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1. INTRODUCTION 

This paper concerns the problems of charge exchange injection 
of heavy ions into synchrotrons. Charge exchange injection now Is 
now the preferred Injection method for proton machines due to 
its relative simplicity and a very high Intensity of stored 

/1 2/ beams. ' Recently this Injection method has been successfully 
applied for light ion storage in the CELSIUS / 3 / and COSY / 4 / 

cooler rings. In this pape work we try to analyse the possibility 
for the charge exchange injection method to be applicable to heavy 
lone. A detailed analysis of the bean-stripper interaction 
processes and their reflection on beam dynamics Is carried out. 
The deduced theoretical relations are applied to the the NUCLOTRON /5/ booster being under design at Laboratory of High Energies of 
JINR. Dubna. 

2. BOOSTKR SYNCHROTRON FDR ТНЖ SUPERCONDUCTING 
HEAVY ION SYNCHROTRON NUCLOTRON 

/5/ A booster synchrotron is being designed for the Dubna 
/6/ 

super conducting heavy ion synchrotron NUCLOTRON . The booster 
will be a fast synchrotron with a circumference of 50 m and a 
repetition frequency of 1 Hz. It will be able to accelerate ions 
up to 200 MeV/nucleon and protons up to 650 Mev. The booster will 
give the NUCLOTRON new capabilities for experiments at middle and 
high energies by improving the quality of its beans. The circum­
ference of the booster will be 1/5 of the NUCLOTRON one so that 5 
successive pulses can be Injected into the 'NUCLOTRON. Thus, the 
total injection time will be about 4 sec, and the bean intensity 
will be inproved by one order of magnitude at least. Letting the 
booster beam pass through a stripping foil one will be able to 
increase the ion charge and thus to Increase the final energy in 
the NUCLOTRON. 

An electron cooling system is being planned for the booster. 
It will reduce the beam omittance and momentum spread up to one 
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order of magnitude. The booster can be used in an autonomous 
regime as well. 

The booster magnetic structure consists of 6 periods, each of 
them comprising two bending magnets and a quadruplet or 
quadrupole lenses. 

This paper deals with the injection schemes of heavy ions in 
the booster synchrotron. Several injection methods are considered: 

I) multlturn injection with filling the horizontal acceptance: 
II) high frequency ion stacking. 
ill) multlturn injection with filling the four dimensional 

transverse phase space usinp the linear coupling 
resonance Q =Q . 

x У 
iv) charge exchange in.iection 
It i s the charee exohence in.iectioii thir wi l l be per* if-ninr J v 

considered in the present. peper. 
Main booster parameter's are liete'J in TiM»1 1 below. 

Table 
Booster .̂ yn-_-hj-otrcn laramstexe 

Circumference-
Energy 

Beam rigidity 

Betatron tune 
Emittance 

Acceptance 
Momentum spread 
Number of periods 
Number of dipolee 
Number of quadrupol 

ln.ie^i. ion 

maximum 

at in.iection 
max imum 
Q = Q = x у 
at injection 
at the end 
of the cycle 
A = A = x у 

es 

ir 

i' 

•IIS 

ins-. 

/i 

A " ' " '' 
protons 

Ы'. '.•;: m 
Ь MeV/ii 
2i.i MeV 
vi iu MeV 'n 
66u MeV 
0.647 Tm 
4.3 Tm 
2.25 
401 mm.mrad 

4 0 % mm.mrad 
2601 mm.mrad 
±2.10~ 3 

6 
12 
24 
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3. CHARGE-EXCHANGE INJECTION IN SYNCHROTRONS 
The principle of charge exchange injection consists in 

letting a injected beam pass through a thin internal foil. 
Having passed the foil ions change their charge while energy is 
practically unaltered and beam rigidity Bp jumps to a new value 
according to the well-known relation: 

Bp "- -35oz- / т п + 2EonTn { З Л ) 

where Bp is in Tm: the kinetic energy T per nucleon is in Me\f and 
the rest of energy per nucleon E. is also in Mev. This provides 

on 
a spatial separation for the trajectories of the injected and 
circulating beams. 

The charge exchange process cannot be described by the 
Hamiltonian system. That is why the Liouvllle theorem for phase 
space density conservation does not work. This allows us to inject 
ions many times into one and the same area in the phase space 
thus increasing the intensity of the stored beam (non-Liouville 
stacking). 

4. INJECTION BUMP 

During the stripping injection, a local orbit bump should be 
produced for the beam to pass through the stripping foil. For the 
booster case a height of 70 mm has been chosen for this bump. The 
booster bump will be produced by means of four bump magnets 
situated between the ring dipole magnets. 

Let us consider the kicks in the bump magnets necessary for 
the local closed orbit bump to be produced. Here we will analyze 
the general case of arbitrary phase distances between the elements 
as given in . 
A. Systems with Three Вшпрегя 

A scheme of three bumpers scheme is depicted in Fitf.l. 
The kicks £ , £ and £- which produce a closed orbit bump 

with deviation X in the stripping target are the solutions of 

the following system of three equations: 
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sin д,з / ? 7 е, + sin д23 / ^ - e2 = о 

s ln *Чз / ^ Г Ез /*T 
"Mi where Z.~ „ ' is the kick in the first bumper and U., ie the 1 вр 2 

phase advance between BM1 and BM_ I U12= J RTiTT I 

Figure 1. Injection system with three bump magnets. 

R. SvHt.em with Four Bumpers 
Using a system with four bumpers an additional constraint of 

having a zero slope at the stripping target can be set - Fig. 2. 
Two cases can be distinguished. 

In the first case a drift space is situated between the 
second and the third bump magnets. Using the Twiss form of 
transfer matrix, we obtain for the kick in the first bumper: 

_t_ 
1 

n12 /^ЖГ Si" »1Z 
(4.2) 
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where we have denoted by M the transfer matrix from С to 0 . 
and by M the transfer matrix from C„ to the stripping target. 

The kick in the second bumper should counteract the 
trajectory slope X': 

1 
T7 , c t e "12 " V (4.31 

Finally Irom a symmetry: 

-p- (ctg u34 - a3i 

/ рсЭрсЛ sin Ц 

BM2 BM3 
M 

BM6 

Figure 2. Injection system with four bump magnets. 

In the second case when no drift space but some elements 
(quadrupoles, for instance) lie between the second and the third 
bumper, it is still possible to obtain a zero slope in the 
stripping target although the trajectory is more complicated. 

For the strengths of the first two bump magnets one can 
deduce in this case: 
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v "Чл -

-- f^ 
s i n Д. 

( cos Д. 

и с 2 

2 t 

(сое Д 2 t 

i 4 . 5 i 

And from a symmetry: 

X.= ^ *34 

Л 
c3 

Necessary strengths of the bump magnets In the NUCLOTRN 
booster were calculated according to relations (4.2-4.4) and a 
posteriori improved by particle tracking using the computer code 
MAD /7/ 
kicks 

The tracking results are ehown in Table 2. 
are less than 0.1 rad. 

The required 

Xab_le_2-
No 

BM, 
вм2 
вм3 
ffi4 

Д*21 

2.183 
2.210 
0.011 
0.036 

3-m 
4.763 
4.514 
4.514 
4.763 

x.mm 

0 . 0 
71.536 
71.536 
0 . f i 

i 

5. EQUILIBRIUM CHARGE STATE DISTRIBUTION AND 
EQUILIBRIUM THICKNESS OF THE STRIPPING FOIL 

As the beam ions travel through the matter a relative 
content of ione in different charge states changes. The process ie 
described by the following set of linear differential equations: 
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-**- = J *i °Jk , 5 - u 

where Ф. ie the percentage of the ions in the J-th charge state 
in the beam: 0.. is the cross-section for the transition j-»k: t is Зк 2 
the foil thickness in at/cm . 

The charge state distribution reaches equilibrium for thick 
enough foils ' . This equilibrium distribution undependent of 
the Initial distribution in the beam is determined only by the 
relations between different charge exchange cross-sections 0,. 
and the ion velocity. The beam attains charge state distribution 
equilibrium earlier than a visible particle delay in the foil 
material is reached. The equilibrium distribution is the solution 
of the linear system: 

I*j 6jk=° <5"2> 

So in order to calculate for the equilibrium distribution 
and the equilibrium thickness to be calculated one needs the exact 
values of electron loss and capture cross-sections 0.. . First 
theoretical papers on the cross-sections in ion-atom collisions 
have been carried out by N.Bohr. He found for the electron 

/10/ loss : 

°s 4*4 
Z? + Z ^p- m 

where 01=1/137 ie the fine structure constant, and an ie the Bohr's 
/11/ radius, and for electron capture (together with Lindhard) ' ' w e 

have: 

«Ф:М4Ч" Э 

Unfortunately, the experiments have shown that the above 
formulae work well only over a quite narrow range of parameters. A 
lot of semi-empirical formulae for electron loss tiid capture cross 
-sections have been put forward 
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For electron capture the experiments show that: 

z a iv a 2z ( X 3 
pr t 

5) 

The electron losa croes-sectlon 0 increases wjth target 
atomic number Z and decreases with pro^ftiJe atomic numher 

a 
Z ( 0 , Z . tt = -(1 T 31) ond depcnJe rarongly on thn ion pr e pr ° 
velocity. On the other hand. the experiments show that the 
cross-sections tor losses of more than one electron are not 
negligible. In connect ionwith that there were proposed a /2 Аь/ semieinpirical method for calculations the cross sections 
for the losa of one and sveral electron? by fast mult i electron 
ions. Using this methpod. which is based on th~ results of an 
analysis of experiir^ntel data and theoretical calculations the 
cross sections (m-1-5) have been obtained tor the fast ions of 
iodine and uranium in nitrogen. 

The problem is even more complioted as the севе of solid 
foile strongly differs from that of rare gases. While inrare gases 
the time between the successive ion-atorn collisions is long 
enough for excited atoms to return to their basic state in solid 
foils thie time ie short and the atom state remains almost 
unchangeable. This means that all the cross-sections should be 
averaged over the excited states. For this reason the electron 
loss cross-sections in solids are larger than in gases and the 
electron capture cross-sectior.s are smaller. As a result the 
equilibrium thicknesses in solid foils are larger ' p to ten /15 ' times) than those in gases 

The accelerator experiments ' show that for heavy ions 
with energies from 3.8 to 10.6 MeV/nucleon the equilibrium 

p thickness of carbon foils lies between 250 to 350 Ug/cm . 
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6. EQUILIBRIUM CHARGE STATE DISTRIBUTIONS BEHIND THE STRIPPING FOIL 

The equilibrium charge state distributions of heavy ion beams 
on traversing the stripping foil are presented by a Gaussian' 
although the GauBBian describes continuous random variables while 
the ion charge states q are discrete ones. 

lq - q) 
(6.11 

0 / 2X 

Formula (6.11 is valid If the average charge state q is not 
too close to Z 

pr 
Several empirical formulae have been proposed for the average 

charge state q. It is assumed to use the reduced velocity X as an 
independent variable in all of these formulae: 

X = — V
 n ... . V'- 3.6 10 8 cm/e (6.2) 

/19 / Nikolaev - Dmitriev's formula ' : 

- T - = ,1 + X °"6 Г 0 - 6 

pr 

n. i-, i / 2 0 / 
To - Droin s formula : 

— = I - e" 
pr 

- * , /21/ 
Shima s foi-mulae 

4 г T 
- g — ( z = 6 1 = 1 - exp С - 1.25 X + 0.32 X - 0.11 X 1 

(6.5) 
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-j— ' Z t ^ 6 ) = - g - ' Z t = 6 I [ 1 + J t Z I] 
J p r p r 

8(Z ) = - 0 . 0 0 1 9 ( 2 t - 6 I f~X * 1 0 " 5 (Z - 6 I 2 X ( 6 . 7 i 

Heckman - B e t z ' s formula 

4 
16.61 

Z l V„Z' 
c e x p ( — h — I 

0 pr 

where С and IT are constants depending on Z in the intervals 
С € I 1.07 т 1.25 ) : X i r 0.57 -̂  0.65 i 
and v /c = 137. 

^16/ 
Baron - Ricaud's formula : 

Z " * " e X P '- z0.447 > ( 6- 9' ! - с ехР (- 83;2??g 

{ 1. for T > 1 
pr 

0.9 + 0.0769 ' 

MeV/n. 
where С 

T . for T < 1 MeV/n pr pr 

Formulae (6.1-6.5) have been deduced scaling experimental 
data over an energy range of below 2 MeV/n. Formula (6.31 
scales the experimental data of wider energy range up to X = 2.5 
and also describes the cases of non-carbon foils. In the 
correction for heavier ions (Z^54) has been deduced: 

q = q [ 1 - exp f-12.905 + 0.2124 Z - 0.00122 Z 2 > J (6.101 P 

where q is taken from (6.9). P /J9/ For the standard deviation Nlkolaev and Dmitriev propose 
the following expression: 
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••• /= ь - к-n 
The correction for heavier ions (Z<*54) is proposed in 

(6.11) 

/16/. 

/<L ( 0. 07535 + 0.19 у - 0.2654 у'), у = -^- (6.12) 

Some experimental data for the charge distribution of Ar ions 
behind carbon foils of different thicknesses and energies close to 
those in the NUCL0TR0N booster are presented in Table Ъ' . 

The calculated distribution for 5 MeV/n Ar ions and carbon 
foils is eiven in Table 4. Formula (6.1) works badly for С and Li 
ions as for them q is too close to Z. The experiments show that 

6+ the probability for the charge state of С ions behind the foil 
3+ is 94% and for the charge state of Li ions it is 99X. 

Table 3 
Ar" 5.62 MeV/n 

d. Me/cm2 

60 
84 
120 
150 
215 
300 

14 
1.76 
1.26 
0.96 
0.85 
0.55 
0.04 

15 
13.69 
10.57 
8.17 
7.95 
5.53 
3.81 

q 
16 
45.40 
39.64 
35.11 
32.47 
26.55 
25.10 

17 
32.39 
"37.86 
40.54 
42.26 
43.79 
45.21 

IB 
6.74 
10.58 
14.92 
16.78 
23.59 
25.25 
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Iable-Л. 
A r ^ + . T = 5.0 MeV/i. 40 n _ 

t=100 Wg/cm 

Ф.Х 

14 15 16 .ZKZ] 
0.5 8.3 36. 2 4 ] .4 12. 

7. HEAVY IONS SCATTERING IN THE STRIPPING FOIL 

The Coulomb elastic scattering of beam ions in a stripping 
foil will cause a change of the trajectory slopes. 

The mean energy loss of an ion for unit path length when 
m *t 0.2 m. . where m -the particle mass. m -t^e target nucleus 
mass is given by : 

( .„i 2JC Z 2 Z? e 4 n m r tf . I dE _ pr t pr J , . min I—J -I -1= — F 4 In sin — я — 
I dxjel mt E \ 2 

2 2 . m, - m m. - m •> 1 t pr t pr I 
2 (m + m I2 ' 

pr t 

(7. 1 I 

In (7.1) n denotes the number of target atoms in unit volume 
and E - the particle energy. 

p r /25/ 
It can be shown that the ratio of the ionization losses 

and Coulomb scattering energy losses is: 

LdE] 
I dxjion 

l dxjsct I A m J 

1 
= 4000 . (7.2 I 

where m is the proton rest mass and A - the atomic weight of the 
target material. 

From (7.2) it follows that the energy losses in Coulomb 
scattering are negligible. 
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On the contrary, the particle trajectory changes are very 

important. 

The basic laws of elastic Coulomb scattering have been well-

known since the time of the Rutherford's pioneer works. 

An Important role in accelerator practice is played by the 

multiple scattering in the foil material. 

It can be shown that the multiple scattering mean square 
/25/ 

angle i s 

Z2 Z t I Z Z / 
<v2>=0.078 P/ * l J l . 0 6 » 1 0 2 P£ Ч / *-

E2 A, I Bpr V \ 
pr t I 

(7.31 

where E is the particle kinetic energy in MeV and t - the target 
thickness in g/cm . 

In ' the following empirical formula for the multiple 
scattering mean square angle of heavy ions in solid foils is given: 

, Z.(Z + 1) Z 2 

<•* > = 0.250 — i — r 5 Pr- t (7.4) flt E Z 
pr 

where Ф хв in mrad: stripper thickness t is in Ug/cm and particle 
energy E is in MeV. pr 

The average number of scatterings per particle and passage is 
given by: 

гг z2r t i 
n -- 0.0392 Pr * Pr <7.f,> 
s c t A.E2 « 

t pr a 

•&- is the so-called screening angle: 

i у/ у 

fl^ = 4.52 1 0 " 3 / 1 . 7 b 10~4Z2 Z?+fJ? 1 (7.6» 
E o V V 
2 where t is the target thickness in g/cm , E - th*> rsrtielr pr 
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energy in MeV. E - the particle energy in MeV. This gives 9L'. 91 
and 73 scatterings for Ar. С and Li ions respectively i.e. we 
actually have the саве of multiple scattering. 

We have calculated the values of Coulomb elastic scattering 
for several ions of interest for the NUCLOTftON booster. 

Those of them which refer to single collisions are given 
in Table 5 for § . and "9 in Table 6 for the mean square angle min max 
and Table 7 for the intearal cross sections. 

Fig.3 depicts the mean square angle tor multiple f:cat,terinp 
in the target. 

Ar14* 

100 200 300 400 tg^g/cm 2 

Figure 3. Multiple scattering rms angle for 
carbon etripping target. 

Table 5 

ion 

min 

max 

л 14 + Ar40 

2.3 10 - 6 

9.6 10 - 3 

C 5 + 

12 
5.6 

4.7 

io-6 

10"2 

г -2 + 
L l 7 

1.7 10"5 

0.12 
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Table 6 

p.20 Mev Ar' .,5+ Li 2+ 

,n-9 

Table 7 

Ion p.20 Mev Ar 40 12 LI г* 

O.cm2 2.6 10 1S 3 7 10 1S 8.8 10~16 1.4 10 16 

8. EMITTANCE GROWTH DUE TO ELASTIC COULOMB SCATTERING IN THE 
STRIPPING FOIL 

It is convenient to work in the normalized phase space 
(y.y ), where у is the transveree coordinate (either X or Z) and 

у = осу + РУ' (8.1) 

In (8.1) Ct and Э are the Twiee functions and ' denotes 
differentiation with respect to the longitudinal coordinate S. 

In the normalized phase space the betatron oscillations can 
be presented in the form: 

у = А сов(ф + a) 
y*= A sin(d) + a) (8.2) 

where ф 1в the betatron phase, ф = J —rr-.—r and A and <X are 
constants. 

Let у and у be Gaussian distributions. The betatron 
amplitude is: 
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Iv ' - l a t ion ( 0 . 3 ) l i e t e m i i п е з -ч с i r e It- in r ho noi ma 1 ; zed p h a s e 
i;pr>w* w i t h о r a d i u e Л. In ord«ri- t o f \ n i •;u' t h e ampl 1 t.urjr-
• i i e t r i h u t l o r . one ho к t<; i n t e u r i t * ? the* J o i n t i-rob.*.» h i 1 i t у 
<i into lb'.:t ion О].ОГ1Й th i f i ' i f o J ' r . Iii p o l e r i.-o<*>r*i' iTiU'K : 

И Л ) - Г р ( у , у * )Ad'JJ = T ——-~ f : ' K ° dm -- - , -
A ft * * 0 ? 

i.e. we have obtained Kayleigh difctr i hut ion with 

< H . 5 ) 

Passing through the stripper the beam particles change by 
jui.ip the slept? of their- trajectory and keep the diit-ance trom the 
.j'';ui i ibr ium orbit unchangeable . 

" = Y0 , У*- У* + Ау*~ y* + Buy' (8.61 

Peh ind the s t r i p p e r wf? have: 

A2 = A^ f 2Av*y* + Ay* 2 ( 8 . 7 ) 

Averaging; (6.7) we obtain: 

0? = ofr + C? - 0* + frTO? ' (8.81 
Л АО йу+ АО ^0 Ay 

The real situation in charge exchange injection however 
is more complicated. At the end of the injection process we have 
on the accelerator circumference simultaneously particles passing 
N times through the stripper, particles passing (N-1) times and so 
on up to the particles having crossed the stripper only once. 

Obviously, in this case the probability for an amplitude is 
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rhe normalised sum ot" probabilities for amplitudes after a 
different number of foil crossings: 

-irl^ P<A> r "ТГ > P, <AI (8.91 

Then 

but 

• £ - 5 . , ° « ,8-io> 

°Ai= °A0 + Po10L' ,8-U1 

Thus, we obtain 

2_ 2 INtll „2 2 ,..,, 
V °A0 2 P0 °Ду' ( S - 1 2 ) 

From (8.121 we can deduce the emittance growth due to 
elastic Coulomb scattering: 

V "TJ " eo + "Г" N e o < e 2 > < 8 - 1 3 ' 
Formula (8.13) differs from a similar formula in by 

that we do not restrict oureelvee to only one Interaction with 
foil atoms. In fact for low energy heavy ions the integral 
cross-sections are large enough to have the case of multiple 
scattering in the target. In (8.13) <b > is the multiple 
scattering mean square angle and N denotes the total number of 
turns. 

The calculated emittance growth for the case of the 
NUCLOTRON booster, is plotted In Fig.4. 
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9. ENERGY LOSSES IN THE STRIPPING FOIL 
The fjnerey J оззег; oi Ь«?агл part 1 les ir. tK° ct. i- ipp i ne I • • i i ar* 

mainly dup to the excitation and ionization oi I'-il -ъют^. 

30 N 
Figure 4- Emittance erowth 'jy Lv multir-l*- :j catt *=n nJ: 

the target thickness 100 ДВ'Ч.т'". (3 = 4.Ь m. 

formul 
Mean losses are described bv the well-known Bethe-Bloch 

/25-27/ 

dE D Vt f V l2 f , I й 

4---5: (9.11 

where p i s the mass f o i l d e n s i t y : 

MeV.crr 

ând I is the mean ionization potential of medium atoms. 

I -- 1.1.5 2. . eV (9.2) 
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C'.e.V are the phenomeriolofical functions which valu^p. sre ue^Rily 
ri^elieibly small: 0 repreeents the density effect ond с - che 11 
corrections. 

The energy losaea for the test inns are plotted in Fig.5. 

Aru* 
H r 4 0 

100 200 300 400 t s J * g / c m 2 

Figure 5. Energy losses in the stripping foil. 

10. EMITTANCE GROWTH DUE TO THE ENERGY LOSSES 

If the dispersion in the stripper is nonzero then the energy 
losses will cause the emittance growth according to the well-known 
relations: 

0 p 

г,- ДР 
(10.1) 

where D and D_ are the linear and angular dispersions in the 
stripper and Ap/P is related to the energy losses by: 

UE н2 До (10.2; 

where E is the total particle energy. 
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The minus sign in (10.1) implies that traversing the foil the 
particles remain in the same position while due to the energy 
losses the corresponding off-momentum equilibrium orbit jumps to a 
new position. We will perform our analysis in the normalized phase 
space (y,y ), where betatron oscillations are presented by 
circles. From a simple geometrical analysis one can deduce that: 

/ p o e = / 0 o e o + к / й у 2 + Ду*2 (10.3) 

where, E is the initial omittance. £ - a new emlttance and li­

the number of turns. 

For the NUCL0TR0N booster (10.3) gives quite а 1ыче 
emittance growth. That is why dispersion must be suppressed at 
the stripper azimuth. 

11. IONIZATION LOSSES STRAGGLING IN THE STRIPPING TOIL 

The maximum energy transferrable by a fast moving charged 
/31/ particle to the electron is : 

(11.1) 

The ionization losses are statistical in nature. There exists 
a probability distribution function f(x,A) so that f(x,A)dA is 
the probability that the ion, on traversing a path length x in the 
target, will suffer an energy loss between Д and Д+dA . 

The character of the distribution function depends on the 
/33/ parameter X : 

X = g — (11.2) 
max 

where 

2% ne4Z2 „ Z 4 X 
e = P r - e f f t— (11.3) m v e pr 

£ max 

For 

1 

our 

2 

+ 21f 

c a s e 

« P2 f2 c2 
e^pr'pr 

[-
m i 

—1 + 

m I 
prJ E = 1 0 . max 

(-

.22 

m ->2 
— 
"prJ 

Kev. 
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ri ip t h e niimh^L- ot t f t r c t i a t o m s p e r u n i t v o l u m e . X t h e t a r g e t 
' h I'-kiK.-^s. a n i Z .r t h e i on e f f e c t i v e c h a r g e : 

[,'•. t - i f 

л - '. [ l <•*!•' ' i . ' J ' j 4 ' . ^ '1 = Z I l e x p l - 1 3 0 f . Z " r ' 3 l 1 1 1 1 . 4 1 

• ii l i Л' I ' . H ' J t h>" l i n t r l hut ь-ii IP h i g h l y i i o y n m o t r i r w i t h r e c p e o t 
'•• i, i чы i 'i i I . t l i " .»o i 'o l l i - . l I . o n ' l . i u » d i e t r i l u*. ion '""' : 

• i :•: . Л • у '(>' К • ( 11 . Ь i 

I t i -f . i 

u 1nu * ли . 

Л - f ( i n - § - * 1 -c- i 

wher^ r in E u l e r ' s c o n s t ant. c-«"'.5*777. . . 
In Г ln[_..L_4i_iL] 

h) I f <"> _ €_ifS <' df < 10 we h a v e t h e r a s p of thr> V a v i i ^ v ' . ? 
d i s t r i b u t ion '"' ' : 

f ( x . u ) - -Л'~ * e * t 1 + t 3 , M T e J r f 1 c o s ( y t " + *!"., My t l l . 7 » 

f - p l ( in у - Ci ( у ) i - c o s у • у S i i y i 

i , , - у ( In у - C i ( y M + s i n у + |3*~Si<y> 

where S i and Ci a r e t h e s i n and c o s i n t e g r a l , 
c ) I f * -> 10 t h e d i s t r i b u t i o n i s G a u s s i a n : 

(A-tXx)2 

£(х .Д> = *> Z * x 

S~ 2X|fx 
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where according to the Landau's notation. 

and 

<Д> = Ew(£) dE (11.9 1 

E g ( E 1 df = — £ ma( 1- — 

ere the mean and variance for unit path length. 

The calculated values of X are: 15 for Ar._ . 1.9 for C" and A0 ,2 
0.3 for Li, . This means that the probability distribution is о 
normal for havier ions while it is Vavilov'e one for light ions. 
Thus, the standard deviation for Ar and a 100 mg/cm 
thickness of the target is /fx= 39.1 KeV according to 5+ eq.(12.12). The calculated standart deviation is 17 keV for C,„ 

2+ and 5 keV for Lifi . 
The Vavilov'e distributions for Ca and Li ions are shown in 

Fig.6 and 7. 
The situation with charge exchange injection is a little 

bit more complicated because we have simultaneously on the orbit 
particles traversing the foil N-times. (N-l) times up to one time. 
Then the common probability density is: 

l N 
P<ul=-jj E PdfA) (11.11) 

i = 1 

where p. (Д.) is the probability density for particles traversing 
the foil i-t times. 

From (11.11) and taking into account the large value of N, one 
can deduce for the energy dispersion in a stored beam: 

2 2 
where 0_ is the energy dispersion in the incident beam, 0, ±в the 
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d i spersi.on ionization losses in the foi 1 material (one 
passage through the target) and <^>

t
 a r e mean ionization 

losses in the foil. The additional momentum spread due to the 
ionization. losses of energy can be calculated from (11.12) 
and f11.2) , see Fig. 8. 

4.00 X 

Figure 6. Calculated etandart deviation la 17 keV for С 12 

0.00 
-4,00 -3,00 -2.00 -1,00 0.П0 1,00 2,00 \ 

Figure 7. Calculated etandart deviation is 5 keV for Li. 
2+ 
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I I 

5 10 15 N 

Figure 8. Additional momentum spread due to the ionization 
losses of energy in the stripping target: 
the target thickness 100 jig/cm 

12. ION STORAGE-FIXED ORBIT BUMP MODE 

In this mode the orbit bump remains unchangeable. Ions pass 
through the stripper many times until an equilibrium is attained 
or until other limited factors - scattering and energy losses 
begin to restrict the number of stored particles 

The storage process can be described in the following way. 
a) During the first turn the number of stored particles 

will increase as N = Alt. where Л1 = I-O.nt is the ion current 
behind the target, 1 the injected beam current. 0 the 
circulating charge (Z =s qj formation cross section, n the number 

r. 
of target atoms per unit volume, and t the target thickness. At 
the end of the first turn we will have N.^AI.T particles on the 
orbit, T being the period of the synchronous particle.-
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I'll During the second turn the circulating particles will pass 
through the target, for the second time. Let 0o be the circulating 
charge formation cross section for the circulating particles. 
cjenerally speaking- 0„/ 0. as the charge state distribution in the 
injected beam differs from that in the circulating beam. If the 
former is centered on charge number Z~t Z (otherwise charge 

О с 
exchange injection will not work ) the circulating beam contains 
only ions in one charge state. Ions in other charge states have 
been already lost on the walls of the vacuum chamber because for 
them UZ/Z is '3uite large. Simultaneously new particles are 
injected into the ring, and these particles will pass through 
the stripping foi1 onJ у once. Summarizing, we ran obtain for the 
number of th»3 stored particles: 

N т AJ(t-T) + O^ntfll(t-T) + UI<2T-t) И 2 . П 

and at the end of the second turn: 

N ? T = Л1(1 + 07nt)T {12.2) 

Following this way of reasoning. we can obtain for the k-th turn 
k-i 

N = Д1 ( 1 + b +. ..+ b )T. where b = 0 nt. Summing 
geometrical progression in the brackets, we get: 

N, = Nm< l-bk) I 12.3) 
k to 

where 
N»= [l?b)I0T- a =°1 n t- b = ° 2 n t (12-41 

T is the period of the synchronous particle: I being the 
injected current. 0 the cross section for the formation of ions 
with equilibrium charge from the injected ions, and 0_ the cross 
section for the formation of ions with equilibrium charge from the 
circulating ions. 

In the specific case of stripping target with equilibrium 
thickness, the charge state distribution behind the target will 
reach equilibrium which means that it is independent of the 
charge distribution in the incident beam and that it will be no 
longer change. For the target of equilibrium thickness O.nt = 
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Opnt=Ф . i.e. the probability of circulating charge formation 
for the injected beam is equal to that for the circulating 
beam. Formula (12.4) becomes simpler: 

N, = N (1 - Ф" ) к да zc 

No>= B = H Г0Т 
(12.5) 

(12.6) 

The curves of the Ion storage for the fixed orbit bump mode 
and the test Ions are depicted in Fig- 9. 

Figure 9. Ion storage for the fixed orbit bump mode. 
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13. ION STORAGE - MOVING ORBIT BUMP MODS 

In this mode the orbit bump gradually reduces to zero during 
the injection. 

С? 
Aru* 
Г 40 

20 40 60 80 100 К 

Figure 10. Charge exchange Injection with a moving 
orbit bump. 

When the orbit is close to the center of the stripper, the 
injected particles will cross It every turn. On the contrary 
the particles injected when the orbit lies outside the stripper 
will undergo betatron oscillations and will avoid the stripper 
most of the turns. In other words, we have a kind of combination 
between the multlturn and the stripping injections. Such a 
combination allows the number of the injection turns to be 
increased many times. 

The goal of this section is to assess the total number of 
injected particles in the mode under consideration. We will use a 
beam model with a uniform charge distribution and clear-cut 
boundaries wlch are circles in the normalized phase space. Let us 
take a beam slice dN = IQdt injected at time t - Fig. 10. After 
one turn the slice will occupy the position forming angle Л - 2XQ 
with the initial position as is depicted in the Fig. 10. 

Let us denote by the beam radius by R = / P-E and the 
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aperture radius by A. Ae A > R, we will approximate here the 
aperture boundary lying within the slice confines with a straight 
line, so the part of the slice outside the aperture will be 
approximated with a circle segment. 

Under the above assumptions a pure geometrical analysis can 
be carried out. From Fig.8 we obtain that: 

y,(t) = y8 - R - yco(t) 
y,<t) = y„ + R - У <t) (13.1) 
Z S CO 
For the utmost left y' and utmost right y" projection of the 

slice on the у axle we have: 

y'(t+JT) = yco(ttJT) + y^os J2X4 - R (1-coe J2%w> 
y"(t+JT) = y0Q(t+JT) + У2сов J2XQ + R (1-coe J2X«> (13.2) 
j=0,l,2 

The stripper edge cuts a circle segment with an area S from 
the beam slice. If H is the edge distance to the slice center we 
can write: 

H(t+dT)= a - у (t+jT) - <yc-y„„(t)) cos j2*g (13.3) 
CO О CO 

and 
S/t+jT)^ R2 arccos[-|-j - н/R2- H2 . j=0,l,2 (13.4) 

Another kind of restriction comes from the machine aperture. 
The aperture is centered on the instantaneous closed orbit 
position. This means that at the beginning of injection, 
when the orbit bump passes through the etrlpper we will have no 
aperture limitations. However, when the orbit bump is small enough 
to go close to the machine center considerable aperture 
restrictions on the beam will take place. The closer the orbit 
passes to the machine center the stronger aperture restrictions 
will be. 

As mentioned above, we will consider that the aperture 
cuts also a circle segment ( with an area S ) from the beam 

с 
slice. This approximation is as much better as A is bigger than R. 
Similar to (13.4) we can deduce that 
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5^(t!-R arccosf—|—1 - H^/R^- H 2 I 13.5) 

is the distance between the aperture edge and the slice center. 
The main parameter of our analysis is the transition 

coefficient к - the percentage of particles having passed through 
the stripper and accepted in the aperture. 

It can be shown that 

k ( t + . i T ) = 

j =0 . 1 . 2 . . . 

whe r • 

Ф. a < y ' I t. + j T ) . R- H i t ) 
c 

XR-S I t i 
>. а--, у ( W T ) . H i t K P 

X R ' 

X R ' - ( 1 -Ф I S . ( t + .1T> 

X R ' 
- . у < t + J T X a < y " < t + J T ) .H ( t ) R 

XR - < l - ф I S , I t + j T ) - * S ( t i 1 с 
XR2 

у ( t + , 1 T X a < y " ( t + . i T ) . 

H ( t l - H t t + J T i 

X R - S ( t ) 

XR" 
у ( t + j T ) < a < y " ( t + j T ) .H j , t X H ( t + j T l 

y " ( t + j T ) < a . H < t ) ~ R 

X R ' 
y l t + J T X a . H ( t . X R 

0 n t . for the In jec ted beam 

0 n t , for the c i r c u l a t i n g beam 

i13.7 ) 

(13.8) 

ie the probability for the formation of ions with equilibrium 
charge. 
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Let us consider the case of an exponential law of orbit 
motion: 

t 
t (13.9) 

Let r be the number of turns during which the orbit moves 
from the center of the stripper to the center of the machine. 

Let us describe the particle storage turn by turn. During the 
very first turn: 

T - r 
N,= П к < t+JT>I„dt (13.101 

Q J 

particles will be stored In the ring. Multiplication from 0 to r 
in (13.10) describee successive crossing of the target while 
Integration describes continuous orbit motion. During the second 
turn the number of stored particles increases to: 

гт . 
r r _ 1 

N,= N.+ nk(t+JT)Indt (13.11) 2 1 т j=0 ° 

Generating, we arrive at the following expression for the total 
number of stored particles. 

r (i+1)T r-1 
N = 1 { J nk(t+JT)I0dT} (13.12) 

i=0 iT j=0 

The numerical estimations show that in the present mode of 
operation the number of the injection turns can be increased more 
than five times. 

14. OONCUISIONS 

The general conclusion from the above analysis is that charge 
exchange injection could be a powerful method for the injection 
of light and moderately heavy ions giving a higher intensity than 
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the other known methods.This is due to the non-Liouville character 

of the process allowing particles to be injected continuously 

into one and the same phase space area. 

The most important limitation on the stored beam current ie 

due to the ionization losses of energy in the stripping target; 

the heavier ion the stronger the effect. 

In order not to excite betatron oscillations the stripper 

must be placed at a zero dispersion point. 

The additional momentum spread is due to the energy losses in 

the target and it is produced rather by the different target 

crossings of the stored particles than by the energy losses 

straggling. 

The additional momentum spread Is due to energy losses in 

the target and it is produced rather by different target crossings 

of stored particles than by energy losses straggling. Particle 

scattering causes an emlttance growth which le more or less 

acceptable. 

The operation mode with reducing during the injection orbit 

bump is preferable and in this mode it is possible to increase the 

circulating beam inteneity with respect to the injected beam with 

a large factor. 
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