


1. Introduction

The problem to increase an eff1c1ency of FEL devices is a
central one in free .electron laser physics. It is widely
accepted now to solve this problem by adiabatic variation of
undulator parameters along its axis [1,2]. In the case of a FEL
amplifier this approach gives excellent results. At first thlS
1dea was conflrmed by . the results of ‘numerical 51mulat10ns
[3 4] and later it was demonstrated experlmentally, an efflcl-
ency m ~ 34% wase achieved [57.

.The situwation with a FEL osulllator is a more compllcated
one. First, the efficiency of the FEL oscillator with a homoge-
- hecus undulator is rather small, 7 ~ 0. 29/N, where N is number
of undulator periods [6, 7). Usually N is about several tens
‘which results in the FEL efficiency 7 less than one petrcent.
Second, undulator taperlng does not give such excellent results
with respect to the FEL ampllfler, it enables one to increage
the FEL oscillator eff1c1ency by a factor of 2 or 3. Using
additional possibilities, such as a prebuncher, cne 1ncreases
the efficiency additicnally by a factor of two (8]. In,any case
the maximal FEL oscillator efficiency does not exceed a value
of several percents.

S0, it seems extremely difficult to achieve high efficiency
in the FEL oscillator using conventional approach of .undulator
tapering. An alternative approach to the problem was proposed
in ref, fsj. This appreach is based on a natural Feature of FEL
oscillator, namely the dependence on time: of the radiation
field stored in the resonator. It was proposed to introduce
time-dependent accelerating fields into interaction region
(which is equivalent in its action to the undulator tapering).
As a result, it makes possible to trap electrons into the
ponderomotive well and perform the conversion of mnicrowave
energy to optical one. To increase a number of trapped élect-
rons (which results in higher efficiency), the authors of ref.
[9] proposed to use a prebuncher together with a homogeneous



undulator. Numerical estimations, presented in ref. [9, 10]
show that an efficiency about several tens of percent can be
achieved in such a FEL oscillator.

In the present paper we consider another way to realize an
jdea of time-dependent variation of FEL parameters to increase
the FEL oscillater efficiency. We propose to change in time the
magnetic field of the undulator rather than to introduce
accelerating fields into the interaction region. The schene
under consideratlon consists of a prebuncher, drift space and
main undulator with time-dependent tapering. Results of numeri-
cal simulations have shown that a significant increase of the
FEL oscillator efficiency can be achieved in such a modifica~-
tion of the FEL oscillator against traditional schemes.

It should be noted that there are some technical problems on
the way to realize the. proposed method: the undulator field

. ghould change significantly within a current macropulse dura-
tion of the accelerator. Nevertheless, it may be realized with
driving bean from superconducting accelerator operating in the
continuous or gquasi~-continuous regimé. Nowadays there is a
number of superconductlng accelerators in the world, operating
or under construction [11-16). To demonstrate the p0551b111ty
of the proposed method realization, in section 3 we present the
results of numerical simulations of a concrete example which
have shown that aceompanying technical problems may be resolved
at the present level of FEL technolaogy.

2. . Analysis of the time-dependent scheme

The present treatment ig based on a one-dimensional FEL
oscillator model. We assume an electron current pulse duration
to be long enough and do not take into account longitudinal
modes competition effects. Despite its simplicity such a model
reveals the main features of the FEL oscillator concerning the
problem to increase efficiency. Moreover, this model enables
one to take into account many tfactors influencing the FEL
oscillator operation and it will be iliustrated in section 3.

We assume the electron heam to move along the z axis in the
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magnetic field B = Q;Bcos(xoz) of a planar undulator. The field
amplitude B varies along the undulator axis and the " tapering

depth slowly changes in time: [B(=z, t)-B ]/B = — g(t)z . The
amplitude of the electron oscillation angle in the main undula-
tor is equal to @ = Q/y, where Q = eB/n me®  is undulator
parameter, ¢ = Slmc , & is electron energy, and -e and m are

the charge and mass of electron, respectively. It ie assumed
that 6° « 1 and the longltudlnal electron veloc1ty v is oclose
to the velocity of light c. The amplltude of the electrlc field
of the wave synchronous with the electron beam is wrltten in

the form: E 3 E edp [ iw(zfc-t) ] + C.C. The lasing frequency
w is defined by the condition of the maximum gain in the small-
signal regime. In this section we shall consider’ the 51tuat10n
when the efficiency is increased by many times against the
case of homogeneous undulator but still remains much less than
unity. Therefore, we can neglect the changes of & and B in
amplitude factors and keep these changes only in the detuning
parameter of the particle with nominal energy 8 from resonan-
ce: C(z,t) = k- w[1+Q (z, t)/z]/2c1 . where ¥ = & /mc
Particle motion is described in "energy-phase" variables with
energy £ as canonical momentum and phase y¢ = Kz + w(z/c-t) as
a canonically conjugated coordinate. In this repreeentatlon the
longitudinal coordinate =z is an 1ndependent variable (see,
e.g., ref. [(17] and [18]). To study the nonlinear mode of FEL
oscillator operation we use the macroparticle method. We choose
M macroparticles over modulation density period, i.e. in phase
¥ interval from 0 to 2m. The equations of motion (averaged over
undulator periocd) may be written in the following reduced form
[(187:

dﬁu)/dz = & ces(w w T U, (1}

¥, ,/dz =P  +C, (2)

where i = 1,...M, z = zf1l,, 1, is the length of the main undu-
lator, P = wl P/cr €, P =8 - 8 is energy deviation from the
nominal value &, [JJ]uu pjzcv &, is the reduced amplitu-
de of effective potent:l.al pexp(w_) = -eeoi', 8, = QJ/¥, 9, =

Q



eB, /K mc”, . = o+ ef2, (371, = I, ()=3,(v)) and v, =
Q:/4(1 + Qi{z). The detuning parameter C is given with the
expression € = C + a(t)z, where a = al Q /2g(1+Q f2), g =
1;c/w10 = (4nN ) and N is the number of periods of the main
undulator. From Maxwell's wave equation we get the reduced
equations for the amplitude a and phase ws of the effective

potential of interaction:

M
dp/dz = - 8 — Y cos(w,, +¥) « (3)
1=1
C
db,/az = 6 - Y sin(w,, +¥) | (4)
1=1 .
where B' = no le [JJ] (2cy o'roIA) is the gain parameter, j is
the beam current denslty and I, = mc®fe = 17 kh.

So, .equations - (1) (4) enable one to calculate the field
amplification G = Ap/w per one undulator pass {in this section
we assume & ¢ 1). To take 1nto account the resonator losses we
use a phenomenclogical approach introducing the field damping
factor K per one resonator round-trip (K is approximately equal
to one half of the resonator power relative losses). The lasing
takes place when amplification in the small-signal mode of
operation is greater than the damping factor, i.e at G > K and
saturation takes place when G becomes egqual to K. FEL efficien-
cy is givén with the expression n = ce|EAE|/mjg . It is conve-
nient for the further representation to introduce the reduced
efficiency % = nlg = &&2/2, where G = G/B. One can easily show
that the conservation energy law takes place and the reduced
FEL efficiency is equal to the averaged value of the reduced
electron energy 1osses' n = - <P>. At the saturatibn we obtain:
% = K@ /2, where K K/B. It is useful to note that for a con-
ventional scheme of the FEL oscillator w1th the homodeneous
undulator, maximal reduced FEL efflclency nh = 3. Gzﬁls achieved
at the optimal wvalue of resonator 1losses K = K opt 0.028
16,7]-

Prior to a detailed consideration we should perform a brief
' gqualitative analysis of the proposed FEL oscillator scheme with
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time-depéndent tapering. Let us consider a model situation when
the electron beam density after the prebuncher can be approxi-
mated by a sequence of the 8 - functions and the detuning
parameter is given by expression: c = &(t)% (for simplicity we
have set here the initial detuning & = 0). The bunches are fed
inte the main undulator in an opfimal decelerating phase of
effective potential (i.e. in equatiops (1)-(4) "we set M = 1,
Vi .
slowly changing function of time: the characteristic time of

« 7t and ws = 0 at 2 = 0). Parameter o is assumed to be a

its change must be much less than a rise time of the radiation
field in the resonator. The_proéesé‘of field amplification is
developed as follows. At first, when the maximum field is not
achieved and a grows in tlme, the radiation field w is increa-
sing and w is greater than a At the same time the electron

bunch shifts away from the optimal phase W = 7t to provide an

equilibrium between the field amplificat}on and resonator
losses. As a is increasing, the value of 5 approaches the value
of & and the phase motion of the electron bunch becomes slower.
Finally, the regime of the maximum radiation field is settled
when there is no phase motion of the electron bunch. At this
moement of time the growth of a is stopped and further the FEL
oscillator operates in stationary regime. In this case a = w
and the losses of the energy of the electron bunch 1n accordan-
ce with eg. (1) are given with the expression P~ - wz = = &%.
It follows from eq. (3) that the radiation field 1ncrement is
egual to A@ = 28 and the field amplification coefficient is
equal to @ = 25/&. From the saturation condition & = K we gét
P = 2(& which corresponds to the reduced FEL efficiency
max = 2/K- . R .

To wverify the qualitative results obtained above, we have.

¢
n

performed a set of numerical simulations with a large number of

macroparticles. The parameters of the whole system -(prebuncher,

drift space and main undulator} have been optimized. As a

result, these simulations have confirmed the validity of the

parametric dependence % x Rﬂ but resulted in the smaller
proporticnality factor:

-

. % 0.8/K . (5)



~ Simulations have shown that‘in the real situation the 'electron
bunches have finite phase extent, their optimal phése at the
entrance into the main undulator is less than n and at satura-
tion the value of parameter a is less than w. 50 as usually the
value of K is rather small, K « 1, 'one ‘can conclude from this
simple eonsideration that a considerable growth of FEL effici-
ency can be achieved in the FEL oscillator with the prebuncher
and the main undulator with time~dependent tapering.

It should be noted that though the electron beam bunching in
the prebuncher and drift space depends on the amplitude of the
radiation field stored in the resonator, the prebuncher parame-
ters, fixed in time may be chosen. They should be chosen to
provide optimal bunchihg in the strong optical field correspon-
ding to the regime of the maximum field. Of course, at a small
field amplitude in the resonator such a choice leads to nonop-
timal bunching but this does not stop the field rise. We should
note that the presented scheme is rather stable with respect to
the initial energy spread in the beam. In fhis case the prebun-
cher parameters should be chosen to provide the energy modula-
) ti&yl which is much more than the initial energy spread but
small enough with respect to the ponderomotive well depth of”
the main undulator. The results of numerical simulations have
shown that in real 51tuat10ns, when energy spread is about some
fraction of a percent and parameter. K is rather small, the
eff1c1ency decreases not very 51gn1f1cantly with respect to the
case of the "“cold" electron bean. ’

3. Numerical example

To realize the proposed scheme it seems realistic enough to
nse the driving electron beam generated by a superconducting
accelerator operating in the coﬁtinuous‘mode. The main undula-
tor is a planar electromagnetic one with independently energi-
zed windings to provide the time-dependent tapering. The
prebuncher (which is made of permanent magnets) is separated
from the main undulator by drift space (or equivalent disper-
sion section). The magnetic system is placed inside the symmet-



ric optical resonator. To calculate a numerical example and
make it more realistic, we shall introduce sofie complications
into the model. We assume the Gaussian mode TEM to be excited’
in the resonator. The Gausslan node walst is placed in the
middle of the main undulator and the transverse fleld dlstrlbu-
tion is given by the expression |E(r)[ x exp{- (riv,) 2y, where
¥, is the mode waist size. To describe more rigorously the
interaction of the electron beam with the radiation field, we
. should modify equations (1)-(4) in the followiﬁg way (for more
details see, for exampie, ref, [18]):

dP“)/dz = TAujw cos(w(“ + ws), . (6)
dwm/dz = c + 27 A(”[Pm( w t I+ az(T + 1)1, (7)
X . B I,
dp/dz = - BT (2/H) ) A, cos(y, +¥), - (8)
. 1=1 - '
! .
b, /dz = BT ¢7(2/M) § A sinqy,, + ¥). (9)
1=1
Here factor a =1 + gﬁ reflects the dependence of the

() ()
electron oscillation angle on energy and factor T refers to the

undulator parameters tapering: T = 1 - bvaz, where b =

29(1 + Qﬁ/z)/gﬁ. All the other notations are the same as in

section 2. It should be noted that in the case of small enerqgy

_deviation (6,8 )/E = gﬁtn € 1 and at a small undulator

field tapering, (BJB)/Bo = b a « 1, equations (6)-(9) trans-

form to equations (1)-(4). When writing down equations (6)- {9)

we have accepted some assumptions. First, we have neglected the.
change of factor [JJ] and Gaussian mode parameters along the

main undulator. Second, to calculate the beam current density j

entering into the expression for the gain parameter 8, we assu-

me the electron beam transverse size to be much less than the
Gaussian beam waist size ¥ - As a result, in the one-

dimensional equations we replace the beam current density j by

the effective value j = 2I/nyﬂ§, where I is the peak beam
current. ‘ '



When writing down the reduced equations for the prebuncher,
we perform their normalization to the parameters of the maJ.n
undulator (the prebuncher reduced length is equal to 1 =
-1 /1 ). So as the magnetic field of the prebuncher is fixed and
energy modulation in the prebuncher is small, these equations
are similar to equations (1)-{4) but the right-hand 51desl of
equations (1), (3) and (4) should be multiplied by factor b2 =
Q [J71] w/Q [JT] w , where Q and [JJ] are the undulator para-
meter and [JT] factor of the prebuncher, reepectlvely. Introdu-
cing the factor w /v we have taken into account variation of
the optical mode (vp is the tranaverse size of the Gaussian
mode in the prebuncher). The rlght—hand side of equation (2)
should be multlplled by factor b = (1+Q /2)/(1+Q /2) and detu-
ning parameter c should be set egual to C The prebuncher
parameters must satisfy the conditien Ap(1+Qp/2) = A°(1+Q§/2),-
where ;\ is the prebuncher period. ‘

The change of electron phase in the drlft space w1th the
length D is gJ.ven with the egquation: Awm = (Co :- Pm)D + ay,
where D = D[(1+Q /2)1] . The term &y = - 21’[N'°D - &Y' takes
into account the fact that the electron beam slippage length is
not multiple to the radiation wavelength' (8y’ is the change of
. radiation mode phase in the drift space).

The initial energy spread of the electrons is assumed to be
the Gaussian with the distribution function F{P) =
(ZnGZ)'i’zexp{—lem'z} wh;i.ch corresponds to the distribution
function of the reduced energy deviation 1"'\‘(1;) o=
(Zm’\ ) 1/zexp{-ﬁ' /2A }, where A = (4nN_ cr/Fs') is the energy
spread parameter. Simulation beg:.ns at a small amplitude rp and
at the fixed main undulator parameters (a = 0)}. The wvalue of
initial detuning E‘:o corresponds to the maximum gain in the
small-signal mode of operation. When the saturation regime is °
settled, we begin a slow increase of the tapering parameter a
and continue this process until the cessation of the field
amplitude growth. Then the FEL oscillator operates in 'the
stai:ionary regime. It is assumed that the rate of parameter o
growth is much less than the rate of the radiation field
change. In this case the field amplitude p and the FEL effici-



ency _ﬁ are functions of the tapering parameter & and are
growing in time while o is increasing.
Using the algorithm described. above we have calculated
numerical example for parameters of the electron beam, magnetic
. system and optical resonator which are summarized in Table 1:

Table 1

Electron beam :

Enerqgy, $° ‘ 30 MeV

Peak current, I o 22 A

Energy spréad, o/€ . _ 2 107

Macropulse duration > 10 ms
Magnetic system

Prebuncﬁer period, Aﬁ 12 cm

Prebuncher magnetic field, Bp 570 G

Number of prebuncher periods, NP . 3

Length of drift space, D - 130 em

Main undulator period, A 6 cm

Main undulator magnetic field, B, 3 kG

Number of main undulater periods, N 60

Maximal taper, AB/B0 51 %
Optical resonator

Wavelength . 20 um

Resonator length 9m

Curvature'radius of mirrors 5.5 m

Total power losses ‘ . 2 %
The corresponding reduced parameters are as follows: g = 5,
K = 2:107, g = 1.33.107, B = 2.3, 'ip = 0.1, D = 0.15, 8§ =
0.4, éo = 2.5, b = 2.27.10°°, b= 0.23 and b = 0.5. Fig.l

presents the time dependencies of the undulator tapering depth
and FEL efficiency. At the end of the time-dependent tépering
process (Tt = 10 ms) about 74 % of the particles are trapped in
the regime of coherent deceleration and FEL efficiency ﬁ = 20%
is achieved which is more than 40 times larger than the'maximuﬁ
efficiency of the FEL oscillator with the homogenebus undula-



tor. Analyzing technical parameters presented in Table 1, we
- may conclude that they are achievable at the present level of
the accelerator and FEL technology.
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Fig.1l. The depth of the magnetic field tapering in the main
undulator (1) and FEL efficiency (2) as functions of
time ‘

4. Conclusion

In the presented paper we have considered a new method to
increase the FEL oscillator efficiency. The magnetic system of
the proposed device consists of the prebuncher with fixed para-
meters, drift space and main undulator with time-dependent
tapering. The feasibility of the lmethod has been confirmed by
the results of numerical simulations in the framework of the
one-dimensional model. An example of the FEL oscillator with
realistic parameters operating in the continuous cor quasi-
continuous mode with an efficiency about 20 %, is presented.
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