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Ka1111ee J]..L-1., nepenbwTeMH 3.A. 
KorepeHTHble nonpaBKH K cneKTPY CHHXpoTpOHHoro 113/ly'leHHA 

penATHBHCTCKOro 3/leKTpOHHOro ny11Ka 

E9-92-26 

"1ccneAOBaHbl KorepeHTHble nonpaBKl1' K cneKTPY HJ11y11eHHA pe11An1-

BIIICTCKoro npoAOllbHO-JaMarHlll'leHHOro 3/leKTpOHHoro ny11Ka. 8 CIIICTeMe 

OTC'leTa ny11Ka Bbl'IIIIC11AeTCA l..llllKllOTPOHHOe 111311Y'leH111e ropA11ei:i MarHeTo­

nnaJMbl np111 y'leTe 3/leKTpOH-3/leKTpOHHblX KOppenAl..llllM . CneKTp cp11yKTya­

l..lHM nnoTHOCTIII TOKa HaXOAIIITCA nplll noMOLl..llll ct>nYKTYaTIIIBHO-AIIICClllnaTIIIB­

HOro COOTHOWeHIIIA, Jan111caHHOro AllA c11y11aA paBHOBCCHOM nnaJMbl. Ha rap­

MOHIIIKax rnpo11acTOTbl 6011bwe BTOpOM KO/1/leKTIIIBHOe IIICKa>t<eH111e cp11yK-

1yau111OHHoro cneKTpa yMeHbWaeT IIIHTeHCIIIBHOCTb 111J11y11eHIIIA no cpaBHeHIIIIO 

co cnoHTaHHOM . KorepeHTHble Jcpq>eKTbl npoABllAIOTCA Ha A11111Hax BO11H, 

cpaBHHMblX C PaAIIIYCOM Ae6aeacKoro 3KpaH111poBaH111A. B na6opaTopHOM 

CIIICTeMe AllA Tlllnlll'IHblX 3Kcnep111MeHTallbHblX JHa'leHIIIM napaMeTpOB OHIII CTa­

HOBATCA JHa'IIIIMblMIII, KOrAa nnoTHOCTb 3/leKTPOHOB npeBblWaeT 101 3 CM - 3 . 

Pa6oTa BblnO11HeHa B na6oparnp111111 AAepHblX npo611eM 0"1AL<1. 

npenpHHT 06i.e11Hueuuoro HHCTHryra 1111epHb1X HCCJie11oeaHHH. ,lly6ua 1992 

KaltchevD. I., Perelsteln E.A. 

Coherent Corrections to the Synchrotron Radiation Spectrum 

of a Relativistic Electron Beam 

E9-92-26 

The coherent corrections to the radiation spectrum of a relativistic 

electron beam, propagating along an external r;nagnetic field are Investigated. 

In the beam reference frame the cyclotron radiation from a hot magneto­

plasma is calculated taking Into account the electron correlations. The fluc­

tuation-dissipation theorem for the case of an equilibrium plasma ls used 

to find the spectrum of current-density fluctuations. At harmonics of the 

cyclotron frequency> 2, the collective distortion of this spectrum decreases 

the radiation Intensity compared to the spontaneous one. The coherent 

effects manifest themselves at wavelengths of the order of the Debye shiel­

ding length and become Important when the electronic density In the labo­

ratory frame Is higher than 101 3 cm - 3 , for typical experimental beam pa­

rameters. 
The Investigation has been performed at the Laboratory of Nuclear 

Problems, JINR . 
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I. Introduction 

The adequacy of the assumption that the individual 

particles radiate independently, in relation to ·the problem 

of synchrotron radiation, was investigated initially by 
: . ', I 
Pomerantchuck. In doing this, a heuristic method was used -

comparison of the maximal fluctuation potentials inside the 

beam with the energy spread .. In later studies of radiation 

1·osses from a thermonuclear reactor2
-

7 
· the correlation 

effects have been ·essentially neglected due to the fact, that 

the radiation wavelength is much shorter than the correlation 

radius (the Debye length). However, the possible importance 

of these effects was suggested3
'
4 for high densities and at 

low• harmonics of the cyclotron frequency. In the present 

paper we consider successively the influence of the two­

particle correlations on the cyclotron radiation spectrum of 

an equilibrium hot plasma. We also use a transformation to a 

reference system, in which the plasma moves along the exter­

nal magnetic field, to calculate the radiation of a relati­

vistic electron beam. 

The calculations will be done. in the beam reference­

frame, where we assume·the plasma to be limited, with dimen-
. ' ' •, .. , - . 

sions much bigger than the radiated wavelength and in a state 
' '.:, . 

of equilibrium~ having a relativistic electronic temperature 
·,, 

T (in units of energy). The dielectric.permitiv~tytensor _for 

such plasma can be found using the well known Trubnikov's 

m~thod6
'
7

•• 

According to the theory of fluctuations, the·• fields 

radiated at frequency w can be described as a result of the 

action of some stohastic currents Jw distributed inside the · 
1, ""'""''"""""'' • 

· ;J,;1,,C:f;f.~-:'\frihlfi Hli.:,ITTyY ( 
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b~am8 • At low densities the current fluctuations in different 

spatial points and times are statistically independent and 

the radiated intensity is pr,oportional to the number of elec­

trons. Intraparticle interactions generate collective fields, 

that introduce correlations between the electrons6
'
8

-
11

• 

These correlations deform the current correlation spectrum 

and cause nonlocality of the corresponding spatial correla­

tion functions, i.e. the latter have a nonzero correlation 

radius. One . can expect, that in the beam reference frame 

deviations from the spontaneous radiation exist at wave­

_ lengths, comparable to this radius and the radiation is not 

materially affected at shorter wavelengths. 

The spectrum of the interacting current-density fluctua­

tions can be expressed in terms of the dielectric permitivity 

plasma tensor using the fluctuation-dissipation relation
12

• 

In the plasmas of interest the density parameter g:-:W
2
/w

2 

' ' ' p . 0 

is usually less than 1. Here the usual meaning of symbols is 

used in the beam reference frame: w =( 4nN ~
2/m )'n, - plasma 

p e O 

frequency; w
0
=eB

0
/m

0
c electron cyclotron frequency; 

N
0

-number of electrons/volume; B
0
-static magnetic field; 

e,m
0

- electronic charge and mass, respectively. The emission 

coefficient of a noninteracting plasma, 
0 

T/w ( e) (the 

energy/sec, radiated per unit solid angle, per unit frequency 

and per unit volume) is defined as the energy radiated by a 

test charge averaged over the momentum distribution of test 

charges. For the considered case of an equilibrium Maxwellian 

distribution an equivalent . procedure may be used
2

'
7

• It 

consists first in calculation of the absorption coefficients, 

of two eigenmodes for propagation at the same angle e, and 
:!.(; .. ::' .L: 

--;: .".:. _._- c~_;"l •. ~;; r; 2 

2 

;i 

l 
l 

;{· 

1' 

second, in use of Kirchoff's formula: 

71°= I (w/c)(n"(w,e)+n"(w,e)_), 
W ITT .· + -

( 1) 

where I =w2T/Bn3 c2 is the Rayleigh-Jeans distribution; w is 
RJ . 

,the radiated frequency; e is the angle of the emission .rela-

tive to the de magnetic field; n;=Im(n±)- absorption coeffi­

cients; n±-the refraction indexes, obtained from the disper­

sion relation. It can .,be proved2
'
6

, that if n± are. calculated 

to an accuracy of first order in ·q; then Eq. (1) describes 

the radiation of noninteracting electrons. It is well.known, . ' . 

however 5
, th.at Kirchoff's formula is valid always when the 

refractive properties c;;f the medium are neglected and one 

sould ·expect, that higher order in q terms in Eq. (1) 

de'scribe the correlation effects. We obtain exactly this 

~esult in S~c.II, using the free-space field propagators and 

the interacting current fluctuation spectrum. We find that 

the terms of second O:t'.der in q in n; give the coherent 

co·rrections to the spontaneous emission. 

We do not consider the effects of refraction and absorp­

tion of the radiation, due to its propagation trough the beam 

plasma, that are well studied in Ref. 6. That is why in 

Sec.III we compare th,e independent'actioris of the correlation 

effects and the absorption on the radiated spectrum for 

various electronic _temperatures·. In doing this we roughly se­

parate these two effects, which in the real case ~hould be 

considered together. We conclude that the absorption domina~ 

tes at frequencies close to the first harmonic (w~w
0

) except 

in the case of very low temperatures~ 

The transparency of the plasma in combination with the 

3 



:--

,condition of macroscopic dimensions with respect to the 

radiated wavelength, leads to the following restriction 

the maximal absorption coefficient under consideration: 

2rrn;(e)«A/L(e)«l; 

on 

( 2) 

Here A=2rrc/w; L(e) is the propagation length inside the plas-

ma. 

II. Correlation corrections to the radi~tion spectrum 

In the beam reference frame we evaluate the radiation 

intensity of a region having .volume V and dimensions much 

greate_r than· · i: We use a rectangular, coordinate system 

x ,x ,x, centered in the middle of the region V; the x-axis 
I 2. 3 · , 3 

is taken to coincide with the propagation vector, e, and the 

magnetic field vector l\ 
B =(B sin(e),O,B cos(e)). 

0 0 · 0 , 

lies. in the 
➔ ➔ x-x 

I 3 
plane: 

Consider a current den~ity fluctuation ](r', t') at time 

t', and in a· point. r' with_i~ the region V. We assume that the, 

correspondi~g Fourier component J (r') and the field observed ' ' w 

in a point R, E (R), obey the Maxwell equations for the free w. 
• -\ ➔ • 

space .. The total field radiated from the sources Jw(r') at 

large distances R is6
, 

where 

_EJRJ=:Jcrr' w(R,r:J'.]Jr' J , 
V 
·t 

.] (r') = dt'e1 w ](r',t') JI • t' 
w ', . ' 

-t 
I 

(3a) 

and .similar for E (here t tends to infinity). The vacuum 
W I 

propagator is taken above to be 

~ ➔ • i ~ p' 
. w ➔ ➔ 

W(R,r' )= :w I e c ~ iw• 
- i c (R-e.r' J 

c p' c2R 
I e (3b) 

4 

J 

1 
l 
J, 
l 
J, 

·~ 
, l 

~ 
.~ 

i 
j 

·.I 
j ., 
• j 

l 
. f . l 

I 

I 

A [1 0 0] where I= O 1 O; p'= 
0'0 0 

IR-r' I ~ R - e. r,. 

Since we assume a homogeneous medium and stationary pro-

cesses the cross-correlation function of current density 

fluctuations depends only on the differences r=~' -r," ,. 

"t'=t'-t": 

<J(r',t~J J(r",t"J> = (JJJ-;.,T 
whe~e the symbo~ <> means statistical average. ,The spectrai 

densities of current fl~ctuations are given by 
+oo iWT ;; l ;; (JJ)➔ = dT e (JJ)➔ ~ r,w _ r,~ 2~ <}w(r') }* (r" )> 

I ' W 
(4a) 

-ik.r ;; J 3 ;; (JJ)k~ = d r.e (JJ)➔ ,w , r,w (4b) 

The power radiated in direction e per unit area. and p_er 

unit frequency interval is6 

s = w £. lim 
srr2 t ➔ co 

I 

t CO. 

2 ~
1 

J~t JdT 
-t 

I 

eiwT 

£. lim l 
Bn2 t ➔ co 2t

1 
<1Ew(R)j

2
). 

I 

(E(R, tJ E(R, t+T)) 

Using (3) and (4) we express Sw in terms of the current 

fluctuations spectrum: 

C J .3 J .3 A ~ ➔ ;; A+ ➔ ;t S = - Sp a-r' a r" W(x,r' ). (JJ)➔ , ➔,, .W (r",x) w 8 z r -r ,w . 
n V f . 

wz 
8rr2c3R2 Sp J .3 J .3 ( ,W ➔ ➔ ➔ ) A ;; a r' a r" exp-ice. (r'-r") I. (11)-;.,_-;.,,,w 

V V 

wz 

Brr2
c 3R

2 Sp J d3k3 IJrfr· exp(i(k 
( 2n) V 

) 1

2A ; 

~eJ.r' ·r.01Jk,w= 

s w· 

8rr2 c 6R2 J 
d3n ➔ A ;; 

Sp -- F(n) I. (JJ)n w 
( 2IT J3 • (5) 

5 
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➔ ,,. ➔ ➔ · II ( .w ➔ ➔ ➔) 1
2 

here n=kc/w, e=(O, o, 1 ), F(n)= cir exp ic(n ~ e). r . (6) 

.v 
we choose the geometry of the radiating region to be 

rectangular with_ dimensions L
1
,L

2
,L

3 
and formally assume 

infinite transversal dimensions: L />.., 
1,. 

_L2/>..➔co. When 

substituting in (6) 

fcir= 

L
1
/2 L

2
/2 L/2 

f dx1 f dx2 f dx3 
V, -L

1
/2 -L

2
/2 -L3/2 

ap.d using the ci-function definition:' 

ci(x)=lim sin
2
(Ax)/(rrAx

2
) 

A➔co 

then F(n) is found to be 

sin
2 

[ (n -1 )L /2) · 
F(n)=( 2 c)4 1lLL ci(n )ci(n) 3 3 

, w 1 2 1 2 (n _1 J2 
3 

( 7) 
\ 

We substitute (7) into (5) to obtain 
wL L +oo 

S 
1 2 rdn 

w 4 rr3c2~2 -~ , 

2 -
sin ((n -l)L/2) 

(n -1/ 
J2 (n) ,· 

I· W , 
(8) 

where the spectral density of the transversal current fluc­

tuations at a frequency w is denoted by 

J2(n) 
w 

A ...... ) • = Sp I 2 (JJ n,w' 
....... ( ...... )' 

(11>n,w = JJ n=ne,w. (9) 

Now J 2 (n) should be expressed in terms of the dielectric 
.w ' ' . 

permitivity tensor using the fluctuation dissipation theorem. 

For an equilibrium plasma the latter is given by12 

(]]) = 4iwT· Ao.(A-1-A-t'J.Ao • (10) 
. n,w n 

For our choice of coordinate 
Ao A 

system the matrices A , A are 

[ 

2 ] 
-o -o 1-n o 2 O 
A=A(n)= o 1-n o . (11) 

0 0 1 

...... ...... ......0 ' ...... 
A=A(n,w)=A (n)+K(n,w) , 

Using the·symmetry properties of the electromagnetic 5.uscep-

tibility tensor: K 
1 3 K31 1 K21=-K12' K32=-K23' the determi-

6 

~.-

l 
J 
1 I, 
f : r. 
) 

j 
l 

1 ; 
I 
I. 

'. 

nant of A may be written in the form 

D(n,w) = det A= (1+K33 )(n
2
-1-f+(n)) (n

2
-1~f~(n)), (12) 

2 2 

where f+(n) = 1/2 [K +~ 2+ 
- 11 2 

K -K 
23 13 

1+K 
33 

2 2 

± 1/2 { [ K -K + 
1 I 2 2 

K23 -K13 ]
2 

1+K - 4 [· K + 
33 12 

]~ (13) 

K K 
1 3 23 

~ 
33 
r t/2

• 

Here and bellow K =K (n,w). However, we shall omit the ar-
. IJ IJ , 

gument w from now on. The following relation can be obtained 

using (11) and (13): 

>.. (n)+>.. (n)=(1+~ (n)) (2-2n2+f+(n)+f (n)); 
ll n ~ . -. ' ' 

(14) 

where \i is the cofactor of A. Now we 
~ 

use that A~ 1 =>.. /D 
I J I J 

and also (10), (12) and (14) to transform (9): 

J
2 • 
w(n) = iwT 

4rr 
Sp I .A0

• (A-1-A_1+J.A0= 
' 2 . 

iwT ( 2 2 ( \/nJ+>.. (n) 
4

rr. n -1) .--- 22 
D(n) 

iwT (n2_1 /( 1 . + 
4

rr · n
2 -1-f '(n) 

+ 

c. c.) 

- c.c. = 1 ) 
n

2-1-f (n)' · 

wT 2 2 ( Im f+(n) Im f_(n) ) 
2n (n -l) 2 2 + 2 2 • 

· In -1-f+(n)I In -1-f_(n)I 
(15) 

Since we have taken into account the dispersive proper­

ties of the medium ( dependence on n in ( 15)), the spatial 

correlation function J
2 (r) is not local as in the case of ' ' w . '' 

noninterac_ting electrons. The . correspondin_g expression __ for 

noninteracting electrons is: 

2(0) WT ( ) Jw = 2 n 1\J1)+K2/1). ·and, thus J 2 
( 

0
) (r )-8 (r); 

w 

By substituting (15) into (8) one finds 

7 



w2
TL L 

S = 1 2 (S++S-) 
W 4 2-2 W W ' Brr c H 

(16a) 

where 

+ co 

s! = Jdn 
-co 

(n+1 /sin~ ( (n -'1 JL/2) 
· 2 2 In -1-f±(n)I 

Im f±(n) (16b) 

Since f±(n) are small (-q), we can simplify the.calcula­

tions by taking approximately n=l in the arguments. In the 

same approximation one has for the high-frequency solutions 

n± of the dispersion relation D(n,w)=0 : 

2 
n±= 1_+f±(1J (17) 

and therefore (16b) may be written in the form: 

+CO 

+ • I Sw=l/2 Imf+(1) Re dn 
1-exp[iL

3
(n -:-1)) 

(n
2
-n

2 
J(n

2-rl r 
(n;1l 

-oo + +. 

and similar for s:. We solve the integral by closing the 

contour with an infinite semicircle in the upper half of the 

complex n-plane and calculating the residues in the poles, 

having a positive imaginary- part: 

(n:>o). The result is 

n=n'+in", 
+ + + 

-ii =-n'+in" 
+ + + 

s+ 
w 

~ (n +1)
2 

_rr_ Im f+(1) Re { [1-exp(iL (n -1))] -•­
Bn'n" 3 

• n. 
+ 

+ + 

• ~ (-ii +1/ 
+[1-exp(iL3 (-ii.-1))] ~ } 

+ 

We neglect the small second term in the braces, which 

corresponds to backward propagating waves. After substituting 

into the first term n'=1+a'q+a'q
2

; 
+ 1 2 

. 2 
n:=a;q+a;q (a'"' do not 

1,2 

depend on q), and expanding the exponent in a series we get 

+ nL3 2 
SW- 2n: Im f+(1) (1+O(q )) 

and, since from (17) it follows that Im f+(1)=Im (n~)=2n(n: , 

8 

I 
)_ 
. t:, 
1.' 
) 

\: 

!' 

we have 

+ ~ 2 
sw,= nL

3
n: .(l+O(q ))-. (18) 

Finally 1 by substituting 

for s: into (16a) we get 

(18) and a similar expression 

SW WV I (n"+n:_); 
2 RJ + cR 

thus the emission coefficient of an interacting plasma is 

11 = R
2
V-

1
S = ~ I (n"+n"). 

W W C RJ +• - ( 19) 

Here n;=Im(n±) are calc_ulated by ( 17) and ( 13) keeping the· 

second-order terms in q. One can easily ,obtain the sponta- . 

neous emission coefficient from here, by . neglecting these 

terms in (13) and also taking n~=l. The result is 

11°= -2w I Im [K. (1 )+K. (1 )]= 
W C RJ 11 22 

I .3 ➔ 0 ➔ = a p f (p) I (p). 
0 W 

(20) 

Here f (p) is the momentum distribution function and I 0 (p) is 
0 W 

the spectral density of the· radiation of a single electron 

with momentum p in an external magnetic field, given by the 

Shott's formu1a. 

The number of photons/sec radiated from unit volume, in 

unit solid angle and in unit frequency interval, calculated 

with and without interactions, are 

0 
71 2 71· 2 ] 

N =~~ (n"+n"), N° w Tw Im[K. (1)+,c (1) 
w hw Bn3 hc3 + - w hw l 6rr3hc3 11 22 

respectively. 

III. Results obtained in the beam reference frame 

We wish to calculate the correlation factor a defined as 

a:1-11 /11°=1-N /N° , where the emission coefficients 11°(e) and w w W' CJ w 

') 



~w(a) are given by Equations (19) and (20) respectively. In 

these expressions the elements Ku 

they are functions of the angle 

are 

a, 

taken for n=l, thus 

the harmonic number 

m=w/w
0

, the temperature parameter µ=m c2/T and the densitY' 
. 0 

parameter q. We used a variation of Trubnikov's method pro-

posed by Drummond et al. 4 (see Appendix) to calculate 

numerically K
1
/8,mJ for . various values of q and µ in the 

region m~2, O.1<8<rr/2. The results were verified by comparing 

the angle dependence of ~0 ca,mf with Fig. 4 in Ref. 4 and the 

dependence on m with Figures 1, 2, and 3 in Ref. 3. For low 

values·of m and a, (when msin(B)-2), the yield of' more than 

one integration loops was taken into account4
• 

We obtained: 

1) the radiation is shielded by the -correlations, 

a is always positive; 

i. e. 

an 

i. 

2) the condition i\=2rr/r
0 

may actually be considered as 

approximate limit for the appearance of coherence effects, 

e. a➔O when i\<2rr/r
0

• Since r
0
w/c=(m/µq)u2 _this corres-

ponds to harmonics m>mmax=µq. 

In order to illustrate 1) and also to compare our 

results with those obtained in Ref. 3, we calculate approxi­

mately the spectral density of the radiation from unit area 

of a transparent plasma slab of thickness L: 

"' 
I(w)= l Im(w) 4rrL~w(8=4s°). 

m=l 

Here I (w) is the yield6 of the harmonic m, and we assumed 
m 

that the integral 

r'?ughly equal to 

of ~w(a) with respect to the solid angle is 

4rr~w(8=45° ). Fig. 1 shows the reduction of 

IO 

.-,_• . 

.1 
, 

l 

-I 
'/ 

,)l_ 
·{ 
I:} 
'y 
I, 

the normalized spectrum 

I(w) = !!!(n" +n") 
4rrIRJA q + -

with increasing the density; here A-=Lw2 /(w cJ. Th_e sponta-
P 0 

neous spectrum (q➔O) in Fig. 1 should be compared with Fig. 2 

in Ref. 3. 

In Figures 2(a) and 2(b) the correlation factor a and 

the values of 

8=45°, m=3 and 

2rrr /i\=(m/µq i/ 2 

D 

two electronic 

are plotted versus q for 

temperatures: T=50m
0

c 2 and 

T=5m c 2
• It is seen, that a is close to 1 percent when 2rrr/i\ 

0 D 

is of order of 1. Note, that the series expansions used in 

Sec.II are valid even though q>l if K
1
J«l. 

Since the considerations in Sec. II concerned the case 

of an uniform plasma of macroscopic dimensions, it _must be. 

shown that the correlation effects may be comparable with the 

selfabsorption even for big values of L/i\. Fig. 3 shows two 

curves of equal values of the optical depth (n;+n:JLw/c and 

the factor a, calculated with q=0.1, 8=45°,· Lw/c'=5O and 100, 

and drawn in the (m,µJ-plane. An increase of q from 0.1 to i. 

leads only to insignificant translation of these curves 

towards lower frequencies. It can be seen from Fig.3 that the 

decrease of the spectrum caused by correlations dominates at 

high harmonics', and in the region of low harmonics becomes 

comparable with the absorption only for cold and dense plas­

mas. In this case, however, the total emission is small. In 

particular, at frequencies close to the first harmonic (m-1) 

the correlation effects can be neglected for all temperatures 

of interest. One should also take into account the restric­

tion (2) on the maximal absorption coefficient and also the 

11 
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. i·~' 

fact that the radiated spectrum is a sharply decreasing func­

tion of the harmonic m, thus high values of m (m»2) are not 

so interesting. 

IV. Transformation to the laboratory reference frame 

The transformations of the frequency, angle and density 

are 

w= '1 1-(3cos(0) w; . ( I ) I 

N
1= '1N • • 

cos(e) 
cos(e 1 )-/3 

1-(3cos(0 1
) 

(22) 

(23) 

where N!,w',01 are the electronic density, the radiation 

frequency and the propagation angle in the laboratory frame; 

(3=u/c; u is the beam velocity along the magnetic field; 
. Z. 1/2 ., 

'f=(l-(3) . For q we get from (23) 

q =10- 11 N1 
/ (B

2
[kGs} '1), 

,e 0, 
(24) 

No.w we use (22) and the fact, that the total number of 

photons. at all angles and frequencies remains the same after 

the transformation, to obtain, the spectral density of the 

photons in the laboratory frame 

No 
NOi~ w 

w '1 (1-.(3cos(0
1
)) 

r B
2 

[kGs] m2 
K" (1)+ K" (1) 

O O II ZZ (25) 
3 I ' 16n heµ '1 1-(3cos(0) 

· -13 where r
0
=2.81 10 cm. 

In the relativistic case ('1»1) the relation between the 

harmonics is 

m=M 1-(3cos(0) = • . ( I ) ' 

z 

{

. M/(;'1 ), 

M/'1 , 

e'=o 
0

1
=1/'1 

Here M=w1/Q is the harmonic number in the laboratory frame 

with n=w
0
/'1 · 

12 

Consider radiation of millimeter and submillimeter waves 

Ab in the beam reference frame. By excluding the magnetic 

field from Ab[cm]=11/(mB [kGs]) and Eq. (24) one can obtain 
0 

that from Ab<lcm and Ab<lmm it follows that q'1<10-11 N1 m2/121 . 
and q'1<10-13N1m2/121 respectively. As it was pointed out in . 
Sec. I I I we are interested in harmonics m not much larger 

than 2. In order to obtain considerable values of ex one 

should take q>0. 1 and ·so '1 can not be much more than 10 for 

real ·1aboratory densities. One can also see that for labora-

tory densities N1 «1013 "the submillimeter waves are prac-

tically not affected by the correlations (q«0.1 for all '1)· 

Bellow we give an example with Ab~lmm and a high magni­

tude of' the correlation effects. We take N1=1013
, '(=3, µ=100 

• 
and magnetic field B

0
=5,5kGs (q=l.1). It is convenient in the 

laboratory frame to present the spectrum on an (x,y) plane, 

where x=M/ ( 2'12
) and y=01'1. Fig. 4 show.s the noninteraction 

photon spectrum (25) and the values of ex. We do not show on 

this picture the maximum, which is at x-1 for y-0 and at 

x-1/2 for y-1, because it corresponds to emission close to 

the first harmonic in the intrinsic frame. If for instance L 

is taken to be of order 5cm then from 1<x<4 it follows that 

30<Lw/c<120 and, according to the results of Sec. III, in 

this region ex is bigger or comparable with the radiation 

decrease·. 

v. summary and conclusions 

We have studied the effects of two-particle co~relations 

q 



on the radiation spectru_m of_ a moving ·magnetized plasma both 

in the intrinsic and laboratory reference frames. It is shown 

that these effects can be simply described by terms of the 

kind K 1 JKmn in the absorption coefficients· {K
1

J is the plasma 

susceptibility tensor) in agreement with Kirchoff's formula. 

It is further shown that the correlations diminish the radia­

tion and that they are subject to the well known criterion.­

they appear at_ wavelengths of order of the Debye __ shielding 

length. We compared two ideal situations: {_1) radiation of 

noninteracting electrons including absorption ot the _waves in 

the plasma and (2) radiation of interac~ing electrons without 

wave-absorption. We conclude that the correlation effects may 

become important at high densities {of order 1013 cm-~) in the 

case of radiation of electron beams_ having. small relat~vistic 

factors 7, and thickness of the order of several centimeters. 
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Appendix: Calculation of the plasma susceptibility tensor 

For th~ i:orisidered case of an equilibrium pla~ma the 

momentum distribution of the electrons is relativistic 

Maxwellian: 

fo(p) 
N µ 

4rr:3K/µJ exp(-11(l+P2/_m~c2 t2), 

14 

/ 

where µ=m
0
c2/T, p is the m~mentum of the electron and K

2 
is. 

the usual Bessel function. After substituting w=kc into the 

elements K they·are given by6 

1 J 

where 

.. 
K./0,m)=-iq 11

2f di; q 11 , 

0 

(Al) 

qll =(K/P
2 
)( cosl;cos

2
e+sin

2
e )-(K/l )m

2
sin

2
ecos

2
.0( sine-el ; 

q =(K /p2 )cosl;-(K /p3 )m2sirle (1-cosE)
2 

; 22 2 3 . 
q

33
=(K/P2 )(cosl;sin2e+cos2e )-(K/p3 )m

2
(1;cos

2
e+sin

2
esini;l ; 

q =-(K /p2 )sinl;cose+(K /p3 )m2sin2ecose(sinl;-l;)(l-cosl;) ; 
U 2 3 

q23 =(K2/p2 )sinesinl;-(K/lJm
2 
sine( 1-cosl;) ( l;cos

2
e+sin

2
esinl;); 

q =-(K /p2 )sinecose(l-cosl;)+(K /p3 )m2sinecose(l;-sinl;) 
13 2 3 . . ' 

x (l;cos2e+sin2esinl;) 

with Kv(p), v=2,3 - Bessel functions and 
' 1/2 

P = m(-e
2
sin

2
e+2sin

2
ec1-coso-2i1;11/m+(11/ml) • 

The functions Kv(p) have an infinite·nurnber of·sad­

dle · points in the first quadrant of the complex .l;-plane: 

l;=x+iy ; x>O, y>O (n=O,1,2 ••. ). we follow the method 
n_n n n n ' 

described in Ref. 4, and replace the path of integration over 

the real axes in (Al) with .a contour,. that consist of the 

part of the imaginary ~xis (O, iy
0

) and successive loops pas-,­

sing all saddle points I;. Each loop is given by the equation 
n . 

Imp= const. For IPl»l the functions K (p) are not osciila-
n V 

ting along this contour and the• integrals in . (Al) _can be 

solved numerically. 
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calculated without correlations, versus x=M/( 2-l), y=0
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