


1. INTRODUCTION

This paper concerns the problemes of charge exchange injection
of heavy 1ions into synchrotrons. Charge exchange injection now is
now the preferred injection method for proton machines due to
its relative aimplicity and a very high intensity of storsd
beama./l'Z/ Recently this injection method has been succeesfully
applied for 1light ion storage in the CELSIUS 73/ and COSY 74/
cooler rings. In this pape work we try to analyse the possibility

for the charge exchange injection method to be applicable to heavy

iona. A detailed anslysis of the beam-stripper interaction
processes and their reflection on beam dynamics is carried out.
The deduced theoretical relations are applied to the the NUCLOTRON
boouter/5/ being under design at Laboratory of High Energies of
JINR. Dubna.

2. BOOSTER SYNCHROTRON FOR THE SUPERCONDUCTING
HEAVY ION SYNCHROTRON NUCLOTRON

A booster eynchrotron/s/ is being designed for the Dubna

esuper conducting heavy ion synchrotron NUCLOTRON /8/. The booster
will be a fast synchrotron with a circumference of 50 m and a
repetition frequency of 1 Hz. It will be able to accelerate ions
up to 200 MeV/nucleon and protons up to 650 Mev. The booster will
g@ive the NUCLOTRON new capabilities for experiments at middle and
high energies by improving the quality of its beams. The circum-
ference of the booster will be 1/5 of the NUCLOTRON one so that §
succesmive pulses can be injected into the 'NUCLOTRON. Thus, the
total injection time will be about 4 sec, and the beam intensity
will be improved by one order of magnitude at least. Letting the
booster beam pass through a stripping foil one will be able to
increase the ion charge and thue to increase the final energy in
the NUCLOTRON.

An electron cooling system is being planned for the booster.
It will reduce the beam emittance and momentum spread up to one



order of magnitude. The booster can be used in an autonomouz
regime ae well.

The booster magnetic structure coneiste of 6 periods. each of
them comprising two bending magnets and a gquadruplet of
quadrupole lenses.

This paper deale with the injection schemes of heavy ions in
the booster synchrotron. Several injection methods are considered:

i) multiturn injection with filling the horizontal acceptance:

11) high frequency ion stacking.

{11) multiturn injection with filling the four dimensional
transverse phase space using the linear coupling
resonance szQy.

iv) charge exchange 1niection

It is the charmge exchange iniection that will be particulsriv
conajidered in the prement paper.

Main booster parameters are lieted in Tahie 1| below.

Table 1
Booeter Synchrotron [arameters

Circumference S b om
Energy iniection 10ns 3-0.5 5 MeVen
T 210 MeV
mazimum 10N Ch 200 MeV/n
protong A0 MeV
Beam rigidity at. iniection 0.647 Tm
max imum 4.3 Tm
Betatron tune Qx: Qy: 2.25
Emittance at injection 40X mn.mrad
at the end
of the cycle 40T mm.mrad
Acceptance sz Ay: 260% Tg.mrac
Momentum spread $2.10
Number of periods 6
Number of dipoles 12
Number of quadrupolee 24



3. CHARGE-EXCHANGE INJECTION IN SYNCHROTRONS
The principle of charge exchange injection consiste in
letting a injected beam pass through a thin internal foil./l/
Having passed the foil ions change their charge while energy 1is
practically unaltered and beam rigidity Bp Jumpe to a new value

according to the well-known relation:

- A I/ 2
Bp = 3002 T + ZEOnTn (2.1)

n
where Bp ie in Tm: the kinetic energy Tn per nucleon is in MeV and
the rest of energy per nucleon EOn is also in Mev. Thims provides
a spatial meparation for the trajectories of the injected and
circulating beams.

The charge exchange process cannot be described by the
Hamiltonian eystem. That ie why the Liouville theorem for phase
space density conservation does not work. This allows us to inject
ions many times 1into one and the same area in the phase space
thus increasing the intensity of the stored beam (non-Liouville
stacking).

4. INJECTION BUMP

During the stripping injection, a local orbit bump should be
produced for the beam to paes through the stripping foil. For the
booster case a height of 70 mm has been choeen for this bump. The
booster bump will be produced by means of four bump magnets
situated between the ring dipole magnets.

Let us consider the kicke in the bump magnets necessary for
the local closed orbit bump to be produced. Here we will analyze
the general case of arbitrary phase distances between the elements
as given in /6/.

A. _Svetems with Three Bumpers

A scheme of three bumpers scheme is depicted in Fig.1.

The kicks £, 82 and 83 which produce a closed orbit bump
with deviation xt in the stripping target are the solutions of
the following system of three equations:
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Figure 1. Injection system with three bump magnets.

B. Svetem with Four Bumperg

Ueing a system with four bumpere an additional constraint of
having a zero slope at the stripping target can be set - Fig. Z.
Two cases can be distinguished.

In the first case a drift space is situated between the
second and the third bump magnets. Using the Twies form of
transfer matrix. we obtain for the kick in the first bumper:

E1= = (4.2)



where we have denoted by M' the transfer matrix from C1 to C2.
and by Mzthe transfer matrix from 02 to the stripping target.
The kick 1in the second bumper should counteract the

trajectory slope X°:
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Figure 2. Injection system with four bump magnets.

In the second case when no drift epace but some elements
(quadrupoles, for instance) lie between the second and the third
bumper, it is still poseible to obtain a zero slope in the
stripping target although the trajectory is more complicated.

For the satrengths of the first two bump magnets one can
deduce in this case:
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Necessary strengthe of the bump wmagnete in the NUCLOTRN
booster were calculated according to relations (4.2-4.4) and a
posteriori improved by particle tracking using the computer code
MAD /7/. The tracking results are shown in Table 2. The required

kicke are less than 0.1 rad.

Table 2
No Uux2x% B.m *.mm
BH1 2.183 4.763 0.0
BHZ 2.210 4.514 71.536
BH3 g.011 4.514 71.536
BN4 0.038 4.763 Qa0

5. EQUILIBRIUM CHARGE STATE DISTRIBUTION AND
EQUILIBRIOM THICENESS OF THE STRIPPING FOIL

As the beam ions travel through the matter a relative
content of ions in different charge states changea. The process ie
described by the following set of linear differential equations:



Kk _
= Z L (5.1)

where @i is the percentage of the ions in the j-th charge state
in the beam: Ujk is the cro;e-aection for the tranaition j-k; t ie
the foil thickness in at/cm™.

The charge state distribution reaches equilibrium for thick
enough folls /8’9/. This equilibrium distribution undependent of
the initial distribution in the beem is detsrmined only by the
relations between different charge exchange croes-sectione ojk
and the ion velocity. The besam attainm charge mtate distribution
equilibrium earlier than a visible particle delay in the toil
material is reached. The equilibrium distribution ie the eolution

of the linear system:
g% Op = O (5.2)

So in order to calculate for the equilibrium distribution
and the equilibrium thickneaa to be calculated one needs the exact
values of electron loss and zapture cross-sections 0O K First
theoretical papers on the croes-sections in ion-atom collisions
have been carried out by N.Bohr. He found for the electron

loas/lo/:

i ] (5.3)

whare 0=1/137 is the fine atructure constant and a, is the Bohr’s

radius, and for electron capture (together with Lindhard) 711/ we
have:
B; 1-3
. 2,173 2 i
Uc— Iaozt q LTT—] (5.4)

Unfortunately, the experiments have shown that the above
formulae work well only over a quite narrow range or parameters. A
lot of semi-empirical formulae for electron loss zad capture crose

-sectiona have been put forward /12—14/_



For electron capture the experiments show that:

o - Z%1yXe%3 (5.
c pPr t

o

where

a1= 4% 5 : a2= -tz % 95) : aJ: U1k + 04

The electron losa croes-section O increapes with tnrget
-

atomic number Zt and decreasee  with projertile atomic number
Z (0 N Z(x . = -(1 ¢ 3)) end depende etrongly on the 10n
pr e pr

velocity. On the other hand. the experiments show that the
cross-sectionm for losses of more than one electron are not
negligible. In connectionwith that there were proposed a

d/14a/ for calculations the crose sections

semiempirical metho
for the lose of one and sveral electronz by fast multielectron
ions. Ueing this methpod. which ie based on ths results of an
analysia of experirzntel data and theoretical calculations the
cross sections {m=1-5) have been obtained tor the fast ions of
iodine and uranium in nitrogen.

The problem is even more complicated as the case of solid
folile estrongly differs from that of rare gases. While inrare gases
the time between the succeesive ion-atom collisions ie long
enough for excited atoms to return to their basic state in solid
foile thie time 1ie short and the atom state remains almost
unchangeable. Thie means that all the cross-gections should be
averaged over the exclited states. For this reason the electron
loss croess-gectiong in =solids are larger than in gases and the
electron capture cross-sectiors are smaller. As a result the
equilibrium thicknessee in =so0lid foils are larger ‘ p to ten

times) than those in geaes/l5’.

p
/16.17/ show that for heavy ione

The accelerator experiments
with energies from 3.8 to 10.6 MeV/nucleon the equilibrium

thickness of carbon foils lies between 250 to 350 ug/cmz.



6. EQUILIBRIUM CHARGE STATE DISTRIBUTIONS BEHIND THE ETRIPPINC FOIL

The equilibrium charge state distributions of heavy ion beams
on traversing the stripping foil are presented by a Gauuaian'la/
although the Gauseian describes continuous random variables while

the ion charge states q are diecrete ones.

Formula (6.1) ie valid if the average charge state aq (s not
too close to 2
pPr
Several empirical formulae have been proposed for the average
charge state q. It is assumed to use the reduced velocity X as an
independent variable in all of these formulae:

.

vz 3.6 10% cove (6.2)

fei e /197
Nikolaev - Dmitriev’'e formula :

01
)

= = (1 +x 06,06 (6.3
pr
207
To - Droin’s formula /dO.:
a
_ R
5 = 1 e {6.4)
pr
/217

Shima’s formulae

a 2 3
t 2,261 =1 -exp ( - 1.25X + 0.32 X° -~ 0.11 X~ 1

Z
pr
(6.5)



2 a
7 ! Zt#B):T 'Zt:61(1+g(2tl] (6.61
“pr pr
where
g(z,) = - 0.0019 « Z, - 6 ) VX 1073 (z, -8 12 X (6.7
Heckman - Betz's formula ~2< 447,
2 ( v
— =1 - C exp]- ————7——— tB.83)
Z VoZpr

where C and | are constants depending on Zpr in the intervals
C€ (1.07 % 1.25 )y : ¥y €1 0.57 + 0.65 1
and vo/c = 137.

Baron - Ricaud’e formula /16/:
a 83.2758 5
e 1 - C exp (- 20'447 ) (5.9
1. for T > 1 MeV/n.
where C = pr
0.9 + 0.0769 T . for T < 1 MeV/n
pr pr

Formulae (6.1-6.5) have been deduced ecaling experimental

data over an energy range of below 2 MeV/n. Formula (6.3)

scales the experimental data of wider energy raenge up to X = 2.5
and also describes the cases of non-carbon foils. In /187 the
correction for heavier ions (Z254) has been deduced:

3=3a,( 1- exp (-12.905 + 0.2124 Z - 0.00122 2°)] (6.101
where ap ie taken from (6.9).

For the standard deviacion Nikolaev and Dmitriev 7197 propose

the following expression:

10



o0 /a s (3]")

The correction for heavier ione (Z254) is proposed in

g = V/qp

( 0.07535 + 0.19 y - 0.2654 yz), y

(6.11)

/167,

qQ
= —22— (6.12)

Some experimental data for the charge distribution of Ar ione
behind carbon foils of different thickneeses and energies cloee to
those in the NUCLOTRON booster are presented in Table 3/16/.

The calculated distribution for 5 MeV/n Ar ions and carbon
foile is given in Table 4. Formula (6.1) works badly for C and Li
ions as for them q is too close to Z. The experiments show that

the probability for the charge state of C

ions

behind the foil

is 84X and for the charge state of Li3+ ions it is 99%.

Iable 3
ArS, T = 5.62 MeV/n
d.u.g/cm2 q
14 15 16 17 18

60 1.76 13.69 45.40 32.39 6.74
84 1.26 10.57 39.64 '37.86 10.58
120 0.96 8.17 35.11 40.54 14.92
150 0.85 7.95 32.47 42.26 16.78
215 0.55 5.53 26.55 43.79 23.59
300 0.04 3.81 25.10 45.21 25.25

11



arldt, T = 5.0 MeVre

40 >
t=100 Ug/cm

q 14 15 1€ 17 18 ]

®.% 0.5 8.3 36.2 41.4 12.5._J

7. HEAVY IONS SCATTERING IN THE STRIPPING FOIL

The Coulomb elastic scattering of beam jons in a etripping
foil will cause a change of the trajectory slopes.
The mean energy lose of an ion for unit path length when

mpr; 0.2 n, . where m__-the particle mass. mt—Lne tardet nucleus

mass is given by /55/:
2 4
dE ) 2% Zpr Zt e nm. In sin 6m1n .
dxjel” m, E 2
t “pr
2 _ _ 2
1 Ty Tprmt mpr
= (7.1}
z 2
(m + m )
pr t

In (7.1) n denotes the number of target atome in unit volume

and Epr— the particle energy.

It can be shown 725/ that the ratio of the ionization losses

and Coulomb scattering energy losses is:

-5
dxjion ]
= 7~= = 4000 . (7.2
(.
dx)sct A m

where mp is the proton rest mase and At - the atomic weight of the

target material.
From (7.2) it follows that the energy losses in Coulomb

scattering are negligible.

12



On the contrary, the particle trajectory changes are very
important.

The basic laws of elastic Coulomb scattering have been well-
known since the time of the Rutherford s pioneer works.

An important role in accelerator practice is played by the
multiple scattering in the foil material.

It can be shown that the multiple scattering mean s&quare

25/
angle ie '45':

42, 2173
<#%>-0.078 —2—-—— 1n{1.06%10° —ﬂg—i—— / (7.3
EZ A

pri't

where E r is the particle kinetic energy in MeV and t - the target
thicknesa in g/cmz.

/
In /28, the following empirical formula for the multiple

scattering mean square angle of heavy ions in solid folls ie given:

2
Z.(Z,+ 1) 2
<8%> = 0.250 L B ¢ (7.4)
t E
pr

where ¥ ie in mrad: stripper thicknees t is in ug/cm2 and particle
ener E i i -

gy pr is in MeV

The average number of scatterings per particle and passage is

given by:
g 2%yt o1
n_ .- 0.0392 -RE BT (7.5)
act A F2 8
t pr a
9& is the so-called screening anglc:
33—
8 = a.52 1073 1.78 10727 274p° ik (7.6
o i . pr-t “pr ﬂ2 :
pr pr
where t ie the target thickness 1in g/cmz. Epr - the particle

13



energy in MeV. ED - the particle energy in MeV. This gives 9.. 91
and 73 scatterings for Ar. ¢ and Li 1ions respectively 1.e. we
actually have the case of multiple scattering.

We have calculated the values of Coulomb elastic scattering
for several ions of interest for the NUCLOTKRON booster.

Those of them which refer to single collisions are given
in Table § for Omin and Omax' in Table 5 fur the mean oquare angle
and Table 7 for the intedral crose sections.

Fig.3 depicta the mean equare angle tor multiple coattering
in the target.

8, mrad

" e i i

100 200 300 400 t,mg/cm?

Figure 3. Multiple scattering rms angle for
carbon etripping target.

Table &
14+ S+ .ot
C
ion Arao 12 Li
|

9 . 2.3 107° 5.6 107° 1.7 1072
min
® 9.6 107° 4.7 1072 0.12
max

14



: 14+ S+ 2+
ion pP.20 Mev Ardo C12 Li7
92> 3710 s.8100" 6.710'° 5.1 10°
Iable 7
r
144 S+ 24+
ion pP.20 Mev Ardo C12 Lj7
o, cme 26107 3710 8.810"% 1.4107'°

8. EMITTANCE GROWTH DUE TO ELASTIC COULOMB SCATTERING IN THE
STRIPPING FOIL

It is convenient to work in the normalized phase apace
(y.v"). where y is the transverse coordinate (either X or Z) and

L]

vy’ = ay + By’ (8.1)
In (8.1) & and P are the Twiss functions and ‘ denotes
differentiation with respect to the longitudinal coordinate S.

In the normalized phase space the betatron oscillations can

be presented in the form:

y = A cos(§p + )
v*= A sin(d + ) (8.2)
where ¢ is the betatron phase, ¢ = _[ —g?—s—) and A and O are
conastants.

Let y and y' be Gaussian distributions. The betatron
amplitude is:

15



5
A“=V2* y‘z (RPN
lelatian (8.3) determinez a circle in the normal:zed phase

gpsrer ulth o radiue A, In order to taiat cut the  amplitude

dietributior. one  has  to integrata the  Jornt peobability

dictetbetion along this clrele. T polar coard nateg:
A i
2R N ¢ ey gl
P(A):Ip(y,y‘)ﬂdw = j m—— ona AP - ,ﬁ‘ L. RO [N
'O? o
Y i
i.e. we have oblained Ravleigh dietribution with
0= 20t 8.5
¥
Faesing through the stripper Lhe beam particles change by
Juup the 2loape of their trajectory and keep the distance from the
cauiiibriun orbit unchangreable.
. . . . .
v, > vV Ty, v by syl o+ By (8.6)
Pehirnd the stripper we have:
2 2 ¥
8%z A2 1 28v"yt o+ AyTR (8.7)
0 o]
Averaging (8.7) we obtain:
2 2 2 2 2.2
= ¥ = . { ]
G347 o * Taye = Tno* Bolay B.8
The «real situation in charge exchange injection however

is more complicated. At the end of the injection procees we have

on the accelerator circumference simultaneously particlee passing

N times throuvgh the atripper,

particlee paesing (N-1) timee and eo

on up to the particles having croassed the stripper only once.

Obviously,

16

in this case the probability for an amplitude is



rhe normalized sum of probabilities for amplitudes after a

different number of foil croseings:

P(A) = -'14— $=1pi(l\\ (8.9)

Then

ol §=1oii (8.10)
but

of = 0f + Bgmiyl (8.11)

Thus. we obtain

2. &2 (N+1) o2 2
0,= 040 * — 72— Bo Opy’ (8.12)
From (B8.12) we can deduce the emittance growth due to

elastic Coulomb scattering:

. _O°A 1 2
€y° —_B; =E,+ 5N BO<0 > (8.13)
Formula (8.13) differs from a similar formula in 7307 by

that we do not restrict ourselves to only one interaction with
foil atoms. In fact for low energy heavy ions the integral
cross-gections are large enough to have the case of multiple
scattering in the target. In (8.13) <925 is the multiple
scattering mean square angle and N denotes the total number of

turns.

The calculated emittance growth for the case of the
NUCLOTRON booster., is plotted in Fig.4.

17



9. ENERGY LOSSES IN THE STRIPPING FOIL
The enargy losses ot heam parti les irn the strippine 1.1 are

mainlv due to the excitaticn and jonization of 1] zroms.

N w
o o

AE, mm.mrad
o

10 20 30 N

Figure 4. Emittance growth dur to multivile zcattering:

the target thicknese 1U0 lUg/om“. BU: 4.% m.

Mean losses are described by the well-known Bethe-Bloch

formula /25~Z7/:
. 2p2, 7
e DEE (T B
3x = At in l
pe - _g_ _ _2_‘ ] 1 o+ v (9.1)

where D ie the mags foil deneity:

D=4 N, r m e2 = 0.3070

2
MeV.cm
A e e =4

and [ ie the mean ionization potential of medium atoms.

[ = 13.% Z . eV (9.2)

18



&.c.1 are the phenomenological functions which valuere sre usuaily

negligibly small: 6 repreeente the density effect and ¢ - ehell

corrections.
The energyv losaes for the test inns are plotted in Fig.5.

5 L 1
Ar
EE A | 40
A3
\V4 11 12
kLig'

100 200 300 400 ts,_/v\g/cmz

Figure 5. Energy losses in the stripping foil.

10. EMITTANCE GROWTH DUE TO THE ENERGY LOSSES

If the dispersion in the stripper is nonzero then the energy

losses will cauee the emittance growth according to the well-known

relations:

(10.1)

o _p _bp

by"= - D b

where Doand D6 are the linear and angular dispersiona in the
stripper and Ap/p 1s related to the energy losases by:

4E . [32 (10.2;

E

ols

where E is the total particle energy.

19



The minus sign in (10.1) implies that traversing the foil the
particles remain in the same position while due to the energy
lossee the corresponding off-momentum equilibrium orbit jumps to a
new position. We will perform our analysis in the normalized phase
space (y,y‘), where betatron oscillatione are presented by
circlea. From a simple geometrical snalysims one can deduce that:

/Boe =V Bygy + Kk Vay2 + ay*? (10.3)

where, 80 is the initial emittance, £ - & new emittance and k-
the number of turns.

For the NUCLOTRON booster (10.3) gives quite a large
emittance growth. That is why diepersion must be suppressed at

the stripper azimuth.
11. IONIZATION LOSSES STRAGGLING IN THE STRIPPING FOIL

The meximum energy transferrable by a fast moving charged

particle to the electron is /31/:
2 2
E = zmeﬁp"r;’;c (11.1)
max m D 2 :
ear 52 - [52)
m m
pr pr

For our caee Emax: 10.22 Kev.

The ionization loeses are statistical in nature. There exists
a probability distribution function f(x,A) so that f{(x,A)dh is
the probability that the ion, on traversing a path length x in the
target, will suffer an energy loss between A and 8+dA.

The character of the distribution function depends on the

parameter ¥ /33/:
13
® = En—‘;x (11.2)
where
4,2
2% ne 2 Z.X
E = pr.efft (11.3)
m Ve
e pr

20



n e the number o1 tareet atomg per unit volume. X the

thivknese. and 2 .. the ion effective charge:
pr.eff

.

nt Z

v [1 Cppe b Vb 3 .] B [1~Pxp¢»]30ﬁ2_?,3\]

Al & ooy the Arstpftatieon 1e highly asymmetrlc with
. . ERE I
teea b U] the go o velled Landou’s distritation :

tes A 'g @A

+3im
(pt)\l' —f.—l--j fe“ Tnu 4 }\udll

M 1o
A - Etln é— + 1=
\- - - "E—_‘ T T

where o is Euler’s cansrant c=O. 8777 .

target

t11.4)

regpect

(11.%5:

111,68,

By lf 0058 ¢ ¥ <« 10 we have the case of the Vaviioy 'z

Pc
distribution A3
- 1435 4 . N
firx.by = 1 & X B e{ficos(yt + ®f . Vdy
iE 1 -
t,x B iln v -~ Ci{ylt - eos v - v Sitv)

1

1,3y (lny - City)y + sin y + f"Sicy»
where 35i and Ci are the sin and cos integral.

ci If ¥ > 10 the distribution is Gaussian:

o th-ax)?
fix. Ay = —_—-l—t: 3 erx
2R x



where according to the Landau’s notation.
o = <A> = Isw(e:) de £11.9)

and

-
"

€
ax € 1 "
Jm eberd = —e€ 1-— B (111

are the mean and variance for unit path length.

The calculated values of X are: 15 for Ar;g+. 1.9 for C?; and
0.3 for Lig+. This means that the probability distribution is
normal for havier ions while it is Vavilov’s one for light ions.
Thus, the standard deviation for Ar;g+ and a 100 mg/cm2
thickness of the target is  ¥¥x= 39.1 KeV according to
eq.(12.12). The 9alculated atandart deviation ie 17 keV for C?;
and 5 keV for Lié+.

The Vavilov’s distributione for Ca and Li ions are shown in
Fig.6 and 7.

The situation with charge exchange injection is a little
bit more complicated because we have simultaneously on the orbit
particles travereing the foll N-times. (N-1) times up to one time.

Then the common probability density is:

=1
p(hAy= N

=Mz

pi(A) (11.11)
=1

where pi(A) is the probability density for particles traveresing
the foil i-t times.
From (11.11) and taking into account the large value of N, one

can deduce for the energy dispersion in a stored beam:

2
N 2 N 2
+ 802 Lt (11.12)

where Og is the energy dispersion in the incident beam, Ui is the

22



dispersion of ionization losses in the foi 1 materiel (one

rassage through the target) and <A>t are mean ionization
losses in the foil. The additional momentum spread due to the
ionizatioa losses of energy can be calculated from (11.12)

and (11.2), see Fig. B.
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Figure 6. Calculated estandart deviation ta 17 keV for 012
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Figure 7. Calculated standart deviation is 5 keV for Lllz
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Arle

AP/P xq0°

Figure 8. Additional momentum spread due to the ionization
losses of energy in the stripping target:

the target thickneess 100 ug/cm2

12. ION STORAGE-FIXED ORBIT BUMP MODE

In this mode the orbit bump remains unchangeable. lone pass
through the etripper many times until an equllibrium is attained
or until other limited factors - scattering and energy losses
begin to restrict the number of stored particles.

The storage procees can be described in the following way.

a) During the first turn the number of stored particlees

will increase ags Nt = AIt. where AI = 1001nt is the ion current
behind the target, 10 the injected beam current. 01 the
circulating charge (ZFR: g) formation cross section, n the number

of target atoms per unit volume, and t the target thickness. At

the end of the first turn we will have N,=AI.T particles on the
t

orbit, T being the period of the synchronous particle..
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by [uring the second turn the circulating particles will pass
through the target for the seccond time. Let 02 be the circulating
~harge formation croges section for the circulating particles.
Generally speaking. 02# 01 as the charge state distribution in the
inijected beam differse from that in the circulating beam. If the
former is centered on charege number ZO# Zc (otherwise charge
exchange injection will not work) the circulaving beam contains
only ione in one charge state. lons in other charge states have
been already lost on the walls of the vacuum chamber because for
them AZ/ZC is quite large. Simulteneously new particles are
injected 1inton the ring. and these particles will pass through
the etripping toil only onece., Summarizing. we ¢an obtain for the

number of the atored particles:

N, = Alct Ty + OZnLAI(L~T) + AI(2T-t) (1z.10

and at the end of the second turn:

NET = BTl 4 cznt\T (1z.zy

Following thie way of reasoning. we can obtain for the k-th turn
k-1

Nt = Al (1 + b +...4 b )T, where b = Oznt, Summing

geometrical progression in the brackets. we get:

N = Npo(1-b¥) 12.3)
where

N = [1%]101". a=0,nt. b=0,nt (12.4)
T is the period of the synchronous particle: IO being the
injected current. 01 the croeses section for the formation of ions
with equilibrium charge from the injected ions. and 02 the cross
section for the formation of ions with equilibrium charge from the
circulating ions.

In the specific caee of sastripping target with equilibrium
thickness. the charge etate distribution behind the target will
reach equilibrium which means that it 1ie independent of the
charge distribution 1Iin the incident beam and that it will be no

longer change. For the target of equilibrium thickness 01nt =
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] nt:@zc. i.e. the probability of circulating charge formation

2
for the injected beam is equal to that for the circulating

beam. Formula (12.4) becomes simpler:

(12.5)
N = |- I.T (12.6)
© 1= o) "

The curves of the ion storage for the fixed orbit bump mode
and the teat ions are depicted in Fig. 9.

P
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Figure 9. Ion storage for the fixed orbit bump mode.
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13. ION STORAGE - MOVING ORBIT BUMP MODE

In this mode the orbit bump gradually reduces to zero during

the injection.

50
.40

J 30
z 20

10

b A i

20 40 60 80 100 K

Figure 10. Charge exchange injection with a moving
orbit bump.

When the orbit is close to the center of the stripper, the
injected particles will croes it every turn. On the contrary
the particles injected when the orbit lies outside the stripper
will wundergo betatron oscillations and will avoid the stripper
most of the turnes. In other words, we have a kind of combination
between the multiturn end the etripping injections. Such a
combinetion allowe the number of the injection turns to be
increased many times.

The goal of thie section i1s to assess the total number of
injected particles in the mode under consideration. We will use a
beam model with a unlform charge distribution and clear-cut
boundaries wich are circles in the normalized phase space. Let us
take a beam slice dN = Iodt injected at time t ~ Fig. 10. After
one turn the slice will occupy the position forming angle o = 27Q
with the initial position as is depicted in the Fig. 10.

Let us denote by the beam radius by R = Y—BEE and the
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aperture radiue by A. As A » R, we will approximate here the
aperture boundary lying within the slice confinee with a straight
line, so the part of the s8lice outeide the aperture will be
approximated with a circle segment.

Under the above agsumptions a pure geometrical analysis can
be carried out. From Fig.B we obtain that:

H

yy(t) = yg - R -y (¢)
yz(t) = ¥g + R - yco(t) (13.1)

For the utmost left v’ and utmoet right y" projection of the
slice on the y axis we have:

¥y (t+4T) = Y, (t+3T) + y,cos J2%Q - R (1l-cos J21Q}
vy (t+JT) = yco(c+JT) + y,cos 32%Q + R (1l-cos j21Q) (13.2)
3=0.1,2,....

The stripper edge cuts a circle segment with an area S1 from
the beam slice. If H is the edge distance to the slice center we

can write:

H(t+jT)= a ~ yco(t+jT) - (ys~yco(t)) cos J2%Q (13.3)

and

S,(t+4T)= R arccoa[—g—] - w RP- W% |, 3=0,1,2,.... (13.4)

Another kind of restriction comes from the machine aperture.
The aperture is centered on the instantaneocus closed orbit
position. This means that at the beginning of injection,
when the orbit bump passes through the stripper we will have no
aperture limitations. However, when the orbit bump is esmall enough
to go close to the machine center considerable aperture
restrictione on the beam will take place. The closer the orbit
passes to the machine center the stronger aperture restrictions
will be.

As mentioned above, we will consider that the aperture
cuts aleo a clrcle gegment {( with an area SC ) from the beam
slice. Thie approximation is as much better as A is bigger than R.
Similar to (13.4) we can deduce that
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H —_—
3 (t=K arccos{—~%——] - H Y K- Hf (13.5)

<

where
H (tizsy_ (t) + A - y (13.8})
c co =)

is the distance between the aperture edge and the slice center.

The main parameter of our analysis is the traneition
coetficient k - the percentage of particles having passed through
the stripper and accepted in the aperture.

1t can be shown that

[ $. acy tt+3T). K H 1t
A

AR-5 1t
—ee— 0. any (L+3T). H (tI<K
IR2 [

2
IR‘-(1—®IS1(t+jT\

. y'(t+jT)<a<y“lL+jT)‘Hclt)'R

G
ARE-(1-01S (t+3TI-0S_(t)
k(t+iT) = 4 3 Ly (t+iT)<acy  (t+iTy .
K
§=0.1.2. .. H, (LISH(L+5T)

S Y (t+JTI<acy (t+3TIH (t1<H(t+IT)
IR ©
1 . y”(c+jT)<a.Hc(t)fR
AIRZ-S (1)
< yo(t+dT)<a.H_(t}<K
AR® ¢
L
(13.7)
wher-
61nt. for the injected beam
¢ = (13.8)
Oznt, for the circulating beam

ie the probability for the formation of 1ions with equilibrium

charge.
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Let us consider the case of an exponential law of orbit

motion:

yco(t) = yge

Al

{13.9)

Let r be the number of turns during which the orbit movee
from the center of the stripper to the center of the machine.
Let us describe the particle storage turn by turn. During the

very firet turn:

T
r
N [Tk(e+dT) de (13.10)
Jj=0
o}

particles will be stored in the ring. Multiplication from ¢ to r
in (13.10} describes successive croesing of the target while
integration describes continuous orb.t motion. During the second

turn the number of stored particlea incresses to:

2Tr—1

N,= N+ [ TlkcessTir ae (13.11)
j=0
T

Generating, we arrive at the following expression for the total

number of stored particles.

r (i+)T r-1
N=Y { J [—Ik(u.jT)IodT} (13.12)
i=0 iT i=0

The numerical estimations show that in the present mode of
operation the number of the injection turns can be increased more

than five times.

14. CONCLUSIONS
The general conclusion from the above analysis is that charge

exchange 1injection could be a powerful method for the injection
of light and moderately heavy ions giving a higher intensity than

30



the other known methodse.This 18 due to the non-~Liouville character
of the process allowing particles to be injected continuouely
into one and the same phase space area.

The most important limitation on the stored beam current is
due to the ionization losses of energy in the stripping target;
the heavier ion the stronger the effect.

In order not to excite bhetatron oscillations the stripper
must be placed at a zero dispersion point.

The additional momentum spread is due to the energy losses in
the target and it ies produced rather by the different target
crossings of the estored particles than by the energy losses
etraggling.

The additional momentum spread is due to energy losses in
the target and it is produced rather by different target crossings
of stored particles than by energy losses estraggling. Particle
scattering causes an emittance growth which is more or less
acceptable.

The operation mode with reducing during the injection orbit
bump ie preferable and in this mode it is possible to increase the
circulating beam intensity with respect to the injected beam with

a large factor.
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