


1 Introduction

Fifty years ago the development of the theory of synchrotron radiation has been stim-
ulated significantly due to rapid progress in the construction of electron synchrotrons,
and nowadays the development of the theory of coherent synchrotron radiation (CSR)
is stimulated by the need to construct future generation linear colliders [1). The bunch
length in the main accelerator of finear cotlider should be about Iy ~ 0.1 — 1 mm at the
value of the bunch charge of few nC. These values exceed by an order of magnitude those
" used previously. The CSR effects are also important for designers of X-ray FELs [2-4].
These projects require even shorter bunches, down to 0.025 mm. Such infensive and short
bunches are obtained by multi-stage compression in special magnetic chicanes (bunch-
compressors). Analytical estimations and numerical simulations show that the effects of
coherent synchrotron radiation become to be significant in such systems and even could
prevent the achievement of the required beam: parameters leading to the growth of the
energy spread and emittance dilution [5,6]. The problem of coherent synchrotron radia-
tion of a short bunch in an undulator should be studied, too. Nowadays the development
of the linear collider projects entered into the stage of construction of test facilities for
testing main technical solutions [7] and the project of 6 nm VUV SASE FEL is now
under construction at DESY [4]. The success of construction of theses facilities depends
significantly on correct understanding of CSR effects influence on the beam dynamics.

The first works on the theory of coherent synchrotron have been performed fifty years
ago [8-10]. In these papers the main emphasis was put on the calculations in far zone of
(SR produced by a bunch of relativistic electrons moving on a circular orbit. Another
part of the problem, namely that of the radiative interaction of electrons within a bunch
has been studied for the first time in refs. {11,12} and later in refs. {5,13] where the energy
losses along the bunch has been calculated. It was shown in these papers that the rate of
the integral energy losses in the bunch coincides with the CSR power in far zone [8-10].

It should be noticed that all the results obtained in refs. [5,8-13] are valid only for
the model situation of circular motion of a bunch. In practice accelerator systems are
composed of bending magnets separated by straight sections and the trajectory of the
electron bunch is not a circular one, but consists of a number of arcs joined by straight
sections. So, a reasonable question arises about the possibility to describe this case with
the results obtained for the model situation of a circular motion. A rough estimation for
the applicability region of the latter results for the case of a bending magnet are as follows:

Rjy* < Iy < Rl /24, (1)

where [, is the length of the electron bunch, R is the bending radius of the magnet,
by, is the bending angle of the particle in the magnet (¢m < 1), « is relativistic factor
(v» 1) and sy = R¢? /24 is the slippage length equal to the path difference of the curved
trajectory inside the magnet and the straight line between entrance and exit points of the
magnet. So, we can conclude that this applicability region is a narrow one and the results
of refs. [5,8-13} could be used carefully in each practical situation. For instance, it could
be shown that some accelerator systems of linear colliders and X-ray FELs falls out of



applicability region given by eq (1}.

In the present paper we extend the study of CSR effects for the case of the electron
bunch of an arbitrary length {, passing isolated bending magnet of small bending angle
‘.. We consider the model of ultrazelativistic electron bunch with a linear distribution
of the charge (zero transverse dimensions). We perform detailed study of the CSR effects
in the electron bunch with a stepped distribution of the charge density. To calculate the
sadiative interaction force we have developed the analytical technique of complementary
integral which can be used also in more complicated cases (a sequence of magnets, an
undulator etc.). Using this technique we have obtained analytical expressions in the form
of elementary functions for the longitudinal force, for the distribution of the energy losses
along the bunch and for the integral energy losses of the bunch. The results for the integral
energy losses of the bunch are in complete agreement with the results of the integration

_ of spectral density of the radiation energy in far zone. The results obtained in this paper
allow one to impose more correct limitations (with respect to the estimation given by
eq. (1)) on the applicability region of the results obtained in the framework of the model
of a circle motion of the electron bunch [5,8-13). : B :

The simple physical model considered in this paper, does not allow one to take into
account a number of physical effects influencing on the process of coherent radiation, These
effects refer to a finite transverse dimensions of the bunch, to the shielding of radiation
due to the presence of vacuum chamber, to the influence of adjacent bending magnets, etc.
Nevertheless, giving simple analytical relations, such a model allows one to get a deeper
insight into the physics of CSR. It provides also a firm base for a quick estimation for
an upper limit of power of CSR effects. If such an estimation will indicate on the strong
influence of CSR effects on the beam dynamics, numerical simulations codes, taking into
account the realistic situation should be used to obtain more correct result. Analytical
results could serve in this case as a primary standard for testing these numerical codes.

The paper is organized as follows. The radiative interaction of two electrons executing
a circular motion is analyzed in section 2 and physically transparent ‘method of radiative
force calculation is presented. In section 3 this method is used for calculations of the
radiative interaction of electrons in a bunch moving on a circle. In section 4 we study
the radiative interaction of two electrons passing the bending magnet of finite length. In
section 5 and 6 we study in detail the CSR effects in the electron bunch with the stepped
profile. The results obtained in the paper are discussed in section 7. It is illustrated how
the technique for the calculation of radiation forces can be extended for the case of an
arbitrary density profile of the bunch.

2 Radiative interaction of two electrons moving on a circle

We begin our study with the system of two particles moving on a circle of radius .
The electric field of a back electron produced at a source point P’ at time t' reaches a
front electron at time t in the point P. This is described by the Lienard-Wiechert formula
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where
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(¢ — ¢') , L and 7 are, respectively, the angle, the distance, and the unit vector directed
from point P’ to point P, B = 9'fc, V' is the velocity at point P'. The first term in the
right-hand side of eq. (2} vefers usually as velocity (or Coulomb) field and the second one,
proportional to the acceleration g’ = v*/R, refers as acceleration field (or radiation field).

Taking into account eq. (2} we can write the expression for the rate of the energy change

of the front electron:
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Tn this paper we use ultrarelativistic approximation for the electron motion and assume
the bending angle of the particle in the magnet to be small. Under these conditions eq. (3)
is reduced to: :
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where the retarded angle u = (¢ — ¢') and the distance {s — ') between electrons are
connected by the relation:

3

(s— ) = (1 - B)Ru + o (5)
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The first term in the right-hand side of this relation appears due to a difference between

the velocity of the electron and the velocity of light and the second one is equal to the
difference in the length between the arc and the cord P'P.

Analysis of expression (4) shows that the first term in square brackets contains singu-

larity at » = 0 (i.e. at s = ). In this paper we study pure radiative effects and remove

this singularity using the following trick. We consider the system of two electrons moving



along a straight line. In this case the rate of the energy change of the front electron is
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and this expression contains singularity, toc. We define the radiative force as the difference
between eq. (4) and eq. (6):
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which does not contain singularity at w = 0 and tends to zero in the limit of linear motion
at B = oo, w = 0 and Ru = (s — s')/(1 — B} = const. In the following we will refer to
the term in eq. (7) proportional to 1/y*u? as to “renormalized Coulomb term”.

The force acting on the back electron from the side of the front one is only of Coulomb
nature and is described with the following expression independently of the trajectory type
{a straight line or a circle):
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‘So, we have excluded from consideration nondissipative interaction forces. The radiative
" force acting on the front electron is described with the eq. (7) and there is no radiative
force acting on the back one. '

Now we study the dependence of the radiative force (7) on the distance between the
electrons. We start with the asymptote of a small distance (s - 8') <« Rfvy® between
the particles corresponding to small retarded angles yu < 1 (see (5)). In this case the
acceleration term and renormalized Coulomb term of eq. (7} take the form:
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The total radiative force acting on the front electron from the back one is decelerative
and is given by '
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To understand this result one should take into account that for each electron the rate of
energy loss due to the radiative self-action is equal to
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As a result, the total rate of energy loss for the system of two electrons is equal to
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S0, we have cbtained a well-known result which states that the system of two particles
at small distances between them radiates as one particle with double charge. This result
indicates that the renormalization procedure (7) has been performed correctly. Indeed,
this correct result could not be obtained without taking into account the renormalized
Coulomb field which is independent of acceleration.

Tet us consider now the asymptote of a large distance between the particles (s — s') >
R/+4® corresponding to large retarded angles u > 1/7. In this case the renormalized
Coulomb term is negligible and we have:
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Using eq. (5) we can express the retarded angle in the terms of the distance between the
electrons :

and finally get [12]:
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In the general case the rate of the energy change of the front electron under the action
of the radiative force from the side of the back electron can be written in the following
form: )
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where function ®(3 — &) is given by the formula:
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Fig. 1. The radiative interaction function (13) between two electrons travelling in a circle.

The normai.lizegl retarded angle # = ~yu is the function of normalized distance between
electrons (8 — ¢") = (s — s")y*/R and can be obtained by solving the cubic equation
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T]:'le plot of the function (5 — &) is presented in Fig. 1 (see also ref.[13]). It is seen from
this plot that the radiative interaction force provides deceleration of the front electron at
a small distance between the electrons, but at

R

? s

(s—s)=18

the radiative force changes the sign.

3 Coherent radiation of an electron bunch moving on a circle

In this section we study CSR of the electron bunch executing a circular motion. Using
physically transparent method for the calculation of the radiation force, we extend the
results obtained in refs. [5,8-13] to the case when lower limitation in eq, (1) is not satisfied.
" We begin with the case of rotating electron ring with homogeneous linear density M) =
Ao == const. Here and below it is assumed that Ao F/7® 3> 1. The rate of the energy change
of the reference particle with coordinate s is given by the superposition of the radiation
forces of the back particles: ' ‘

dE . 8 ’ s
(M) = [ 46K = ) =00 [ @Ko-91, (14)
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where K (s — ') is the rate of the energy change of the reference particle due to the action
of the back particle with coordinate s and A(s')ds’ = dN is number of particles inside
interval ds’. The kernel K(s — ') is given by eq. (7} with the retarded angle 4 given by
eq. (5) as function of (s — §'). For the further consideration it is more convenient to go
over to the retarded angle as independent variable. The expression for the Jacobian of
transformation can be obtained from eq. (5): '
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As a result, eq. (14) takes the form:
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It should be noticed that setting the integration limit equal to infinity in eq. (14) and
(15) is justified by ultrarelativistic approximation when the integral over a region of small

angles u < 1 gives the main contribution. Integrating eq. (14) we obtain well-known result
that uniformly charged ring does not radiate:
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This result could be also derived without using ultrarelativistic approximation. Starting
with Lienard-Wiechert fields one can show that system of N identical equidistant charges
g moving with constant velocity v along an arbitrary closed path does not radiate in the
limit of N — co and Ng = const, and the electric and magnetic fields of the system
are the usual static values (see, for example, the book of Jackson [15]). We will use this
important result in section 5 to simplify calculations.

Now let us consider the case of the electron bunch with an arbitrary distribution of the
linear density satislying the following condition:

—0. - (16)
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This approximation means that characteristic length of the bunch is much larger than
R/~*. To calculate integral )
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one should take into account the property of the kernel K(s — ') :

[ ds'K(s =) =0 | (19)

which‘has been pro_ved above. Using eqs. (17) and (19) one can simplify eq. (18) in the
following way. The integral (18) is written down as a sum of two integrals
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Using t'he first condition of eq. (21), we replace the rigorous expression for K {s—s') by
asymptotical expression (11) in the first integral of eq. (20):
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Using the second condition of eq. (21), we calculate the second integral of eq. (20):
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Then, using the property {19) of the kernel K(s — &), it is transformed to:
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Then the asymptote of eq. (11} is used:
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and after integration by parts we obtain the result of integration of eq. (18):
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At the last step of transformation of eq. (22) the second condition (21) has been used.
For the first time formula (22) has been derived in ref. [12]. It can be used for the
calculation of the total CSR power P. For periodical circular mofion one can write:

o Lol @

Let us consider two frequently used models of the density distribution. In the case of
Gaussian distribution:

2
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‘it is easy to obtain [5,12,13}:
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where the function [ is given with the expression:
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In accordance with eq. (23) total CSR power is equal to
435116 72 2 9812 } _
Pt TG S

For a steppedr density distribution (i.e. at A(s) = N/l; = const in interval 0 < 5 < [)
one can obtain [5,11,12): '
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The results (26) and (28) are in a full agreement with the results of calculations of CSR
power in far zone {3-10].

Let us perform a more detailed study of the case of the stepped bunch profile. It is
seen that eq. (27) contains singularity at s = 0, i.e. the rate of the energy loss of the
tail particles becomes infinitely large. Nevertheless, this region of parameters is out of
applicability region given by condition (17). Under this condition one has to consider the
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th_Ilfmg formalism developed iu. this paper we can obtain rigorous solution for the case
of the stepped E?ur.tch profile which applicability region does not limited with the above
;nenﬁloned restriction. Indeed, the bunch with the stepped density profile constitutes a
trhac‘;of;l ?f a _hofnoge.neous e%ectron ring. So, one can use expressions (15) and (16) where
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As a result, one obtains: e
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It is seen that eq. (29) doe.s not contain singularity at s = 0. It is interesting to study
asympfotical behaviour of this function. In the limit of s > R/+® corresponding to large
retarded angles yu, >» 1, one can obtain: . ¢
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. After integration of eq. (23) over the bunch le
_ . ngth Iy, the total radiati
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hIt is seen, that a 'short' _btmch with I, € R/+° radiates as a single particle with the
charge of Ne and the radiation power does not depend on the bunch length ;.
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4 Radjative interaction of two electrons passing a bending magnet

Tn this section we study the problem of radiative interaction of two electrons passing a
bending magnet with curvature radius R. Electrons move with velocity v along identical
trajectories one after another (see Figs. 2 and 3). We assume the bending angle of the
electron trajectory in the magnet ¢, to be small, ¢m < 1. The fleld at the point P of the
front electron’s location is determined with the retarded position P' of the back electron.
It is evident that the radiative action of the back electron on the first one can take place
only in two parts of the trajectory, namely in the arc (inside the magnet) and on the
straight line after the magpet. Four cases of radiative interaction should be considered:

A: The point P is in the arc at azimuthal position & (¢ = 0 corresponds to the entrance
into the magnet). If the distance between electrons (s — &) satisfies the condition
R '
(s——s') > (1 — BIR¢+ _ﬂ ;
then the point P is on the straight line before the magnet (see Fig. 3a).

B: The point P is in the arc and the distance between electrons satisfies the condition

3
(s— )< (1 - BB+ 0.

In this case the point P’ is in the arc, too (see Fig. 3b).

C: The point P is on the straight line after magnet at a distance = from the exit of the
magnet and the distance between the electrons is within the limits of

. R4 Ry, + 4z
(3“5)>(1—.3)(R¢’m+5)+—ﬁ‘-ﬁ——“—Rqu_}‘I .

In this case the point P’ is on the straight line before the magnet (see Fig. 3c).

Fig. 2. Trajectory of a particle passing a beuding magnet.

11
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D: The point P is on the straight line after the magnet. When

R¢31 Rd"m + 4z
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the point P' is in the arc (see Fig. 3d).
'I“he. procedure for caleulation of the energy change of the front electron due to the
radiative action of the back electron is identical to that described in section 2.
For the case (A) we have only renormalized Coulomb term, leading to the radiative

L
12

interaction:

(), 0

1 ‘ :
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where $ = v, § = yy/R and y is the distance between the point P’ and the entrance
to the magnet (see Fig. 3a). The normalized distance § is the root of the equation:
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where (§ — §) = (s —s)W*/R .
For the case (B) eq. (7) can be used:
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Here we have introduced the notion of the relative normalized azimuthal position U=
& — ¢ between the points P and P’ which is the root of equation:
»~ ﬁ3 -
PR L ' 36
-8 =5+5- _ (36)
Case (B) can be referred as a steady-state regime, because the radiative force does not

depend on the azimuthal position t;S of the point P.
For the case (C) we have only the renormalized Coulomb term:
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where qﬂi»m = Ypm, & = zy/R and § = yy/R. To find # one has to solve the equation:
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The following expression corresponds to the case (D):
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Here 4 = ¢y, — & and ¢ = 44" is normalized azimuth of the point P’ . The value of ¥
can be found by solving the equation:
NS S I R
— 5 = _— -
R (10)

The expression for the radiative force presented here can be used as a basis for cal-
culations of the radiative interaction of the particles inside the bunch of any length and
arbitrary density distribution. As far as we know, the only density profile allowing rigor-
ous analytical solution is a stepped one. This case is studied in detasl in the next section.

For calculation of a general case this set of formulae could be implemented in numerical
codes. .

5 Coherent radiation of a rectangular bunch passing a bending magnet

In this section we consider CSR effects of the electron bunch of any length with rect-
angular density distribution passing a bending magnet.

First, we consider the case of infinitely long electron bunch with the current I = evdg =
const. A current circuit consists of the arc and semi-infinite straight lines (see Fig. 2).
The angle between the straight lines is equal to the bending angle ¢, of the magnet. We
will show that radiative interaction force is equal to zero at any point of such a circuit.

This fact is imporfant for the following investigation of the CSR effects for the bunch of
finite length. . '
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Let us find the rate of the energy change for a ‘reference particle a;t} ?Omi pg:ltalza;;;
the arc of the magnet. Let the azimuth of thi‘s poﬂnlnt be Aequ'al tohgb.h lsm;gf :r (34) o
and calculating Jacobian of transformation (s = §) = 4 with the help 'ntsqi:” ) one
can write the superposition of radiative interaction forces for the source pol

before the entrance into the magnet:

d& 2k ]od{ ' (ﬁa + A)2 + ¢ (gf ‘*2‘ ?;') -
(d(ct))A B ’ )
(3+9)" +% ' @)
P T
[(q3+ﬁ)2 + & (d+4d ]
The integration of this expression gives the result:
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To calculate the radiative interaction force acting on the reference particle fr‘jim ?’tél)e
back particles with retarded positions P’ inside the arc, one should use eq. (35) and (36):
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It is seen that total energy change of the reference particle due to the radiative inter-
action with the hack particles is equal to zero:

().~ @), @), - “

.

" Now let the reference point P to be placed on the straight line. after the-'magnet. eEt SOln(i
distance x from the magnet exit. The action of the particles with retarding positions P
on the straight line before the magnet is caleulated using eq. {(37) and (38):
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When retarded positions of the back particles P’ are within the arc, the following

expression can be written with the help of eq. (39} and (40): .
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After the integration one can write: '
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So, we have obtained that there is no radiative inferaction for the case of infinitely long

electren bunch. .
Now let us consider the bunch with stepped density profile and arbitrary length.lb.
The total number of the particles in the bunch is equal to N which corresponds to the
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linear density is equal fo Ay = N/I,. We have to calculate the radiative force acting on a
reference particle being placed at & distance s from the bunch tail. It is useful to define
parameter ¢, as a solution of the cubic equation:

. b
§= 2+24. _ ' (48)

Solving this equation one obtains

= /125 + V64 1 14487 — {/\/od + TdE — 125 . {49)

The electric field acting on the reference particle when it passes point P is defined
with the superposition of retarded electric fields of the back particles. Let the retarded
position of the bunch tail be at point P’ and consider possible scenario for location of the
points P and P'. K the normalized angle of the arc ¢, is larger than parameter ¢,, the
configurations presented in Figs. 3a, 3b and 3d can take place. In the case when P I8
less_than ¢,, the Figs. 3a, 3¢ and 3d represent possible configurations. Let us write the
expressions for total energy change of the reference particle with coordinate s:

region 1 (‘;53 < ﬁﬁm)
L E Lt
Aé = qu& Fu(3,8) + fd¢> Fy(8) +
) &a

[ Fus,2), | - (50)

1]

region 2 (b < &)

drn &y
aé = [ab Fis,d) + [ dd F(5,5) +
’ 0 0

[ di Fus,2). | (51)
p
Here
' o2
Aé = AE( N)
Iy

is the normalized energy loss, F(s..4) is normalized rate of the energy change along
the trajectory and subscripts (e, d, ¢, d) correspond to location of the points P and P’ in
Figs. 3(a,b, ¢, d), respectively. The value of x, is defined as the distance between P and
P’ at the moment when P’ leaves the magnet (i.e. when it coincides with the point B in
Fig. 3). It can be simply shown that z, = s/(1 — 8) or, in normalized form % = 23. The
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value of %o is equal to the distance BP ab that moment when P’ enters the magnet (i.e.
when it coincides with the point A). The normalized value of & can be found by solving
the quadratic equation (38) at § = 0. As a result, one can write: s

-
3
rm

(43, —63)" + 9%, . ' (52)

G‘:]l—‘

= =

The next problem is to calculate the functions Fojpcq4- The problem is significantly
_simplified if we remember that the radiative force tends to zero when retarded position
of the bunch tail tends to infinity (see eq. (44) and (47}). To find Fo(3, #) one can use
expressions (41) and (43), but with finite value for upper limit in eq. (41):

1| 1+%¥ 1 53
s (—)” | )

The upper limit of integration, g, can be found by solving quadratic equation (34) and
written as '

3

‘e—*

(45— 65)" + 94 . | (54)

. 1
-5 ts

Using eq. (44), the expression for F, can be written in the following simplified form:

(55)
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After the integration and substituting eq. (54) we obtain:

g 2 B~ 63 + 34
Fa(qub):_g—g 1+ Qf 68:3¢
(82— 65) +9gt |
The function Fy($) is given by expression (29):
) o (42 +8)
(d2+4) (¢2+12)° ' (57)
and ¢, is expressed in terms of (see eq. (49)).

According to eq.-(45) and (47} function F. can be written in the form:
F(3,8) =

1 .

R(8) =~

) 27@ (ot 2+9) + 3, (b 4 87 4 2540 + 5 +229)
o [(ém+é+§)2+§§n(‘$m+2£)2r )

a

(fn +:‘c+é) + % (4o 1 22)°
2 » 2z
-~ [(¢m+x+y) +¢m(¢>2 + 454 + 4580 + 1284 )]

Hgife o is the solution of the quadra‘ttc equation (38) which can be rewritten in a more
convenient form:

72

($m+a‘e+§u)’+(¢"‘+m¢2 w25)(4!5,“+sc+;tfo)m‘ﬁ—(qi’>m+2:r:) =0.

Solving this equation we obtain: *
. i3 12
Go=b—8— T _Pm
2
1 . n A2 -~ - 2
g\/ P+ 3348 - 63)" 1982, (b +28)" | (59)

and the final result for F,(3, ) is

2
= — X
¢m+23

Fu8,8)=—

(B2, + 3282~ 63) + (b + 28)

1+ =
V(B + 8842, — 65)° + 948, (dm + 2877

! .
+ 7 (60)
According to eq. (46)_function Fy(3, ) is defined as follows:
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(61)

where 1, is the solution of the quadratic equation (see eq. (40)):
B+ 4502 + 1202 + 24(3 — 8)do + 128(5 ~ 28) = 0. (62)

Using Descartes’ rule of signs it is easy to check that this equation has only one pesitive
real root. To express iy in terms of & and § one can use, for instance, Ferrari’s solution.
Integral (61) can be replaced by complementary integral and could be calculated easily:

Fi(3,3) = —

2% (2 + 1) + 9o (43 +2) }
4 - AR L
4@ (43 - 1) + dadho (3 +2) + 98 (2 -+ 4)

tos| =

(63)

Let us explain the origin of a simple form for the term 1/3 appearing%’é:}he expressiofgs
(56), (60) and (63). It was proved in the beginning of this section that the radiative
interaction force is equal to zero in the case of infinite circuit of the dc current. This
property has been used when calculating the functions Fu, F; and Fy. The integral over
trajectory from the retarded position of the bunch tail to the position of the reference
particle was replaced by the integral (with opposite sign) over complementary semi-infinite
imaginary circuit. The latter may even not coincide with real trajectory {an example is
the calculation of function F,). The advantage of such a method of calculation is explained
by the fact that the integrand in complementary integral contains the only renormalized
Coulomb term. The latter one consists of two terms and one of them, namely €?/v*(s—5')?,
is integrated very simply (over s’ from s to infinity) and always gives the dependence 1/s
(see eq. (56), (60} and (63)}. The only complicated remaining procedure consists in the
integration of the velocity term over additional semi-infinite circuit.

The same trick could be used for calculation of I:

12
1
gt i1
$o (4214} 8
Taking into account eq. (48} one easily obtains (57). Finally, we should note that the

method of complementary integral could be used efficiently in more complicated situations
such as calculations of CSR effects in sequence of magnets, undulators etc.

F, =
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Fig, 4. The norlr{alized energy change of a particle versus the normalized bending angle of a
magnet. The particle position along the rectangular bunch is defined with the condition @, 3 $rm-

Formulae {56}, (57), (60) and (63) present the normalized rate of the energy change for
the particle with the reference coordinate s in the bunch. The parts of trajectory, where
these functions Fius,q) have to be used, are defined in eq. (50) and (51) as the corre-
spon‘ding limits of integration. To calculate the total energy change AE of the reference
‘pa.rtfcle one needs to perform integration in egs. (50) and (51). The examples of numer-
ical integration are presenfed in Figs. 4,5. Total energy loss of the whole bunch A&, is

obtained by integration of the energy loss of the reference particle over s (in normalized
notations):

iy
Aégot = f dgAé 3
0
where
- L . ,),3 7 . 123 -
Ad=550e, bh=Th, A= oAb,
One can study the distribution of the total energy loss of the bunch along the trajectory:

- = [ dé 5 (64)
where # is either ¢ or & depending on the bunch position (inside or after the magnet,
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Ps
Fig. 5. The normalized energy change of a particle versus its reduced position ¢, along the
rectangular bunch when ¢, < ¢u. The curve {1) corresponds to the transition region when

bunch enters the magnet {see the first integral in eq. {50}) and the curve {2) shows the energy
change after the magnet (see the third integral in eq. (60 -

respéctively), and d€/ d% is equal to one of the functions Fg 4c,4) depending on the particle
position 2long the bunch 5. The angular position #, the position = on the straight line
after the magnet and the position s of the particle in the bunch are normalized as follows:
”,

7

“
x, 8=

p=9¢, &=

™=

6 Analysis of the solutions

Tn this section we perform analysis of asymptotics of the results obtained in the previous
section for the electron bunch with rectangular density distribution. We introduce the
notions of a “short” magnet (when ¢m < 1) and a “long” magnet (¢m > 1), a “short”
bunch {{ < 1) and a “long” bunch (I, 3 1). To compare “the length” of the bunch and
the magnet we use the parameter J)b which is the solution of the cubic equation:

~

-fa 2 | (69)

2 " 24°

When we write that the bunch is “longer” than the magnet, it means that ¢ > $ens

and vice versa.
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6.1 “Short” magnet and bunch of arbitrary length

‘ This case is not only of theoretical interest. Magnets with ¢, < 1 can be used, for
instance, as correctors in the beam transport systems. As for the bunch length, usually
the.condition Hh>»1lis satisfied in practice. Let us consider, however, the bunch with
arbitrary normalized length {,. This more common case could be useful for testing the
numerical simulation codes. The case of {; 3> 1 will be considered more thoroughly, The
functions Fig .4 are simplified at ¢, < | as follows:

12 4, ggé',m

R :%[EJr i M} ,

13 . 2 7d 3 :
3 2% 12 TEE (686)

In accordance with eq. (50) and (51) integration of these expressions gives the value for
energy loss of the particle with coordinate & in the bunch:

region 1 (25 < d)
5 2. & 78 :
AE ~ 22 2.0 o o
gt (2&,. 5&3,) ’ (67)

region 2 (:f:,,, < 28)

. 2. 14 1 ¢2 142
A, v —Zg2 |1y ~Ym - Fm
2% g (1 i3 TE 33) : | (68)

Total energy losses of the whole bunch due to the coherent radiation can be calculated
as follows:

region 1 (2l < ¢um)
A

Agtot E/ d§A8| ) . (69)
b

region 2 ({{;m < Zfb)
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Aéﬂoi ~

G\ﬁwg'

Iy
d3AE + j d3ng, . (70)
é;?k .

Substituting eq. (67) and (68) into eq. (69) and (70}, we obtain
A F
Al = —gémlb o(s) , (711

where p = 20, /¢n and function @(p) is

1y s A
o) ={ (1: a5t n at p<1
1ol - @izl
The expression for the total energy losses in the bunch written down in dimensional
notations has the form: .
eN*R |, 5 . 2e*N? 2y
Ay ™~ —5—— ot = — oy PR =] 2
tot lh‘" tot 371, 7¢m®(R€f’m (7)

In practically interesting case of [, > 1 the energy loss of a single particle is

262N 2 2- *

AL~ 281
31, | Omo

and total energy losses of the bunch are N times larger, i.e.

2e?N?
Aggot o~ —‘ge lb 7245,2" . . (73)

In the latter case the energy losses take place mainly after the magnet within the
length of ~ {,42. The radiative interaction force is determined mainly by the renormalized
Coulomb fields of the back particles with retarded positions located before the magnet
entrance. The characteristic formation length of the radiation before the magnet Is also

of the order of §,72.

6.2 “Short” bunch and the magnet is “longer” than the bunch

In this case q?:;, ~ 9}, « 1and q?)m > q;%,. To describe this case one can use expressions Fy,
Fy, and Fy in eq. (66), expression for the particle energy loss (67), etc. The only difference
is that now the magnet may not be “short”, it may be alsg “long”. When the condition

$m 3 ¢y is satisfied, there is steady-state regime (edge effects are not important) and the
" results (31) and (32) can be used inside the magnet.
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6.3 “Long” magnet, “long” bunch and magnet is “longer” than bunch

The “long” magnet is the most interesting case from practical point of view. Now w.
are studying the situation when ¢, > 1, ¢ o \3/271.7; > 1 and ¢ < P According to
these issuinption we can consider only the particles in the bunch for which the condition
@, = V245 > 1 is satishied (see eq. (49)). First, we need to simplify the expressions for

Fy, Fy and Fy (formulae (50), (56) and (57), respectively). The expressions for F, and F}
are simple:

L at ¢ < 273,
“=\ i api a3 (14) .
~4/ at 273, < p < ¢, . .
Bt atdi<d<dm.
3 " (75)

'.I‘he expression for Fy(3,#) is complicated when # ~ @,, but when # > @, it can be
written in the simple form: .

oo 2,1 3« s <28
a¥—=+= a P K & <25, . (76)

The energy loss of a particle can be presented as the sum

A8(8) = A, + A& + A&y, _ i ()
where
AE, =7dq3F w-Bme, |
ool gz, : (78)
Aé, = 7mdq“5 e —d (f'-"— - 1)
J b ) , : : (79
2%
AéFDfdfc de—4ln$s+2+2ln3+§ln2. (80)

Summing up these expressions, one obtains:

. B 9134, |
AE(8)~ —4 [?’:‘5 +1n ( 31/25 ) - -g—] . (81)

As for the total energy loss of the whole bunch, i can be ca.lcula..ted as follows:
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iy
Ay = f ds AB(3) ~
0

1y . 2y £ ¢ 1 11
Remembering that
1 11
— _In3-—~—4
2In2 21r13 5 ,

we can wribte in dimensional notations the expression for the total energy loss of the
bunch:

23/2.2 2 gL/84 l;l3 by ]
v {2 - - nl—]— . 83
Al ( I;/3R3/3 ) (Réu) {1 + 5 g, n| % (83)
The applicability region of this formula is given by
13
L (28) 7 <4 (84)
7 R B

When the second term of eq. (83) in figure brackets can be neglected, one obtains {see
(28)):

33/282N2

Al = — (-[:/332/3

) (Bem) - . (85)
This result can be obtained in the framework of steady-state approach (see refs. { —
13,5]). Therefore, now we have the basis for outlining the applicability region of the resu_lf:s
obtained in the papers [8-13,5] with respect to the case of a finite magnet length. With
logarithmical accuracy the applicability condition can be written as follows:

léfa 5573 26
A "\ R ) < )

In practice this condition may not be satisfied. Indeed, in most cases the va%u.e of the
logarithm is about 10 - 20; the value of l;" S[R3, is limited with the condition (.84)
and can be of the order of unity. This means that the practical situations are possible
when the condition (84) of applicability of formula (83) is valid and the' energy losses are
defined with logarithmic term in (83). In other words, the losses in this case take place

mainly after the magnet on the length ~ l7*.
6.4 “Long” magnel, bunch is “much longer” than magnet

Now let us investigate the case when 1 < ém < ¢y Considering only the particles with

positions along the bunch given by bs > ¢, we obtain the following features of radiative
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interaction force acting on these particles. First, the force is negligible inside the magnet,.
Second, the only ferm £, is important which describes the interaction of reference particle
moving along the straight line after the magnet with the particles with retarded positions
before the magnet. This renormalized Coulomb term can be written as follows:

- {o at 0<”5,-<2§/q“5,21 )
—2f/84+1/3 at 28/¢2 < & < 23.
After integration over the trajectory, one obtains the particle energy loss:
A€ = ~4ln o, +2. (88)
In dimensional notations it can be written as
AL~ _ﬁ;{.’i [Aln(yédm) —2f . (89)
The tgtal energy loss of the bunch is simply N times larger: V
Al =2 ; “ Win(ré) -9 . | (90)

It should be noted that specific distribution along the trajectory of the energy loss of
the particle, when the radiative interaction force (87) is almost absent before some point
and then jumps, is the feature of a bunch with stepped profile. Let us discuss the case of
smooth density distribution when characteristic bunch length is much more than R¢?,.
The radiative interaction force will be smooth but it will decay after some maximum as
1/z. The energy loss will be defined by the logarithmic factor as in eq. (88) and will be
proportional to the local current density. For example, in the case of Gaussian density
distribution (24} the particles energy losses are distributed along the bunch as follows

Ne? 2
- (2.,1-)?/20 exp ("5%3) [AIn{yém} — 2]

and the total energy losses of the whole bunch are

AL(s) ~

Nzez

Agt?t jad TGz, [ 1In{yem) — 2] .

/2,

7 Discussion

Let us discuss the results obtained in this paper. First, it is interesting to compare the h
total energy losses of the whole bunch with the energy of coherent radiation in far zone.
The latter one is usually calculated as the integral over frequencies of the spectral density

of radiation energy:
dWoean _
=

AW
dw ' (91)

Nn{w)
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where n{w) is the bunch form factor {see, for example, [16]). The form factor for the
rectangular bunch of the length [ is:

. why ? wly - ’ 92)
Mw) = (sm 5;) (—?;) . (
The function dW/dw in eq. (91) is the spectral density of radiation energy of a single
electron. The angular and spectral characteristics of the radiation of an electron moving
in an arc of a circle was investigated in ref. [14] 1. It was shown that in this case the
radiation spectrum differs significantly from that of usual synchrotron radiation when
electron executes periodical circular motion. In particular, in the latter case the spectral
density at low frequencies is proportional to w'/? (see [18]). Contrary to this, in the case
of finite curved track length, the spectral density is constant at w —» 0. When the bending
angle is small ( ¢ < 1) and electron motion is ultrarelativistic, this energy spectral
density (see {14]) is the function of the only parameter e = Yhn and can be written:

dw &

& 9
dw ﬂ'c‘fm’ (93)
where

.

fm= (}'—L‘l'“)lrll_‘-‘u‘ —2

p) o 1=

and
b 2

Pt G

Formula {93) is valid for frequencies w < ef Ly, where Ly is characteristic slippage
tength in the magnet of the radiation with respect to electron: Lyt = R /297 + RYE [24.
Taking into account formula (92) we can estimate that typical frequencies of coherent
radiation are below the frequency w ~ c¢/ly. 1t means that we can use the asymptotical
expression (93) in the case when ly 2> Lg or, according to our classification, when the
bunch is “much longer” than the magnet. Integrating eq. (91) over frequency interval from
0 to infinity, we obtain:

e*N?

coh — ] fm . (94)
b

In the case of “long” magnet $m > 1 the function fr, reduces to
fn =Aln gy — 2

1 The same problem was considered later in ref.[17] but the results of the paper [17] are incorrect.
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and the coherent radiation energy exactly coincides with the bunch energy losses given
by eq. (90) taken with opposite sign. In the opposite limit of “short” magnet, ¢ < 1,
we obtain:

2‘2
fm = §¢m -

There is complete agreement with formula (73).

The case when the bunch is “much longer” than the magnet is interesting from method-
ological point of view. Indeed, in the previous section we have found that the bunch loses
energy under the action of radiative interaction force mainly after the magnet on the
length of ~ [;7%. On the other hand, an observer in far zone detects the radiation pulse
and, calculating the retarded positions of radiators, he can conclude that electrons of the
bunch radiated when they were inside the magnet. The methodological questions of such
kind (electrons radiate when the radiative force does not work on them and vice versa,)
are related not only to coherent radiation processes. They arise also in single particle
electrodynamics and were discussed by different authors (see, for example, ref.J19]).

We should also discuss the applicability region of the theory presented in this paper with
respect to the importance of the length of ~ lyy* before and after the magnet giving the
contribution into the GSR effects. These linear sections are important when the condition
(86) is violated (we mean here the practically important case of a “long’ magnet}. In this
case the results of this paper ate valid when particles are not disturbed with any external
fields on the parts of the trajectory of ~ ly* before and after the magnet. In ‘practice this
condition may not be satisfied (I,7* can be of the order of tens of meters or more) and
one has to use the results of this paper carefully.

In this paper we studied in detail the case of the electron bunch with rectangular
density profile, because we were interested mainly in the physical aspects of the problem.
Now let us show how the obtained results can be extended to the case of the bunch with
an arbitrary density distribution. First, formulae obtained in section 4 for the radiative
interaction of two electrons can be integrated directly (at least, numerically) with any
density distribution. Second, the analytical results obtained in the sections 5 and 6 for
the rectangular density distribution can simplify significantly the solution of the problem
with an arbitrary density distribution. Let us illustrate this idea with the calculation of
the transition process when the bunch enters the magnet. Let the bunch have the density
distribution A(s) which satisfies the condition (17). One can consider this bunch as a
composition of rectangular bunches, ie. to calculate the radiative interaction force at
some point s one can add together the forces from partial bunches with a length (s ~ &)
and a linear density ds’ [A(s)/ds"]. One should remember that always s* < s. To calculate
the contribution of the partial bunches one can use the expressions (74) and (75). As a
result, the rate of the energy change for a particle in the bunch can be written as follows:

de(s,¢) 2 24 )"3)‘ Rcif*) \ Eﬁ)
d(cty  3PRR (Eq_.‘;g [ ST ) T e
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Fig. 6. The rate of an electron energy change as a function of its position aang the Gaussian
bunch entering the magnet. Curve (1} in the graph (a): 5 cm after the bt?gm of the magnet.
Curve (2) in the graph (a): 14 cm after the begin of the magnet. Curve {3} in the graph (b): 18
cm after the begin of the magnet. Curve (4) in the graph (b): steady state. Thei curves are.the
results of calculations with formula (96) and the circles are the results of numerical simulations
presented in ref. [6). The parameters are as follows: R=15m,o=>50pm,¢=1 nC.
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ds  dA(s)

+ rsgraat (95)

s—R$?f24

This formula allows one to calculate the distribution of the rate of the energy change
of the particles as a function of a bending angle ¢ when the bunch enters the magnet. Let

us consider the Gaussian density distribution (24). In this case the expression (95) can be ‘
written in the following form:

d& 2e!N

d(ct) _31/3(%)1/232{304/3&57P) > (96)

where the function G{(£, ) is given with expression

4
o d¢’ d "2
G, p) = p 3 e e P2 om0 97
(§ P) p [ ] 5[p (§ . E!)I/S dfle ( )

Here ¢ = s/o and p = R¢®[240. When p < 1, the function G(£, p) reduces to
. :
Gle,p) =~ exp(~€"/2)p™

In opposite case, when p — oo, the expression {97) tends to the steady-state solution
(25). In Fig.6 the function (96) is plotted and compared with the results of numerical

simulations of ref. {6]. One can see that analytical and numerical results are in a good
agreement.
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