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Introduction 

For high-brightness ton accelerators'1t is important to obtain 
tnfonnat1on on beam _]m'8llleters riot'. affec~ing them' ~ppreciably 
during - · measurements ( nonperturbati ve ·diagnostics).· For this 

' pUrpose '1n a bending transtx>rt line area . fast neutral particles 
·=-. can be UBE!d~' These' particles are produced 'as ·a:· -resuit 'of ion\' 

• destruction or the charge-exchange process;:ih ~ aPEic.!ally shaped 
· target which is practically trans,lm'ent f~r ·a ~am· (for· II:- beams· 

see [1-51)~ The.target is formed so that these information-carrier 
neutral particles (IN-particles) follow ·the .1on velocity in 
magnitude <1n relative· units) and in ·direction Cln · rad> with · 
accuracies required for measurements. These accuracies can be 

· . est11118ted by ~ ( J.l
0 

• 10 111,,' E~) 0 
•.
5 where Jlo _is the re,duced 1118SS of 

the . neutral ~ticle and the remaining part of the ion in its 
destruction or the'·ion and electrons_ in their recombinanion, Io 1s 
the _affinity energy, ~ ~ ~- are the ion _mass and energy, 

~_respectively. In sources, for example of negative ions, the . 
probab111 ty of. IN-IXifUcle generation ( 1}) 1n residual gas can be · 
quite considerable <'fla.- 0.2 + -0.4). In this case, using the wen' 
knoWn methods [ 1-SJ for any density of a probing target; .it 1s .. 
impossible to sei81'8te directly in!onnation on beam para.ffleters 
from a .flux of backgi-ound · IN-:-J8rticles on a detector.·. The 
correlation method ot nonperturbat! ve measurements · of ' ion beam 
parameters considered in this paper allows one to overcome these. 
d1f!1cul ties. 

Method 

The correlation method ot \ nonperturbati ve measurements of . the 
!on energy spectrum has been previously proJX,sed r 6, 71. It 1s 
baaed on the use: or test · IN-particles produced in a target, 
paeudorandomly DK>dulated iJ1 time, and detected at drift· d1atanse · 

l 

j' 

L. To measure the transverse beam em! ttance, tor example 1n the · . 1.! 

(Y, Y' )-plane· (see Pigure), one or a tew thread-type targets . ·· /(;1-j 
parallel to the (X,Z)-plane can be formed in front o! a bending f 

. I l 
transport Une area. It the !on beam current is invariable during · · i,... I . , . ~ 

: -;,1' 

•/ 
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measurements, the spatial X-dimension of the target must be 
required for reproducing target time modulation bY the flux '"

0 

of 't'pn 

test IN-particles 
tJ>;n<t> = const<,..,·Ir(t), ( 1) 

where Ir is the flux of photons or particles in the n-target. The 
targets are fixed in space and separated from each other along the 
Y-axis. When one target is used, it moves in parallel along the 
Y-axis. Taking into account (1), the autocorrelation function of 
the flux of test IN-particles on a m-detector is equal to 

00 00 

~pp('t') = f \j>0 (t)•tj>0 (t-'t')•dt = E t3('t'-K·T) • 
.a."nm pn pn -oo x=-oo. 

(2) 

The palsed characteristic h,..m( t) of the drift distance from the 
n-target to the m-band-type detector (Y' =fiX) is related to the 
velocity ( V) distribution of IN-: particles ( t= L/V) in the n-m 
direction and, hence, to the energy spectrum of ions. The fluxes 
of IN- particles in the n-target area (tj>~) and on the m-detector 
(f~m) are related by the convolution 

CXl 
f 0 (t) = C ·f h ('t')•'1?(t-'t')•d't', 

nm m nm ~ 
0 

E em = 1 , (3) 
m 

where tJ>> tj>:n + tJ>;n , tJ>:,.. is the flux of background IN-particles 
produced in the residual gas. Taking into account the independence 
of tJ>:n and tJ>;n and measuring the cross-correlation function 
between the fluxes o.f target particles or photons and IN-particles 

on the detector \ 
. 00 00 

Rl0 ('t') = J II (t)·f0 (t-'t')·dt = B ·f h (t)·~PP('t'+t)·dt = 
nm nm nm nm nm ·~m 

-oo 0 
00 

= Bnm·E hnm('t'-K•T) 1 

x= 

( 4) 

we obtain the pulsed characteristic of the drift distance in the 
n-m direction (Irm ex Ir) . Using normalization' J h...m ( 't') d't'= 1 , we 
get from the Bnm-matrix information on the ion distribution in the 
(Y,Y')-plane and thus on the beam Y-prof1le and transverse 

emittance. 
In reality, we must form such targets when convolution (4) of 

hnm and (~ does not change the supposed hnm( t)-function. In 
accordance with [ 81 , this condition means that a periodically 
replicating element of the autocorrelation function of the Ir-nux 
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must have a sufficiently narrow shape in time with width A « ~mQx' 
where hn~(~)= 0 for 1~1~ ~mQX' and its period T must meet the 
condition T > 2·~mQx· Correlation methods measure a useful signal 
with a background which is several orders of magnitude more than 
the signal. Thus, measuring R'Yo( ~) by "n·m" correlometers, the . . nm 

energy spectrum and distribution of ions in the ( Y, Y') -plane can 
be controlled without perturbation of beam parameters. 

Apparatus 

Nonperturbative measurements of ion beam parameters, for example 
in a source of H- ions, can be realized according to the scheme 
shown in Figure. It is analogous to the previously proposed one 
[7], but it contains "n" identical photon targets n!> and photon 
detectors (D'Y), "n·m'; correlometers (C ) and band-type detectors 

# n . nm 

( D~m) of fast Ho atoms. When probing targets are formed by 
diaphragming radiation with an optimum polarization and a 
wavelength of.~ 10600 ~ from the Nd:YAG laser with synchronized 
modes (see Fig. a, b) , the test Ho atoms follow the H- velocity in 
magnitude (in relative units) and in direction (in rad) with 
accuracies of. - 4 · 10--3 · ·( E;. rk .. vl) -o. 5 • The series duration of 
pseudorandom radiation pulses is T8 ~ 100 ns and the width of the 
autocorrelation function is A~ 50 ps [9J. Thus, such photon 
targets due to H- photodetachment can efficiently generate test 
IN-particles (H

0
) and allow one to measure pulsed characteristics 

of the drift 'distance hnm< ~) which are fairly short in time. At 
present, potentialities of the above diagnostics are mainly 
limited by the fast action of correlometers • 
. The cross-correlation function R~:< ~) between the photon flux 
'Y . 0 0 Inm from a partly reflecting Mnm-m1rror and current Inm~ fnm from 

the D~m -detector can be' ·measured by means of a time-integrated 
Cnm -correlometer based on charge-coupled ( CC) linear structures 
[ 7, 1 o J. As a · result of the wavequide propagation of photons 
through GaAS CC-linear structure 1 (see Fig. c), the I~m -current 
modulates the flux r!m by the photoelectric absorption effect 
within a ~ 100% dyilamical range of modulation. An instantaneous 
spatial distribution of chargesover the pixels of this_structure 
corresponds to the discrete-in-time representation of the shape_of 
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Fig. Schematic of measurement apparatus. 
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a Io -current' signal. After the modulation, photon flux 2 is nm . 

detected by silicon CC-linear structure 3. The spatial 
distribution of charges accumulated there during the me~surement 
time Tm corresponds to the discrete-in-time presentation· of the 
R~:-function. Fairly large I~m-fluxes of photons provide the 
needed charge within the pixels of the detected CC-linear 
structure during a short time within a pulse of the ion beam. The 
R ro -functions can be read out during intervals between target nm , 

switchings or between ion beam pulses.and taking into account the 
guiding frequency of modulating structures 1. 

As estimates for the source of H- ions with an energy of E<~ 20 
keV, 1,.. 100 em and the average power density of laser radiation 
within the duration of "a series of pulses I~,.. 4·105 W/cm2 

( <PbJ<l>pn,.. 1 02), the proposed apparatus allows one to realize 
nonperturbative measurements of beam parameters during Tm~ Ts,.. 100 
ns with accuracies, e.g., of,.. 0.4% in energy and of,.. 2·10-4·rad 
in Y'. 
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