. (5) 

The first term in the right-hand side of this relition appears due to a difference between 

the velocity of the electron and the velocity of light and the second one is equal to the 

difference in the length between the arc and the cord P' P. 

Analysis of expression (4) shows that the first term in square brackets contains singu­

larity at u = 0 (i.e. at s = s'). In this paper we study pure radiative effects and remove 

this singularity using the following trick. We consider the system of two electrons moving 
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along a straight line. In this case the rate of the energy change of the front electron is 

d£ e2 

d(ct) ~ "f'(s~s-y 
(6) 

and this expression contains singularity, too. We define the radiative force as the difference 
between eq. { 4) and eq. (6): 

( 
d£) e

2 
{ !!0~(1~/J) 

d(ct) GSR = R' 2('Ji-+1~fl)"+ 
1 [ ¥+1~,6 

J2u2 (~+1-,Bf 
• _1 ,,]} , (7) 

which does not contain singularity at u = 0 and tends to zero in the limit of linear motion 
at R:::::} oo, u:::::} 0 and Ru:::::} (s- s1)/(1- ,8) =canst. In the following we will refer to 
the term in eq. (7) proportional to l/12 u 2 as to "renormalized Coulomb term". 

The force acting on the back electron from the side of the front one is only of Coulomb 
nature and is described with the following expression independently of the trajectory type 
(a straight line or a circle): 

d£1 ez 

d(ct) = ~ 'l''(s~s')' 

So, we have excluded from consideration nondissipative interaction forces. The radiative 
fOrce acti~g on the ffOnt electron is described with the eq. (7) and there is no radiative 
force acting on the back one. 

Now we study the dependence of the radiative force (7) on the distance between the 
electrons. We start with the asymptote of a small distance (s - s1

) «::: R/13 between 
the particles corresponding to small retarded angles JU << 1 (see (5)). In this case the 
acceleration term and renormalized Coulomb term of eq. (7) take the form: 

~ [ 'f ~ {1 ~ ,6) l ~ _ 2e
2

')'
4 

R' z('Ji-+1-,6)" ~ R' , 

e
2 

[ lf + 1 - ,6 1 l 2e
2
1

4 

R'"f'u' ('if+ 1- fl)'- (f.+ 1- fl)' "-' 3R' . 

The total radiative force acting on the front electron from the back one is decelerative 

and is given by 

( 
d£ ) 4e

2
')'

4 

-~ ~---

d(ct) CSR ~ 3R2 
') R at (s- s << 3 · 

')' 

4 

(8) 

To understand this result one should take into account that for each electron the rate of 
energy loss due to the radiative self-action is equal to 

(
dt:) (d£') 

d(ct) SR = d(ct) SR 

2ez'Y4 
- 3R2 ' 

As a result, the total rate of energy loss for the system of two electrons is equal to 

(
d(£ + £')) ~ ~ 8e

2
')'

4 

d(ct) tot~ 3R2 
') R at (s-s <3· 

')' 

So, we have obtained a well-known result which states that the system of two particles 
at small distances between them radiates as one particle with double charge. This result 
indicates that- the renormalization procedure (7) has been performed correctly. Indeed, 
this correct· result could not be obtained without taking into account the renormalized 
Coulomb field which is independent of acceleration. 

Let us consider now the asymptote of a large distance between the particles (s- s
1

) » 
Rj--/ corresponding to large retarded angles u » 1/1· In this case the renormalized 
Coulomb term is negligible and we have: 

( 
d£ ) 32e

2 

d(ct) csn"" R2u4 
at "(U » 1. {9) 

Using eq. (5) we can express the retarded angle in the terms of t~e distance between the 

electrons 

u "-' [24(s; s'f' {10) 

and finally get [12]: 

') R at (s~s »s· 
7 ( 

d£ ) 2e
2 

d(ct) GSR o= 33/2R2f3(s ~ s')</3 
{11) 

In the general case the rate of the energy change of the front electron under the action 
of the radiative force from the side of the back electron can be written in the following 

form: 

(_!!_) - e'"f' • ., 
d(ct) GSR ~- R' i!i(s- s) ' 

{12) 

where function q.(S- S1
) is given by the formula: 

ili= 
u' ~ 4 4 [ ~ + 1 1 ] 

2(!f+1)' "' (i+1)' (f,+1)' 
{13) 
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Fig. 1. The radiative interaction function (13) between two electrons travelling in a circle. 

The normalized retarded angle U = "fU is the function of normalized distance between 
electrons (S- 81) = (s- s')/3 /R and can be obtained by solving the cubic equation 

• ·3 

( • "') u u 
s-s =2+24 · 

The plot of the function <l>(s- ;')is presented in Fig. 1 (see also ref.[13]). It is seen from 
this plot that the radiative interaction force provides deceleration of the front electron at 
a small distance between the electrons, but at 

(s-s')=1.8 ~, 
'Y 

the radiative force changes the sign. 

3 Coherent radiation of an electron bunch moving on a circle 

In this section we study CSR of the electron bunch executing a circular motion. Using 
physically transparent method for the calculation of the radiation force, we extend the 
results obtained in refs. [5,8-13] to the case when lower limitation in eq. (1) is not satisfied. 

We begin with the case of rotating electron ring with homogeneous linear density >.(s) = 

>.o = const. Here and below it is assumed that >.oR/"'!3 » 1. The rate of the energy change 
of the reference particle with coordinate s is given by the superpositio~ o(the ra.diati()n 
forces of the back particles: 

(
d£) ' ' 

d(ct) = 1 ds'>.(s')K(s- s') = >.0 1 ds' K(s- s') , 
OSR -oo -oo 

(14) 
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where I<(s- s1) is the rate of the energy change of the reference particle due to the action 
of the back particle with coordinate s1 and >.(s')ds1 = dN is number of particles inside 
interval di. The kernel I<(s- s1

) is given by eq. (7) with the retarded angle u given by 
eq. (5) as function of (s- sl For the further consideration it is more convenient to go 
over to the retarded angle as independent variable. The expression for the Jacobian of 

transformation can be obtained from eq. (5): 

d(s- s') = ( _ f])R Ru' 
du 1 + 8 · 

As a result, eq. (14) takes the form: 

(_<1£.) = 2e'"{ Ao 1w d(!u) [1 + 'Y'u'] X 

d( ct) csR R 
0 

· 4 

{ 
~-1 1 [ ~+1 1 ]} 

2(~+1)3 + J2U2 (4+1)3- (~+1r 
(15) 

It should be noticed that setting the integration limit equal to infinity in eq. (14) and 
(15) is justified by ultrarelativistic approximation when the integral over a region of small 
angles u « 1 gives the main contribution. Integrating eq. (14) we obtain well-known result 

that uniformly charged ring does not radiate: 

(_<1£.) __ 4e
2
-yAo { lim [ (iu)(S + -y

2
u

2
) ]-

d(ct) CSR- R ou~w (4 + -y2
u

2 )(12 + -y2u') 

lim [ (iu)(8 + -y'u') l} = 0. 
ou->0 (4 + 72u 2 ) (12 + -y2

u
2

) 

(16) 

This result could be also derived without using ultrarelativistic apprOximation. Starting 
with Lienard-Wiechert fields one can show that system of N identical equidistant charges 
q moving with constant velocity v along an arbitrary closed path does not radiate in the 
limit of N -+ oo and N q = const, and the electric and magnetic fields of the system 
are the usual static values (see, for example, the book of Jackson [15]). We will use this 

important result in section 5 to simplify calculations. 
Now let us consider the case of the electron bunch with an arbitrary distribution of the 

linear density satisfying the following condition: 

Rd-\(s) '() ,-d- <</\ s . 
' s 

(17) 

This approximation means that characteristic length of the bunch is much larger than 

R/ 13 • To calculate integral 

( 
d£ ) ' 

d(ct) csn = 1 ds'-\(s')K(s-s') 
-w 

(18) 
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one should take into account the property of the kernel K(s- s') : 

j ds'K(s- s') = 0 
-= 

(19) 

which has been proved above. Using eqs. (17) and {19) one can simplify eq. (18) in the 
following way. The integral (18) is written down as a sum of two integrals 

6 s-0 -_, s 

j ds'>.(s')K(s- s') = j ds'>.(s')K(s- s') + j ds'>.(s')K(s- s') , 
-oo -co s-0 

where 0 satisfies the following conditions: 

Rh3 «S, sd>.(s) « >.(s). 
ds 

(20) 

(21) 

Using the first ~ondition of eq. (21 ), we replace the rigorous expression for K( s- s') by 
asymptotical expression (11) in the first integral of eq. (20): 

_, . 22 ~ >.(~ 
j ds'>.(s')K(s-s')oo 3312~213 j ds'(s-:')4! 3 • 

-oo -oo 

Using the second condition of eq. (21), we calculate the second integral of eq. (20): 

' ' j ds'>.(s')K(s-s')oo>.(s) j ds'K(s-s'). 
s-0 s-0 

Then, using the property (19) of the kernel K(s- s'), it is transformed to: 

s s-J 

j ds'>.(s')K(s- s')"' ->.(s) j ds' K(s- s') . 
s-J -co 

Then the asymptote of eq. (ll) is used: 

' 2(s-J I 

J d , >.( ') ( , 2e >. s) j ds 
s s K s - s ) ~ - 33/2 R2/3 ( s - s')4f3 , 

s-0 -oo 

and after integration by parts we obtain the result of integration of eq. (18): 

(
dE:) ' 

d(ct) CSR = j ds'>.(s')K(s _ s')"' 
-= 

2e2 [ ,_, , >.( s') ,....,,.,..,.,,., J ds, _,,,~ 
-oo 

,_, d' l 
>.(s) j (s _ :')4/3 = 

-oo 

8 

~'\ 

s-0 s 
2e2 j ds' d>.(s') 2e2 j ds' d>.(s') 

-31/3 R2/3 ( 8 _ s')l/3 ds' ~ -31/3 R2/3 (s _ s')l/3 ds' · 
-co -oo 

(22) 

At the last step of transformation of eq. (22) the second condition (21) has been used. 
For the first time formula (22) ha.s been derived in ref. [12]. It can .be used for the 

calculation of the total CSR power P. For periodical circular motion one can write: 

= (d&(s)) 
P =- j ds>.(s) d(ct) csR ' 

-oo 

(23) 

Let us consider two frequently used models of the density distribution. In the case of 

Gaussian distribution: 

N [ s'] >.(s) = tn-\112- exp - 2cr2 
(24) 

it is easy to obtrun [5,12,13]: 

( 
dE: ) 2Ne

2 
(') 

d( ct) CSR "' (2rr )1/231/3 R'f3u4/3 F -;; 

where the function F is given with the expression: 

e 
F(O= j 5'.__..'!__ -(<')'/2 

(e-f)'l3 dfe · 
-oo 

(25) 

In accordance with eq. (23) total CSR power is equal to 

,....., 24/33t/6N2e2 [ (~)]' 
P - n R2/3cr4/3 r 3 . 

(26) 

For a stepped density distribution (i.e. at >.(s) = N/L. = const in interval 0 < s < l,) 
one can obtain [5,11,12]: 

( 
dE: ) 2Ne

2 

d(ct) CSR 
00 

31f3R2i'l,8 1/3 ' 

32/3N2e2 

P "' Rlf3li13 . 

(27) 

(28) 

The results (26) and (28) are in a full agreement with the results of calculations of CSR 

power in far zone (8-10]. 
Let us perform a more detailed study of the case of the stepped bunch profile. It is 

seen that eq. (27) contains singularity at s * 0, i.e. the rate of the energy loss of the 
tail particles becomes infinitely large. Nevertheless, this region of parameters is out of 
applicability region given by condition (17). Under this condition one has to consider the 
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stepped profile in such a way that at the edges of the bunch there should be a smooth 
decrease of the bunch density at characteristic length which is small with respect to the 
bunch length, but large with respect to R/13. 

Using formalism developed in this paper we can obtain rigorous solUtion for the case 
of the stepped bunch profile which applicability region does not limited with the above 
mentioned restriction. Indeed, the bunch with the stepped density profile constitutes a 
fraction of a homogeneous electron ring. So, one can use expressions (15) and (16) where 
the infinity limit of integration should be replaced by finite value of the retarded angle. 
As a result, one obtains: 

Ct!)) CSR 

4e2 N1 (lu,)(8 + 1'u;) 
m, (4+1'u;)(12+1'u~5, (29) 

where Us can be calculated using relation 

Ru3 

8 = (1 - ,B)Ru, + 2f · (30) 

It is seen that eq. (29) does not contain singularity at s ;::::} 0. It is interesting to study 
asymptotical behaviour of this function. In the limit of s » R/13 corresponding to large 
retarded angles /Us >> 1, one can obtain: 

u., ~ [2~sf'3 , 

( de ) 4Ne2 
-- ~----

d( ct) csn - Ru,h -
2Ne2 

3113 R2f3hSlf3 

This result is identical to eq. (27), but now one has the possibility to check the accuracy 
of this asymptote using eq. (29). 

In the limit of s « R/13 (i.e. at 1Us << 1 ), it is easy to obtain: 

s 212
8 

u, "' (1 - ,B)R "' R , 

( de) ~ 
d(ct) CSR-

414 Ne2s 

3R'l, (31) 

After integration of eq. (23) over the bunch length h, the total radiation power of the 
bunch _can_ be obtained in the limit of h « R/13 : 

p "' 2N' e'l' 
"~0 (32) 

It is seen, that a short bunch with h « R/13 radiates as a single particle with the 
charge of N e and the radiation power does not depend on the bunch length lb. 
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4 Radiative interaction of two electrons passing a bending magnet 

In this section we study the problem of radiative interaction of two electrons passing a 
bending magnet with curvature radius R. Electrons move with velocity v along identical 
trajectories one after another (see Figs. 2 and 3). We assume the bending angle of the 
electron trajectory in the magnet o/m to be small, o/m « 1. The field at the point P of the 
front electron's location is determined with the retarded position P' of the back electron. 
It is evident that the radiative action QJ the back electron on the first one can take place 
only in two parts of the trajectory, namely in the arc (inside the magnet) and on the 
straight line after the magnet. Four cases of radiative interaction should be considered: 

A: The point P is in the arc at azimuthal position q, ( q, = 0 corresponds to the entrance 
into the magnet). If the distance between electrons (s ~ s') satisfies the condition 

R</>' 
(s- s') > (1- ,B)R</>+ 24", 

then the point P' is on the straight line before the magnet (see Fig. 3a). 

B: The point P is in the arc and the distance between electrons satisfies the condition 

(s- s') < (1- ,B)R-1.+ R4>' 
'f' 24 . 

In this case the point P' is in the arc, too (see Fig. 3b). 

C: The point P is on the straight line after magnet at a distance x from the exit of the 
magnet and the distance between the electrons is within the limits of 

(s- s') > (1- ,B)(R</>m + x) + R</>"!, R</>m + 4x 
24 R</>m + x 

In this case the point P' is on the straight line before the magnet (see Fig. 3c). 

~ 
R 

¢m 

0 

Fig. 2. Trajectory of a particle passing a bending magnet. 
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(a) p 

A~B 

0 

(c) 

0 

(d) p• 

Fig. 3. Relative configuration of source point r and field point P for a system of two electrons 
passing a bending magnet. 

D: The point P is on the straight line after the magnet. -When 

(s- s') <(I- f3)(R¢m + x) + R¢':,. R¢m + 4x 
'24 n 1 

' 

the point P' is in the arc (see Fig. 3d). 
The procedure for calculation of the energy change of the front electron due to the 

radiative action of the back electron is identical to that described in section 2. 
For the case (A) we have· only renormalized Coulomb term, leading to the radiative 

{/1 

12 

,; 

~ 
I 

interaction: 

(
__:!£_) ~ 4e

2
')'

4 (J ')'{(J+y)' +J
3

(¥+Y) 
d(ct) A R' +y [(J+y)' +~r 

' 1 ,,} , (33) 

where ¢ = -y¢, [; = Y'Y / R and y is the distance between the point P' and the entrance 

to the magnet (see Fig. 3a). The normalized distance Y is the root of the equation: 

(8- 8') ~ J +Y + J3 J, +4y , 
2 24 .P+fi 

(34) 

where (8- 8') ~ (s -s')'l'3 /R. 
For the case (B) eq. (7) can be used: 

( 
dt:) 4e

2
')'

4 
{ ~-1 

d(ct) B ~Ji' 2(;+'¥-)' + 

I [ l+'lQ'. I ]} 
ft2 (l+it ~ (l+¥i)2 . 

(35) 

Here we have introduced the notion of the relative normalized azimuthal position ft. = 
~- ¢' between the points P and P' which is the root of equation: 

u [J,3 
(8- 8') ~ 2 + 24 . 

(36) 

Case (B) can be referred as a steady-state regime, because the radiative force does not 

depend on the azimuthal position ¢ of the point P. 
For the case (C) we have only the renormalized Coulomb term: 

( 
dt: ) 4e2

')'
4 

• • • 2 
d(ct) G ~Ji'(.Pm+x+y) X 

{ 
(Jm + x + 11)

2 + J?n (* + x2 +2±Jm +fiJm + 2xy) 

[(Jm +± +Y)' + ~ (Jm +2x)'r 

I , ,, } 
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where ~m = "f<Pm, X = XJ / R and fi = Yi / R. To find Y one has to solve the equation: 

(s- s') 1m H +Y ¢;,. ¢?,. + 4¢m (X+ y) + 12xy 
=-~--'--"- + - . . 

2 24 .Pm+x+fj 

The following expression corresponds to the case (D): 

( 
de ) 4e2

1
4 

• • , 

d(ct) D =R"(.P+x) x 

{
¢'['?(¢+2x)'-(¢H)'] + 

2[(.ftH)
2 +'?(¢+2x)'j' 

(,\ H)2 + ¢' ('!f H' +2x,\) 

[(¢H)'+'?(¢+ 2:1:rr 

" 1 ,, } 

{38) 

(39) 

Here .¢ = ¢m - ¢' and ~' = 1cfi' is normalized azimuth of the point P' . The value of¢ 
can be found by solving the equation: 

(S-s') = ¢+x + ¢' ¢'.+4:1:,\ 
2 24 .P+x (40) 

The expression for the radiative force presented here can be used as a basis for cal­
culations of the radiative interaction of the particles inside the bunch of any length and 
arbitrary density distribution. As far as we know, the only density profile allowing rigor­
ous analytical solution is a stepped one. This case is studied in detail in the next section. 
For calculation of a general case this set of formulae could be implemented in numerical 
codes. 

5 Coherent radiation of a rectangular bunch passing a bending magnet 

In this section we consider CSR effects of the electron bunch of any length with rect­
angular density distribution passing a bending magnet. 

First, we consider the case of infinitely long electron bunch with the current I = evAo = 
const. A current circuit consists of the arc and semi-infinite straight lines (see Fig. 2). 
The angle between the straight lines is equal to the bending angle ¢m of the magnet. We 
will show that radiative interaction force is equal to zero at any point of such a circuit. 
This fact is important for the following investigation of the CSR effects for the bunch of 
finite length. 

14 

Let us find the rate of the energy change for a reference particle at some point P in 
the arc of the magnet. Let the azimuth of this point be equal to ¢. Using formula (33) 
and calculating Jacobian of transformation (S- S') ::::} Y with the help of eq. (34) one 
can write the superposit.ioll of radiative interaction forces for the source points P' located 

before the entrance into the magnet: 

[(J+Y)' + ~ (¢+4:9)]' 
( 41) 

The integration of this expression gives the result: 

( 
dt: ) 4e

2
"fAo { ¢' + 2 6 } 

d(ct) A= -R- J (¢2 + 4) - ¢(¢' + 12) = 

4e2"fAo ¢( 8 + ¢') 
R (4+¢') (12+¢') 

(42) 

To calculate the radiative interaction force acting on the reference particle from the 
back particles with retarded positions P' inside the arc, one should use eq. (35) and (36): 

( 
dt: ) 2e

2 >. • ( ii') { i:- I 
d(ct) 

8
= ~'[du 1+4 2(:+".'-f+ 

1[l+'l£ 1 ]} 
uz (l+~t (l+~r = 

4e2"1 >.0 ¢( 8 + ¢') 
R (4+¢') (12+¢') 

(43) 

It is seen that total energy change of the reference particle due to the radiative inter­

action with the back particles is equal to zero: 

(...'!£) - (...'!£) + (...'!£) - 0 
d(ct) tot - d(ct) A d(ct) B - , 

(44) 

Now let the reference point P to be placed on the straight line after the magnet at some 
distance x from the magnet exit. The action of the particles with retarding positions P' 
on the straight line before the magnet is calculated using eq. (37) and (38): 

15 

11 

f 

I! 
' 



~ I 

!I 
'I 

.li 

• ! 

11: 
~I 

(..!!£) ~ 2e
2
')'.\o 100 

d' 
d(ct) 

0 
R y X 

0 

{ 

( J>m + i: + fj) 2 + ¢?. ( 'ija + x2 + 2x(i,m + iJJ>m + 2i:fj) 

[(J>m + i:+ fl)' + ~ (J>m + Z} )']' 

(J>m +X +Y)
2 +~ (J>m + 2x)' } 

[ ( 1>m +X +Y )' + ¥,>- ( ¢;. +4x1>m + 4fl1>m + l2xy) r . 
When retarded positions of the back particles P' are within 

expression can be written with the help of eq. (39) and ( 40): 

(..!!£) = 2e'')'.\o ~~m d,f, X 

d(ct) D R 
0 

{
P['?(,J,+2:i)'-(,J,H)'j + 

2[(,J,H)' +?(,J,+zx)'j' 

(h x)' +,f,' (¥ H' + z±,f,) 
[ (,J, + x)' +? (,J, + zx)']' 

(,J,+X)' +?(,J,+zx)'} 
[(,J,H)' + ~ (,J,+4x)j' 

After the integration one can write: 

U!)t =- U!)t = 

4e2')'.\o [ 2x (¢?. + 1) + J>m (¢?. + 2) 
-R- 4x2 ( ¢;. + 1) + 4i:¢m ( ¢;. + 2) + ¢;. ( ¢;. +4) 

6(H¢m) ] 
l2i:2 + 4x1>m (¢;. + 6) + ¢;. (¢;. + 12) 

{45) 

() 0 
the arc, the following 

• 
,·; ·•· 
0 

(46) 

(~) 

So, we have obtained that there is no radiative interaction for the case of infinitely long 
electron bunch. .~ 

Now let us consider the bunch with stepped dens'itY profile and arbitrary length h. 
The total number of the particles in the bunch is equal to N which corresponds to the 
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linear density is equal to A0 = Njh. We have to calculate the radiative force acting on a 
reference particle being placed at a distance s from the bunch tail. It is useful to define 
parameter J>s as a solution of the cubic equation: 

._¢,+¢; 
S-2 24" (48) 

Solving this equation one obtains 

¢, = {/12s + v'64 + 144s2 1 v'64 + 144s' - 12s . (49) 

The electric field acting on the reference particle when it passes point P is defined 
with the superposition of retarded electric fields of the back particles. Let the retarded 
position of the bunch tail be at point P' and consider possible scenario for location of the 
points P and P'. If the normalized angle of the arc if>m is larger than parameter 4>s, the 
configurations presented in Figs. 3a, 3b and 3d can take place. In the C<ll3e when 4->m is 
less. than 4>s, the Figs. 3a, 3c and 3d represent possible "configurations. Let us write the 
expressions for total energy change of the reference particle with coordinate s: 

region 1 (¢,<¢m) 
~. ~m 

b.f =I d(i, F,(s, ¢) + I d(i, F,(s) + 
0 • •• 

fdx F,(s,i:), (50) 
0 

region 2 (J>m < ¢,) 
~m Xo 

b.&= I d(i> F,(s,¢) +I d(i, F0 (s,i:) + 
0 0 

f dx F,(s,x). (51) 

•• 
Here 

b.f = b.& ( et) -1 

is the normalized energy loss, F(a,~,c,d) is normalized rate of the energy change along 
the trajectory and subscripts (a, b, c, d) correspond to location of the points P and P' in 
Figs. 3( a, b, c, d), respectively. The value of Xs is defined as the distance between P and 
P' at the moment when P' leaves the magnet (i.e. when it coincides with the point B in 
Fig. 3). It can be simply shown that x, = s/(1 - (3) or, in normalized form x = 2s. The 
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value of Xo is equal to the distance BP at that moment when P' enters the magnet (i.e. 
when it coincides with the point A). The normalized value of 5:0 can be found by solving 
the quadratic equation (38) ~t Y = 0. As a result, _one can write: 

. ;p 1 f(. )' . 
Xo = s- tf>m- f: + 6V <P~- 6S + 9¢~ (52) 

The next problem is to calculate the functions Fa,b,c,d· The problem is significantly 
simplified if we remember that the radiative force tends to zero when retarded position 
of the bunch tail tends to infinity (see eq. (44) and (47)). To find F.(8,J,) one can use 
expressions ( 41) and ( 43), but with finite value for upper limit in eq. ( 41 ): 

F.(8,¢)=2 7 dy { (J>+Y)' +J>' ("f +iJ) _ 
0 [(J>+Y)'+t;.r 

(J>+Y)'+t;. } 
[(J>+Y)' +~(¢+4iJ)]' + 

2 j du (1 + u') { ? - 1 0 4 __ ,::!. + 

~n. (53) [ 
., 

1 1+~ 

U2 (l+~r 

The upper limit of integration, Yo, can be found by solving quadrati'c equation (34) and 

written as 

' • J. ¢' 1 f(' )' . Yo = s - ., - 6 + "6V <p
3 

- 68 + 9¢4 (54) 

Using eq. ( 44), the expression for Fa can be written in the following simplified form: 

F.(s,¢)=- 2 Jdfi{(J>+fJ)' +¢'("f+Y) 
Yo [(J>+iJ)' +1i-r 

(J>+Y)' +1i- } 
[(J>+Y)' +tHJ>+4iJ)]' . 

(55) 
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After the integration and substituting eq. (54) we obtain: 

F.(s,J,) = _ _;[I+ ¢'- 68 + 3J, ] + ~. 
1> 1(4>'-68)' +9¢' s 

The function F6(S) is given by expression (29): 

¢. (J,~ +8) 
F,(ii) = -4 ( J,; + 4) ( J,; + 12) 

and(/>., is expressed in terms of S (see eq. (49)). 
According to eq. (45) and (47) function Fe can be written in the form: 

F,(s,x) = 

/

= , { ( J>m +X +Y )' + J,;, (~+X'+ 2xJ,,., +YJ>m + 2xy) 
-2 ~ 2 

[( ' )' "' (" )'] ,Yu cPm+X+Y +r.;t ¢m+2X 

(. )' "' (. )' 1 ¢,..+X+Y +4 ¢m+2X 

J t .·.. [(J>m +X+ g)'+~ (J,;, +4xJ,m +4iJJ,m + ;2Xy)]' 

(56) 

(57) 

(58) 

-\ J • 
H~e Yo is th~ solut!on of the. quadr(\tic equation (38) which can be rewritten in a more 

convenient form: 0 

(J,m +X+ Yo)2 + ( J,l, +XJ>;.- 28) (¢m H +Yo)- J,4~ (J>m + 2x )' = 0. 

Solving this equation we obtain: 

Yo=S-x-1 ¢~ x¢2 'I'm---~+ 
6 2 

~I ( ¢' + 3xJ,;, - 68) 
2 +9<~;, ( J,m + 25: )' (59) 

and the final result for Fc(S,X) is 

( ' ') 2 Fe s,x =- A A X 
</>m + 2x 

• 

[ 
(¢;.+3xJ,;,-'68)+3(¢m+2i:) ] 1 

I+ +-;:. 
~ ( ¢;, + 3xJ,;, - 68) 2 

+9¢?, ( J>m + 2i: )2 8 
(60) 

According to eq. (46) function fd(S,X) is defined as follows: 
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•• +• ·{<f'[~(.fni)'-(.f+X)'] 
Fd(s,x)=2jd<P 2 + 

o 2[(.f+X)' +~(.f+2x)'] 

(<f + x)' + <f' (~ + x' + 2x,f) 

[(<f+X)' +~(.f+2x)'j' 

(.f+X)' + ~ (.f+2x)' } 

[(<f+X)' +~(.f+4x)]' ' 

where ~0 is the solution of the quadratic equation (see eq. (40)): 

<ft + 4x,fg + 12,f~ + 24(£ - s).fo + 12£(±- 2s) = o . 

(61) 

(62) 

Using Descartes' rule of signs it is easy to check that this equation has only one positive 
real root. To express '¢0 in terms of i: and S one can use, for instance, Ferrari's solution. 
Integral (61) can be replaced by complementary integral and could be calculated easily: 

.. [ 2x(.f~+1)+.fo(.f6+2) ] 1 
F.(s,x)=-4 4x2 (<f5+1)+4x.fo(.f5+2)+<f5(<f6+4) +:;-· (63

) 

Let us explain the origin of a simple form for the term 1/S appearinJllllhe expressions 
~ 

(56), (60) and (63). It was proved in the beginning of this section that the radiative 
interaction force is equal to zero in the case of infinite circuit of the de current. This 
property has been used when calculating the functions Fa, Fe and Fd· The integral ovet; 
trajectory from the retarded position of the bunch tail to the position of the reference 
particle was replaced by the integral (with opposite sign) ov~r complementary semi-infinite 
imaginary circuit. The latter may even not coincide with real trajectory (an example is 
the calculation of function Fd)· The advantage of such a method of calculation is explained 
by the fact that the integrand in complementary integral contains the only renormalized 
Coulomb term. The latter one consists of two ter~s and one of them, namely e2 /12(s-s')2, 
is integrated very simply (over s1 from s to infinity) and always gives the dependence 1/s 
(see eq. (56), {60) and (63)). The only complicated remaining procedure consists in the 
integration of the velocity term over additional semi-infinite circuit. 

The same trick could be used for calculation of Fb: 

J~ + 2 1 
F, = -4 J, ( J~ + 4) + }" , 

Taking into account eq. (48) one easily obtains (57). Finally, we should note that the ~ 
method of complementary integral could be used efficiently in more complic.ated situations 
such as calculations of CSR effects in sequence of magnets, undulators etc. 
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Fig. 4._ The normalized energy change of a particle versus the normalized bending angle of a 
magnet. The particle position along the rectangular bunch is defined with the condition¢. > 4>m· 

Formulae (56), (57), (60) and (63) present the normalized rate of the energy change for 
the particle with the reference coordinate s in the bunch. The parts of trajectory, where 
these functions F(a,b,c,d) have to be used, are defined in eq. (50) ~d {51) as the corre­
sponding limits of integration. To calculate the total energy change 1:1& of the reference 
particle one needs to perform integration in eqs. (50) and _(51). The examples of numer­
ical integration are presented in Figs. 4,5. Total energy loss of the whole bunch f1Etot is 
obtained by integration of the energy loss of the reference particle over s (ill normalized 
notations): 

r. 
!!.£,"' = j dst!.E , 

0 

where 

• h 
t!.e = e' N t!.e , 

7' 
ib = Rh' 

l' 3 
" ___!(J__AEtot • A&tot = e2 N 2 R 

One can study the distribution of the total energy loss of the bunch along the trajectory: 

{64) 
" ib " 

d&~o~ = J d' de 
dZ 

8 
dZ ' 

0 

where Z is either ~ or X depending on the bunch position (inside or after the magnet, 
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Fig. 5. The normalized energy change of a particle versus its reduced position ¢$ along the 

rectangular bunch when (/>$ < ¢m· The curve {1) corresponds to the transition region when 

bunch enters the magnet (see the first integral in eq. (50)) and the curve (2) shows the energy 

change after the magnet (see the third integral in eq. (50 )). 

respectively), and dE/ dZ is equal to one of the functions F(a,b,c,d) depending on the particle 

position along the bunch S. The angular position ¢, the position x on the straight line 

after the magnet and the position s of the particle in the bunch are normalized _as follows: 

J, = 7<P, " ' x= Rx, 
3 

---Ls s- R 

6 Analysis of the solutions 

In this section we perform analysis of asymptotics of the results obtained in the previous 

section for the electron bunch with rectangular density distribution. We introduce the 

notions of a "short" magnet (when ~m ~ 1) and a "long'' magnet (/hn » 1), a 
11
short" 

bunch (fb << 1) and a "long" bunch (fb » 1). To compare "the length" of the bunch and 

the magnet we use the parameter Jb which is the solution of the cubic equation: 

i=¢.+4>1. 
b 2 24 

(65) 

When we write that the bunch is "longer" than the magnet, it means that ~b > ¢m, 
and vice versa. 
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6.1 <~Short" magnet and bunch of arbitrary length 

This case is not only of theoretical interest. Magnets with Jm « 1 can be used, for 

instance, as correctors in the beam transport systems. As for the bunch length, usually 

the condition fb » 1 is satisfied in practice. Let us consider, however, the bunch with 

arbitrary normalized length fb. This more common case could be useful for testing the 

numerical simulation codes. The case of lb » 1 will be considered more thoroughly. The 

functions f(a,b,c,d) are simplified at ¢m << 1 as follows: 

F. ~ - !: u2 - ts) 
Fb:::::::::- 48 

3 , 
c• 

F ~ _ ¢! [2_ + __£ (J,,. Hi)'] 
c "2 " -

s 12 ,P,. 8s(i,,. 

48 J:2 7i:3 £4 
F,"'-3+x+25-12s'+S53 • (66) 

In accordance with eq. (50) and (51) integration of these expressions gives the value for 

energy loss of .the particle with coordinate S in the bunch: 

regwn 1 (25 < ¢,.) ., ) 
2 s 7 s L~u~\ ~ - JJ,;, hm -5 ¢;, (67) 

region 2 (J>m < 25) 

L>t, ~ -~-'' (1- .!_ J,,. + -.1 J,;,- _!__ ¢!.) 
3 'f'm 4 S 16 82 80 .SJ (68) 

Total energy losses of the whole bunch due to the coherent radiation can be calculated 

as follows: 

region I (21, < ¢m) 
i, 

6.£tot ::::::::: I dS6.£1 , (69) 
0 

regwn 2 (¢,. < 21,) 
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t>.&,,, "' J ds t>.&, + J dst>.&, . 

0 "" ' 
Substituting eq. (67) and (68) into eq. (69) and (70), we obtain 

A 2 A2 A A 

b.S,,, "' - 3</>m h 0(p) , 

where p = 2l,(fm and function 0(p) is 

{ 

lfi(l- iofi) 
A 2 1 1 

0(p) = 1 _ {,; [~ + ln(fil]- 4ft'+ 2oP 

at p ~I 

atp?:l. 

(70) 

(71) 

The expression for the total energy losses in the bunch written down in dimensional 

notations has the form: 

e2 N 2R A 2e
2N

2 
2 2 (2ln2

) 
L'lEtot ~ 1~13 L'lEtot = -3-t.-/ ¢m 0 &/Jm 

In practically interesting case of ib ~ 1 the energy loss of a single particle is 

t>.£~ 2e
2
N --34"?¢?,., 

and total energy losses of the bunch are N times larger 1 i.e. 

L'lf.tot ~ - ~ e2 N2 2 
3-t, I 1>'!. . 

(72) 

(73) 

In the latter case the energy losses take place mainly after the magnet within the 

length of rv ln2• The radiative interaction force is determined mainly by the renormalized 

Coulomb fields of the back particles with retarded positions located before the magnet 

entrance. The characteristic formation length of the radiation before the magnet is also 

of the order of h 72
• 

6.2 "Short" bunch and the magnet is ulonger" than the bunch 

In this case Jb ~ 2ib « 1 and ¢m > ¢b. To describe this case one can use expressions Fa, 

Fb a~d Fd in eq. (66), expression for the particle energy loss (67), etc. The only difference 

is that now the magnet may not be "short", it may be als9 "long". When the condition 

¢m » ¢b is satisfied, there is steady-state regime (edge effects are not important) and the 

results (31) and (32) can be used inside the magnet. 

24 

or---· 

6.3 uLong" magnet, ulong" bunch and magnet is {{longer" than bunch 

The "long" magnet is the most interesting case from practical point of view. Now W.J 

are studying the situation when ¢m » 1, ¢b ~ ~ >> 1 and ~b < ¢m. According to 

these assumption we can consider only the particles in the bunch for which the condition 

Js ~ ~ » 1 is satisfied (see eq. (49)). First, we need to simplify the expressions for 

F., F, and Fd (formulae (50), (56) and (57), respectively). The expressions for F, and F, 
are simple: 

F,"' { ~4/J at J < 2-'i3J, 
at 2-2/3J, < J < J, . (74) 

F,"' _ _4_ 
J, atJ,<J<Jm · (75) 

The expression for Fd(S,X) is complicated when X f'V ¢s, but when X~ J>s it can be 

written in tl).e simple form: 

2 I 
Fd"' -.,- + o: 

X S 
at J, <:: x ~ 2§ . 

The energy loss of a particle can be presented as the sum 

t>.&( 8) = t>.&, + t>.&, + t>.td ' 

where 

~ "'· A 8 
b.£, = j dq, F, "' -3ln 2 , 

0 

~ . 
t>.&=J4~"'~(~-!) . ~ 

~ 

" . J . 4 t>.£d = dx Fd"' -4ln<fo, +2 + 2ln3 + 31n2. 
0 

Summing up these expressions, one obtains: 

t>.f(s)"' -4 [~m +In (
2113¢•) _ :J.] 

<fo, 31/2 2 . 

As for the total energy loss of the whole bunch, it can be calculated as follows: 
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(78) 

(79) 

(80) 

(81) 
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c,.e'"' = J ds b.E(s)"" 
0 

1 ' '2 [ 2 J,, ( ' 1 11 )] -;;,<f>m<f>b 1+gJ,m ln1,+2ln2-Zln3-Z (82) 

Remembering that 

1 11 
2ln2--ln3--~-4 

2 2 - ' 

we can write in dimensional notations the expression for the total energy loss of the 

bunch: 

(3'i2
e

2 N') { 31134 1:'' [ (In') ] } 
b.ftot o=- tifi R'i' (R</>m) 1 + - 9- R'i'<f>m ln R - 4 (83) 

The applicability region of this formula is given by 

1 (241,) '
1
' ::;« R <o1>m· (84) 

When the second term of eq. (83) in figure brackets can be neglected, one obtains (see 

(28)): 

(
3

3
i

2
e

2 N') 
b.ftot o=- ti'' R'i' (R</>m) 

(85) 

This result can be obtained in the framework of steady-state approach (see refs. [8-
13,5]). Therefore, now we have the basis for outlining the applicability region of the results 
obtained in the papers [8-13,5} with respect to the case of a finite magnet length. With 
logarithmical accuracy the applicability condition can be written as follows: 

1113 (I ') R'~'<f>m ln '~ « 1 . 
(86) 

In practice this condition may not be satisfied. Indeed, in most cases the value of the 
logarithm is about 10 - 20; the value of ttl3 

/ R113¢m is limited with the condition (84) 
and can be of the order of unity. This means that the practical situations are possible 
when the condition (84) of applicability of formula (83) is valid and the energy losses are 
defined with logarithmic term in (83). In other words, the losses in this case take place 
mainly after the magnet on the length rv ln2

• 

6.4 "Long" magnet, bunch is ((much longer" than magnet 

Now let us investigate the case when 1 << ~m «: ~b· Considering only the particles with 
positions along the bunch given by ~5 :»- ~m, we obtain the following features of radiative 

26 

• 

interaction force acting on these particles. First, the force is negligible inside the magnet. 
Second, the only term Fe is important which describes the interaction of reference particle 
moving along the straight line after the magnet with the par~icles with retarded positions 
before the magnet. This renormalized Coulomb term can be written as follows: 

{

0 
Fe~ 

-2/x + 1/s 
at 0 < 5: < 2sf¢?n 
at 2Sj¢;_ <X< 2.9. 

(87) 

After integration over the trajec,tory, one obtains the particle energy loss: 

6.[ o= -4lnJ,m + 2. (88) 

In dimensional notations it can be written as 

Ne' 
Mo=-T[4ln("Y</>m)-2). (89) 

The total energy loss of the bunch is simply N times larger: 
' N2e2 

b.ftot o= --
16
- [4ln("Y<f>m)- 2) . (90) 

It should be noted that specific distribution along the trajectory of the energy loss of 
the particle, when the radiative interaction force {87) is almost absent before some point 
and then jumps, is the feature of a bunch with stepped profile. Let us discuss the case of 
smooth density distribution when characteristic bunch length is much more than R<P:n. 
The radiative interaction force will be smooth but it will decay after some maximum as 
ljx. The energy loss w!ll be defined by the logarithmic factor as in eq. (88) and will be 
proportional· to the local current density. For example, in the case of Gaussian density 
distribution (24) the partiCles energy losses are distributed along the bunch as follows 

Ne
2 

( s
2 

) b.f(s) o= '" ,,, exp -
2
" 2 [4ln(i¢m)- 2) 

and the total energy losses of the whole bunch are 

N2e2 
b.ftot o= --

2 
I/2 [41n(/</>m)- 2) 

. ,. " 
7 Discussion 

Let us discuss the results obtained in this paper. First, it is interesting to compare the 
total energy losses of the whole bunch with the energy of coherent radiation in far zone. 
The latter one is usually calculated as the integral over frequencies of the spectral density 
of radiation energy: 

dW 
dW<oh = N'ry(w)"J;;;' 

dw 
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where 17(w) is the bunch form factor (see, for example, [16]). The form factor for the 

rectangular bunch of the length h is: 

( wl,) 2 
(wl~) -2 

~(w) = sin 2c -
2
C" {92) 

The function dW/dw in eq. (91) is the spectral density of radiation energy of a single 

electron. The angular and spectral characteristics of the radiation of an electron moving 

in an arc of a circle was investigated in ref. [14] 1 . It was shown that in this case the 

radiation spectrum differs significantly from that of usual synchrotron radiation when 

electron executes periodical circular motion. In particular, in the latter case the spectral 

density at low frequencies is proportional to w 113 (see [18]). Contrary to this, in the case 

of finite curved track length, the spectral density is constant at w-+ 0. When the bending 

angle is small ( c/>m << 1) and electron motion is ultrarelativistic, this energy spectral 

density (see [14]) is the function of the only parameter ¢m = 1¢~ and can be written: 

dW e2 

dw = 1fCJm' 
(93) 

where 

fm = I'+ - ln -- - 2 ( 
I) l+p 
I' 1-r 

and 

I' 
J>m/2 

VI+ {(/,m/2)' 

Formula (93) is valid for frequencies w « cf Lst, where Lsi is characteristic slippage 

length in the magnet of the radiation with respect to electron: Lsi~ R4>m/2ry2 + R¢~/24. 
Taking into account formula (92) we can estimate that typical frequencies of coherent 

radiation are below the frequency w "' cfh. It means that we can use the asymptotical 

expression (93) in the case when h » Ls1 or, according to our classification, when the 

bunch is umuch longer" than the magnet. Integrating eq. (91) Over frequency interval from 

0 to infinity, we obtain: 

e2N2 

Wcoh = -
1
-,-fm 

In the case of ''long" magnet ~m » 1 the function fm reduces to 

fm = 4ln(/,m- 2 

{94) 

1 The same problem was considered later in ref.[l7] but the results of the paper [17) are incorrect. 
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and the coherent radiation energy exactly coincides with the bunch energy losses given 

by eq. (90) taken with opposite sign. In the opposite limit of "short" magnet, ~m « 1, 

we obtain: 

2 '2 
fm = 3<Pm · 

There is complete agreement with formula (73). 

The case when the bunch is "much longer'' than the magnet is interesting from method­

ological point of view. Indeed, in the previous section we have found that- the bunch loses 

energy under the action of radiative interaction force mainly after the magnet on the 

length of "' ln2
. On the other hand, an observer in far zone detects the radiation pulse 

and, calculating the retarded positions of radiators, he can conclude that electrons of the 

bunch radiated when they were inside the magnet. The methodological questions of such 

kind (electrons radiate when the radiative force does not work on them and vice versa) 

are related not only to coherent radiation processes. They arise also in single particle 

electrodynamics and were discussed by different authors (see, for example, ref.[19]). 

We should also discuss the applicability region of the theory presented in this paper with 

respect to the importance of the length of '""' ln2 before and after the magnet giving the 

contribution into the CSR effects. These linear sections are important when the condition 

(86) is violated (we mean here the practically important case of a 11long' magnet). In this 

case the results of this paper are valid when particles are not disturbed with any external 

fields on the parts of the trajectory of"' ky2 before and after the magnet. In .practice this 

condition may not be satisfied (ln2 can be of the order of tens ~f meters or more) and 

one has to use the results of this paper carefully. 

In this paper we studied in detail the case of the electron bunch with rectangular 

density profile, because we were interested mainly in the physical aspects of the problem. 

Now let us show how the obtained results can be extended to the case of the bunch with 

an arbitrary density distribution. First, formulae obtained in section 4 for the radiative 

interaction of two electrons can be integrated directly (at least, numerically) with any 

density distribution. Second, the analytical results obtained in the sections· 5 and 6 for 

the rectangular density distribution can simplify significantly the solution of the problem 

with an arbitrary denSity distribution. Let us illustrate this idea with the ca.J.culation of 

the transition process when the bunch enters the magnet. Let the bunch have the density 

distribution >.(s) which satisfies the condition (17). One can consider this bunch as a 

composition of rectangular bunches, i.e. to calculate the radiative interaction force at 

some point s one can add together the forces from partial bunches with a length (s- s') 

and a linear density ds' [dA(s')fds']. One should remember that always s' < s. To calculate 

the contribution of the partial bunches one can use the expressions (74) and (75). As a 

result, the rate of the energy change for a particle in the bunch can be written as follows: 

d£( s, 4>) 
d(ct) = 

2e2 { ( 24 ) 
1
1
3 

[ ( R<P3) ( R<P3)] 
3'/3R2/3 R</>' A s- 24 -A s- -6 
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Fig. 6. The rate of an electron energy change as a function of its position along the Gaussian 
bunch entering the magnet. Curve (1) in the graph (a): 5 em after the begin of the magnet. 
Curve (2) in the graph (a): 14 em after the begin of the magnet. Curve (3) in the graph (b): 18 
em after the begin of the magnet. Curve (4) in the graph (b): steady state. The curves are the 
results of calculations with formula {96) and the circles are the results of numerical simulations 
presented in ref. [6). The parameters are as follows: R = 1.5 m, a= 50 p,m, q = 1 nC. 
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+ j 
s-R¢3 /24 

ds' d!,( s') } 
(s ~ s')l/3--;[;/ . 

(95) 

This formula allows one to calculate the distribution of the rate of the energy change 
of the particles as a function of a bending angle¢ when the bunch enters the magnet. Let 
us consider the Gaussian density distribution (24). In this case the expression {95) can be. 

written in the following form: 

dE' 
d(ct) 

2e2 N 
3'1'(2")'f2R'I'u'I'G(f,,p), 

where the function G(~,p) is given with expression 

G(f,,p) = p-1/3 [e-((-,)'/2 _ e-((-4,)'1'] + j' dt d -l<'l'/2 
(f,- f,'J''' d('e ,_, 

Here~= sfu and p = R(P/24u. When p « 1, the function G(e,p) reduces to 

9 
G(f,, p) "' --f, exp( -E,' /2)p2

/
3 

. 
2 

(96) 

(97) 

In opposite case, when p --+ oo, the expression {97) tends to the steady-state solution 
(25). In Fig.6 the function (96) is plotted and compared with the results of numerical 
simulations of ref. [6]. One can see that analytical and numerical results are in a good 

agreement. 
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C~V~iJ.HH E.Jt, lllueit.rtMWUiep E. A., IOpKoB M.B.-­
KOrepeumoe H3.1l)"leHue 3.11eK~pouHoro crycTKa ' 
npu,npo~o}l(,t{et-vm~nosopomoro ManJHTa KoHe'IHOil: wnl:Hbl 

-
E9-97-51 

CywecTB)'IOlUaR reopHJI KOrepeHTHOro CHHXpOlpOHHOrQ H3JI)"'eHHJI Oll'!CbfBaeT H3.1l)"'eHHe 3JleKTp0H­
HOrQ CI)'CTK{l. JU\H)K)'uterOCSI flO KpyrosoH TpaeKTOpHH, H He ·MO)KeT 6b1Th npuMea.eua K. CJI)"lalO, 
npo~mK.neHHJI Maruu:ra KOHe'IHOH JVIHHbl. B .uauuoH pa6o:re pa3pai5oTaHa reopHli, llOJBOJJll!Oiu.a.!l omtcan 

"-I _'KorepeHTfiOe H3.1l)"'j!HHe 3JleKTpoHuoro CI)'CTKa B· MailfHTe KOHe'!HOH JUJHHbl. _PaCCMOTpeuue npOBe,rteHo 
JU151 MO.UeJIH ynblpapeJJJITHBHCTCKOro crycrKa c nuueiiHbiM, pacnpe.ueJJeHneM nnoTHOCTH JapJii:r.a. B •-mCT- . 
HOCTH flOKaJaHO, 'ITO }"'eT CHJihl p<mHaUIWHHOfO B3aHMO.UeifCTBHli BIDKeH He TOJlbKO BHyrpH Manm:ra, 
HO TaK)Ke H Ha TpaeKTOpHH JIBH)KeHIDI flOCJle Bhl'xo.ua H) MarHHTa. 

flpoBe,lleHO JteTaJibHOe HCCJJe.UOBaH,He 3tflq,eK:ra· KOrepeHTHOro .HJJt)"'eHHSI LIJUf 3JieKlpOHH0rQ fl)"lKa 
Co C"ryneu'laTblM · pacnpeneneHffeM nnoTuocru Jap51Jia. PaJpa6o:raH ripoc:roii aHarurrutlecKH.ii MeTOJt I JVUI paclfeTli pa.uHauHOHHOii cHJTbl. HaHneHbl auanu:ru'lecKHe peweHHJI B q>opMe MeMen:rapHbiX 4lyuKuHH Wur p<mUau.Kcmuoii CHJlbi, pacnpe.ueJit:HIDI no:repb 3Hepnm BJtOJib nyqKa n .1¥fSI-n0JJHbiX norepi. 3Hepmu 
3JleKTj>OHHhiM Cf)'CTKOM. 0oCJTCJ{Hifti peJylibTaT noit:rsep)I(J{eH paC'IeTOM MOIUHOCTH KOrepeHTHOro HJJty­
'!eHitJI B 1-l:aiibHeH JOHe. Bbipa6oTaH KpuTepuH M51 o6n:aCTH npHMeHJ:IMOCTH pa3pa6o:rauHbiX paHee :reopHH 
KOrepeHTHOm· H3JI)"'eHitSI. · 

Pa6o:ra Bblho.rmeua B na6opa:ropHH CBepXBb!COKHX 3Heprnii 01-UIH. 

OpenpHHT Qfue.UHHeHHOfO HHCTHTyra _SJJiep'J-.~IX'_HCClleJ!:OBaHHii. l.{y6Ha, 1997 

r 
Saldin E.L., Sch,neidmiller E.A:r Yur~ov M.V. E9·97-si On the Coht?~nt Radiation-of an Electron Bunch MOving in an Arc of a Circle 

Existing theories of coherent synchrotron radiation (CSR) are related .to the motion_ of an· electron 
.bunch on''a circular orbit and do n'ot describe·the case of finite magnet length. In this paper we present 
the CSR theory for a bunch of any_ length moving in an arc ~of a finite angle. The radiative lnteractiori 
of the- electrons in the bunch is analyzed· for a line charge distribution using' ultrarelativistic 
approximation. It is shown in particular thar this i-nteraction, is impOrtant not only inside the magriet 
b!Jt'also on-the straight partofthe trajectory after the magnet. 

Detailed arialytical study of the CSR effects ~n the electron bunch with a stepped disttibi.ltion 
of .the charge density has been ·perfonned:-The si~Plc analytical technique of the radiative force 
calculation has been developed. The analytical sOlutionS in- the fonn of elementary functions are Qbtained 
for the radiative tnteraction force, for the energy loss distribution along the bunch and for the total energy 
loss of thi~bunch. The latter ,result is confirmed with J::alculation of the energy _of coheient radiatio_n 
in far zone. The criteriuinfor the applicability region of the preceding theories to .the case of a finite 
magnet length:is obtained. ' 

The investigation has been perfonned anh~ ~aboratory of'~articl~ Physics, JINR. 
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