
E.L. Sal din•, E.A. Schneidmiller•, M. V. Yurkov 

HIGH EFFICIENCY PEL OSCILLATOR 

WITH TIME-DEPENDENT 

UNDULATOR TAPERING 

Submitted to «Physics Letters A• 

.. 
•Automatic Systems Corporation, Samara 

E9-93.-73 



1. Introduction 

The problem to increase an eff icienc·y of FEL devices is a 
central one in free electron laser physics. It is widely 
accepted now to solve this problem by adiabatic va_riation of 
undulator parameters along itS axis [1,2]. In the case of a FEL 
amplifier this approach gives excellent results. At first this 
idea was confirmed by the result's of ·numerical simulations 
[3,4] and later it was demonstrateq experimentally, in effici
enby ~- 34% was achieved [5] . 

. The si.tuation with a FEL oscillator is a "'"more complica_ted 
one. First, ,the efficiency of the FEL oscillator with a homoge
neous undulator is raeher small, ~ - 0.29/N, where N is number 
of undulator periods [6, 7]. Usually N is about severa1 tens 
which results in the FEL efficiency ~ less than one percent. 
Second, undulator tapering does n·ot, give such excellent reSults 
with respect to the FEL amp~ifier, it ena~les one t~ increase 
the FEL oscillator efficiency by a factor of 2 or 3. Using 
additional possibilities, such _as a prebunc;tter, one increases 
the efficiency additiOnally by a factor of tWo [8]. In_ any case 
the maximal FEL oscillator efficiency does not exceed a ~alue 
of several percents. 

So, it seems extremely difficult to achieve high efficiency
in the FEL oscillator using conventional appioach of.undulat~r 
tapering. An alternative approach to the ·problem was proposed 
in ref. (9]. This approach is based on a natural feature of FEL 
oscillator, namely the dependence _on time-· of .the, radiation 
field stored in the resonator. It was proposed to introduce 
time-dependent accelerating fields into interaction region 
(which is equivalent in i~s action to the undulator tapering). 
As a result, it makes possible to trap electrons into the 
ponderomotive well and perform the Conversion of microwave 
energy to optical·one. To increase a number of trapped elect
rons (which results in higher efficiency), the authors of· ref. 
[ 9"] proposed to Use a prebuncher together with a homogeneous 
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undulator. Numerical estimations, presented in ref. [9, 10] 

show that an efficiency about several tens of percent can be 

achieved in such a FEL oscillator. 

In the pres~nt paper we consider another way to realize an 

idea of time-dependent variation of -FEL pa_rameterS to increase 

the FEL oscillator efficiency. We propo-se to. change in time the 

magnetic field of the undulator rather than to introduce 

accelerating fields into the interaction region. The scheme 

under consideration consists of a prebuncher, drift space and 

main undulator with time-dependent tapering. Results of numeri

cal simulations have shown that a significant increase of the 

FEL oscillator efficiency can be achieved in such a modifica

tion of the FEL oscillator against traditional schemes. 

It should be noted that there are some technieal problems on 

the way to realize the, proposed method: the undulator field 

should change significantly within a cuJ;"rent macropulse dUra

tion of the accelerator. Nevertheless, it may be realized with 

driving beam from superconducting accelerator operating in the 

continuous or quasi-continuous regime. Nowadays there is a 

nu~ber of supercondueting accelerators in the world, operating 

or under construction [11-16]. To demonstrate the possibility 

of the prOposed method realization, in section 3 we present the 

results of numerical simulations of a concrete example which 

have shown that ac~ompanying technical problems may be resolved 

at the present level of FEL technology. 

z. Analysis of the time-dependent scheme 

The present treatment is based on a one-dimensional FEL 

oscillator model. We assume an electron current pulse duration 

to be long enough and do not take into account longitudinal 

modes competition effects. Despite its simplicity Such a model 

reveals the main features of the FEL oscillator concerning the 

problem to increase efficiency. Moreover, this model enables 

one to take into account many factors influencing the FEL 

oscillator operation and it will be illustrated in section 3. 

We assume the electron beam to move along the z axis in the 
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.. 
magnetic field B = ~Bcos(K z) of a planar undulator. The field X 0 
amplitude B varies along the undulator axis a·nd the, tapering 
depth slowly changes in time: [B(z,t)-B

0
]/B

0 
= - a:(t)z • The 

amplitude of the electron oscillation angle in the main und~la
tor is equal to 8 = Q/7 ,. where Q = eB/K mc2 is undulator ' 0 
parameter, 7 = It fmc2

, If is electron energy, and -e and m a~e 
the charge and mass of electron; respectively. It is assumed 
that ez « 1 and- the longitudinal electron velocity v is close 

z to the velocity of light c. The amplitude of tne electric field 
of the wave synchronous with the electron beam is written in 

-+' 
the form: E = ~E exp [ iw(z/c-t) ] + C.C. The lasing frequency . y 
w is defined by the condition of the maximum gain in the small-
signal regime. In this section we shall con~ider'the situation 
when the e~ficiency is increased by many times against the 
case of homogeneous undulator but still remains much less than 
unity. Therefore, we can neglect the changes of g and B in 
amplitude factors and keep these ·changes only in the detuning 
parameter of the particle with nominal energy· g from resonan-
ce: C(z,t) " w[1+Q2 (z,t)/2]/2C72

, where• 7 1': fmc'. 0 0 0 0 Particle motion is described in 11 energy-phase11 variables with 
energy g as canonical momentum and phase ~ = K

0
z + w(z/c~t) as 

a canonically conjugated coordinate. In this representation the 
longitudinal coordinate z is an independent variable (see, 
e.g., ref. [17] and [18]). To study the nonlinear mode_ of FEL 
oscillator operation.we use the macroparticle method. We choose 
H macroparticles over modulation density period, Le. in phase 
1/J interval from 0 to 2n. The· equations of motion (averag.ed over 
undulatbr period) may be wri~ten in the following reduced form 
[ 18] : 

(1} 

dr/1
1 11

/dz (2) 

where i = 1, .. . H, z = z/1 , 1 is the length of the ·main undu-• 0 0 
later, P = w1 P/c-r2 g , P = « - 8 is energy deviation from the 0 "1/J 0 0 
nominal value C

0
, rp = · [JJ]

0
wl:rp/2c.,:Oc

0 
is the reduced amplitu-

de of effective potential, !pexp(ii/J) = -e9 i, 9 = Q /'1 1 Q
0 

= • 0 0 0 
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eB
0

ftt:.
0
mcz, 

Q~/4(1 + 
.,~z + 9~/2, [JJ]

0 
J

0
}v

0
)-J

1
(v

0
) and v

0 

The detuning parameter C is given with the 
,.. ,.. ,.. ,.. z z 

expression C = C
0 

+ a(t)z, where a = a1
0

Q
0

/2!;1(1+Q
0
/2), g = 

7:0cfwl
0 

= ('4nN
0

)-
1 and N

0 
~s th~ numbe±- of periods of the main 

undulator. From Maxwell's wave equation we get the reduced 

equations for the amplitude ~ and phase t/J of the effective 
. . 

potential of interaction: 

2 M 
A A 

dipfdz - 11 - I cos (i/1 + i/1,) , 
H <t> 

di/f,fdz ~ ll 

1 =1 

2 • 

Lsin(l/1
01 

H 
t =1 

+ i/1,) 

{3) 

{4) 

where f.J = ne~jwl~["J.J)~(2c7!o7oi.A) -l is the gain parameter, j is 

the beam current density and I
4 

= mc3 fe = 17 kA. 

So, .equations· (1)-(4) enable one to calculate the field 

amplification G =~;/~per one undulator Pass (in· this section 

we assume G « 1). To take into accOunt the. tesonator losses we 

use a phenomenological approach introducing the field damping 

factor K per one resonator round-trip (K is approximately equal 

to one half of the reson;;ttor power relative lo~ses). The lasing 

takes place when amplification in the small-signal mode of 

operation i's greater than the damping factor, i.e at G
8 

> K, and 

saturation takes place when G becomes equal to K. FEL efficien

cy is given with the expression n = ceiE~E!JrrjC0 • It is conve

nient for the further representation to introduce the reduced 
,.. "'"'2 ,.. 

efficiency n = n/g = G~ /2, where G = G/f.J. One can easily show 

that the conservation energy law takes place and the ·reduced 

FEL efficiency is equal to the averaged value of the reduced 

electron energy losses: n =·- <P>. At the saturatibn we obtain: 
.... "'"'2 ,.. 
T) = K~ /2, where K = K/f.J. It is useful to note that for a con-

ventional scheme of the FEL oscillator with the homocjeneous 

undulator, maximal reduced FEL efficiency T)h 

at the optimal value of resonator losses 

[6,7]. 

3.62 is achieved 

K = KOpt 0.028 

Prior to a detailed consideration we should perform a brief 

qualitative analySis of the proposed FEL oscillator scheme with 
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time-dependent tapering. Let us consider a model situation when 
the electron beam density after the prebuncher can be approxi
mated by a sequence of the a - functions and the detuning 
parameter is given by expression: C = ;(t)i (for simplicity we 
have set here the initial detuning C :::.. I?). The bunches are fed 
into the main undul.ator in· an optimal decelerating phase Cit 
effective potential (i.e. in equations (1)-(4) \we set H = 1, 
1/J ~::~~ n and 1/J "" o at i = O). Parameter ; is assumed to be a (1) s 
slowly changing function of tiine: the characteristic time of 
its change must be much less than a rise time of the radiation 
field in the resonator. The. proCes~· of field amplification is 
developed as follows. At first, when the maximum field is not 
achieved and ~ grows in time, the radiatiOn field ~ is increa
sing and ~ is greater than ~ ~ At the same time the electron 
bunch shifts away from the optimal phase 1/J IU c: n 'to provide an 
equilibrium between the field amplification and resonator 
losses. As a is increasing, the value of ~ approaches the value 

' of a and the phase motion of the electron bu·nch becomes slower. 
Finally, the regime of the ma>c:imum radiation field is settled 
When there is no .phase motion of t·he electron bunch. At this 
moment of time the growth' of a is stopped and further the FEL 
oscillator operates in stationary re.gime. In this case ~ "" rp 
and the losses of the energy o·t the· electron bunch in acCordan
ce with eq. (1) are given with the expression P "" - ;; ~ - ;;. 
It follows from eq. (3) that the radiation field increment iS 
equal to h.; :::::l 2(3 and the field amplification coefficient is 
equal to G ~ 2(3/~. From the saturation condition G = K we gkt 
' ' 
~ 2/K which corresponds to the reduced FEL efficiency ., 
11max r:r; 2 /K. 

To verify the qualitative results obtained above, we have , 
performed a set of numerical simulations with a large number of 
macroparticles. The parameters of the whole system ·(prebuncher, 
drift space and main undulator) have been optimized. As a 
result, the~e simulations have confirmed the validity of the 
parametric dependence 11 ox K-t but resulted in the smaller· 
proportionality factor: 

(5) 
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Simulations have shown that in the real situation the ~lectron 
bunches have finite phase extent,. their op~i-mal phase at the 
entrance into the main undulator is less than n and at satura
tion the value of parameter ~ is less than ~- So as usually the 
Value of K is rather small; K « 1, ·one ·can conclude from this 
simple ~onsideration that a considerable gr.owth of FEL effici
ency ca'n be achieved in the FEL oscillator with the prebuncher 
and the main undulator with time:-dependent, tapering. 

It should be noted that th.ouqh the ~lectron beam bunching in 
the prebunCher and drift space depends on t~e amplitude of the 
radiation field stored in the resonator, th~ prebuncher parame
ters, f ix:ed in time may be chosen. They should be chosen _to 
provide optimal bunching in the stro~g optical field cOrrespon
ding t~ the regime of the maxi1f!Um field. Of _course, at a small 
f1eld amplit'4-de in the resonator such a choice leads to nonop
timal bunching but this d~es·not_stop the field rise. We should 
note that 'the presented scheme ~s rather stable with respect to 
the ~nitial energy spread in the beam. In this case the prebun
cher patameters should be chosen to provide the energy modula
tiop which is much more than the initial· energy spread but 
small enough with respect to ~he ponderomotive well depth of· 

the main undulator. The results of numerical simulations have 
shown that in real situations, when energy spread is about some 
fraction of a percent and parameter·. K is rather small, the 
efficiency dec-reases not very sign_ificantly with respect to the 

case of the 11cold" electron beam. 

3. Numerical ~xample 

To realize the proposed scheme it seems realistic enough to 
use the driving electron beam generated by a supercon.ducting 

accelerator operating i.n the continuous mode. The main undula
tor is a planar electromagnetic one with independently energi
zed windings to provide the time-dependent tapering. The 
prebuncher (which is made of permanent magnets) is separated 
from the main undulator by drift space (or equivalent- disper
siOn section). The magnetic system is placed inside the symmet-
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ric optical resonator. To calculate a numerical example and 
make it more realistic, we shall introduce some complic~tions 
into the model. We assume the Gaussian mode TEM to be excited' , oo I in the resonator. The Gaussian mode ~aist is pl~ced i"n the 
middle of the main undulator and the transverse field distribu
tion is given by the expression /E(r) / oc exp{-(rfv

0
)

2
}, where 

w is the mode waist size. To describe more rigorously the 0 ' . interaction of the el~ctron beam. with the radiation field, ·we 
should modify equations (1)-(4} in the followihg way (for more 
details see, for example, ref. [18)}: 

A A 

d'f'fdz 

K 

- {lT (2/H) '\' £' L Ill 

/lT 

1 =1 

• 
,., (2/H) '\' £

1
1 

I... 1) 

1 =1 

A 

(6) 

(7) 

COS{I/1(1) +. I/J
0

) 1 (8) 

siri(Vi 11l + 1/1
8
). (9) 

Here factor A111 = 1 + gP 01 reflects the dependence of the 
electron oscillation angle oil energy and factor T refers to the 
undulator parameters tapering: T . 1 b

1
cxz, where b

1 
:so: 

2 2 ' 2g(1 + Q
0
/2) /Q

0
• All the other notations are the same as in 

section 2. It should be noted that in the case of small energy 
deviation (S'u,-8)/go = gPu> ,..< 
field tapering, (B

0
-B) /8

0 
= b

1
cx 

form to equations (1)-(4} •· When 

1 and at a small undulator 
< 1, equations (6)-(9) trans
writing down equations (6}-(9) 

we have accepted some assumptions. First, we have neglected the. 
change of factor (JJ] and Gaussian mode parameters along the 
main undulator. second, to calculate the beam current density j 
entering into the expreSsion for the gain ·parameter ~, we assu
me .the electron beam transverse size to be much less than the 
Gaussian beam waist size V

0
• As a result, in the one

dimensional equations we replace the beam current density j by 
the effective value j = 2Ifn3/~, where I is the peak beu 
current. 
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Wh'en writing down the reduced equations for the prebuncher, 

we perform their normalization to the parameters of the main 

undulator (the prebuncher reduced length is equal to 1 
p 

l/l).So 
p 0 

as the magnetic field of the prebuncher is fixed and 

energy modulation in the prebuncher is SJlla 11, these equations 

are similar to equations (1) -(4) but the ·right-hand sides, of 

equations (1), (3) and (4) should be multiplied by factor b
2 

= 

Q [JJ] " {Q [JJ] " , where Q and [JJ] are the undulator para

m~ter Pa~d ~JJ] 
0

f!ct·or of the prebunch~r, respectively'. Introdu-

cing the factor v fv we have taken into account variation of 
0 p 

the optical mode (w is the transverse size of the Gaussian 
p 

mode in the prebuncher). The right-hand side of equation (2) 

should be multiplied by factor b ~ (l+Q2 /2)/(l+Q2{2) and detu-
... 3 P A Q _ 

ning parameter C should be set equal to C
0

• The prebuncher 

parameters must satisfy the condition i\ (l+Q2f2) = i\ (1+Q2/2) ,· 
p p 0 0 

where i\ is the prebuncher peiiod. 
p 

The change of electron· phase in the drift space with the 

length D is given with the, equation: AI/I = cC + P, )D + 51/J, 
A 

2 
~ 

1 
(I) 0 A. 1) 

where D ~ D[ (l+Q
0
/2)l

0
] • The term ~1/J ~ - 2rrN

0
D - ~1/J' takes 

into account the fact that the electron beam slippage length is 

not multiple to the radiation wavelength (~1/J' is the change of 

radiation mode phase- in the drift space). 

The initial energy spread of the electrons is assumed to be 

the Gaussian with the distribution function F(P) 

(2rru 2
) -tnexp{ -P2 /2CT2

} which corresponds to the distribution 

function of the reduced energy deviation F(P) 
A2 -1/2 A2 "'2 "'2 2 

(2rrAT) exp{-P /2AT}, where AT (4TrN
0
U/f50.) is the energy 

spread parameter~ Simulation begi~~ at a small amplitude ; and 

at the fixed main undulator parameters {a = O). The value of 

initial detuning C corresponds to the maximum gain in the 
0 

small-signal mode of operation. When the saturation regime is 

settled, we begin a slow increase o·f th~ tapering ·parameter ~ 

and continue this process until the cessation of the field 

amplitude growth. · Then the FEL oscillator operates in the 
' A 

stationary regime. It is assumed that the rate of parameter a 

growth is much less than the rate of the radiation field 

change. In this case the field amplitude ~ and the FEL effici-

8 



ency ~ are functions of the tapering parameter a and are 

growing in time while ~ is increasing. 

Using the algorithm described, above we have cqlculated 

numerical example for parame·ters of the electron bea~, magnetic 

syStem and optical resonator which qre summarized in Table_ 1: 

Electron beam 

Energy, ~0 
Peak current, z
Energy spread, ufC

0
. 

Macropulse· du.rati·on 

Magnetic system 

Prebunc~er period, Ap 
Prebuncher magnetic field, B 

p 

Number of prebuncher periods, N 
p 

Lengtb of drift space, D 

Main undulator period, A0 
Main undulator magnetic field, B

0 
Number of main undulator periods, 

Maximal tape~, ~B/80 
Optical resonator 

Wavelength 

Resonator length 

curvature radius of mirrors 

Total power losses 

N 
0 

Table 1 

30 MeV 

22 A 

2 10-3 

> 10 ms 

12 em 

570 G 

3 

130 .,. 
6 em 

3 kG 

60 

51 % 

20 #liD 

9 m 
5.5 m 

2 % 

The corresponding reduced parameters are as follows: f3 = 5, 
-3 -3 "'2 

K = 2ol0 , g = 1.33o10 , AT = 2.3, 1 0.1,· D 0.15, 81/J .= 
-3 p 

0.4, C
0 

2.5, b
1 

= 2.27o10 , b
2 

0.23 and b
3 

0.5. Fig.l 

presents the time dependencies of the undulator tapering depth 

and FEL efficiency. At the end of the time-dependent tapering 

process (~ = 10 ms) about 74 % of the particles are trapped in 

the regime of cohe~ent deceleration and FEL efficiency ~ ~ 20% 

is achieved which is more than 40 times larger than the maximum 

efficiency of the FEL oscillator with the homogeneous undula-
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tor. Analyzing technical parameters presented in Table 1, we 

may conclude that they are achievable at the present level of 

the accelerator and FEL technology. 

50 

~ 

N 40 
~ 

~ 1 

~ 30 
N 
~ 

0 
~ 20 ' ~ <J 

10 

0 
0 2 6 8 10 12 

t,.ms 
Fig.l. The depth of the magne~ic field tapering in the main 

undulator (1) and FEL efficiency (2) as functions of 

time 

&. Conclusion 

In the presel)ted paper we have considered a new method to 

increase the FEL oscillator efficiency. The magnetic system of 

the proposed device consists ~f the prebuncher with fixed para

meters, drift space and main undulator with time-dependent 

tapering. The fea$ibility of the method has been confirmed by 

the results of numerical simulations in the framework of the 

one-dimensional model~ An example Of the FEL osCillator with 

realistic parameters operating in the continuous or quasi

continuous mode with an efficiency about 20 t, is presented. 
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