


"transverse oscillation damping/1 2/
el such system including “two pairs of pick-up electrodes (PU)ﬂk‘
. and damping ‘kickers

‘ 'feedback with digital
";finstability with' the . increment of ‘about 0. 1w :
k";hacting and being designed accelerators the growth rate ofwfV‘

Eitransverse,

¢

jPU—signal transformation

o INTRODUCTI ON

The coherent transverse beam oscillation damper systems

are ‘used in all charged particle accelerators to prevent

- particle losses due to. transverse instabilities and to" damp,
‘T'transverse inaection oscillations. Theoretical investigation y
7“of the damper system for UNK—I has: been carried out using’

2~ transform method “of solving the problem» of -

(DK)

electronics damps: the'

oscillations is more"slower and

"ftransverse feedback system with one PU and’ DK connected bym‘
‘;~~feedback with digital electronics is enough for damping. :

(fthis article the eguations including the kick effect and the;;hf_
' obtained ' Thehf L
“solving of these eguations is carried out using Z- transform\ﬁ‘

feedback are

: method The results are analyzed for an ideal feedback andfj'
1ifor a feedback with a notch filter. All numerical results are SR

A

made for LHC/3/

DAMPER SYSTEM CONFIGURATION AND BASIC EQUATIONS

A classical transverse feedback system for each of‘ twoff”wi
“"directions of beam transverse oscillations includes one Pinfﬁ
+*.and. DK~ connected by delayed negative feedback - where‘ the“ﬁf

signal from PU transfers to DK in opposite direction to theaﬂw,?;

'"5beam motion."~
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: A8’ in/2 4/ the equation of beam center oscillations fortfﬂ
"AVcomplex value of deviation VVB from the closed orbit can be o
‘J“'written in the following form.ki’7 ' e Ve

d?v ;,52; - PpB L a T
'ft;acpz; T vz pext S

R

\Idwhere (v,w) are’ generalized co ordinates in normalized phasewb
gspace to be applied for describing the transverse beam motionf,'fi

2

coherentff
oIt ‘has been’ found that"'

-connected s by delayed negativeh
transverse'k

“But. in manYIw*at

;fclassicali~’7

=a+ AQ('w’),f". Sy

wis

in accelerator; mTovb is the longitudinal momentum of a beam
particle which has the B is the
normalized betatron wave length; @ is the number of betatron
oscillations per turn; AQ(W) is the complex tune shift for Q
to be conditioned by an field of the
displaced beam and to be proportional to transverse courling
impedance Zi/4/’ The sign (~) means that the complex value 3

angular frequency wo;

electromagnatic

_concernes the travelling wave of tranasverse displacement with

the azimuthal wave number k& and complex angular freguency 0.
The physical value of displacement is the real value of v.
For particle oscillating ‘in direction its
deviation v/B will be equal to displacement GVB of the beam
center for eigenwave:
0 =0, ¥ - Q- daw). (2)
The damper system effect is characterizied by Fext force.
Out of the DK region, when Fext
betatron equation where the

transverse

=0, we have in (1) an ordinary
frequency, however, 1is the

complex value and depends on W. In the DK region we must

solve the differential equation (1) with non~zero right-hand

side. As in/l/ we shall suppose that the kicker is short.

Then we can describe the DK effect in a matrix form/l’5/:

V(@K) = IV(@K) + QTAV(@K),

where I is the unit matrix and the matrix T is given by

00

10}

In column matrix 0(@) the first element is 3(@) and the

second one is equal to d;(@)/d@. The column matrix AQ(@K)

describes the kicker effect.

the first one Av is given by

1VB

mT v2

where lK is the kicker length. Taking into account/l’z/ it is
not difficult to obtain the matrix equation where the
transformation for a beam state matrix from the n-th turn to
the (n+l1)-th turn is determined by a transfer matrix. Let us

T =

Ite second element is zero but

Av = F(9g), (3)

~
suggest that the transfer matrix of any turn is M for

if‘aw:.n




unperturbed machine and the transfer matrix from DK to PU is
ﬁ-in which the phase advance between these two points is
equal to 0. It is necessary to note that all elements for
these +two matrices depend on ®W. The DK effect at the
azimuthal angle wK to be determined above as AV(@K) will be
defined further at the n-th turn as matrix AV[n]
account all these assumptions we can write

\ Vin+1] = MUIn] + QATAV[n1, (4)
where 0[n] = 0(@P+2In) is the column matrix determining the
beam center state at the azimuthal angle @P at the n-th turn.

Taking into

Before solving (4) it is necessary to determine the
column matrix AV[n]. In accordance with feedback structure
scheme the kick strength depends on the beam center
displacement in PU position and on the PU-signal

transformation in feedback electronics. Let us suggest that
at the n-th turn the input voltage Uin[n] at feedback is
proportional to a beam center deviation in PU. Hence,

Ugylnl = K Rev[n].

put
The kick strength will be proportional to
[n] at feedback. This means in (3)
out out[n] For an ideal feedback we: should
write that Uou nl= Uih n]. The time delay T for such feedback
is equal to the time of particle flight from PU to DK; hence
T= (@K @P)/m . Thus, for an ideal feedback the equation for
AV[n] can be written as
AVInd = ¥Vinl, K=K, K_ ..
It is not difficult to obtain the coupling eguations between
'Uin and Uout for other structure schemes of feedback with
digital electronics as discrete time systems/ /. For example,

such equation for a comb filter including p pure delays with

in
the output voltage U

that Av[n] = K

time T and broadband amplifiers with gain b can be written
as Uout[n]= Uln[n]— b Ui [n 1)-...- bppin[n pr). Thus, the
bagic equation for such feedback is given by
g ’( p
A
A0tnd = E@in1 - ¥ b 0tn-m1], (5)
m_.

It is 'essential for equation (5) that the time delay value in
feedback correspondgs to such one when the kick and the PU-

sample Dbelong to: the same particles. Equation (5) for p=0

4

e

responds to the ideal feedback and these conditions can be
realized in broadband amplifier with the linear phase~fre-
quency characteristic. So the growth rate of transverse begm
instability depends on 0 then the X value depends on ®, too.
detailed about K
characteristic in the radiotechnical sense has been performed
in/z/.

Substituting (5) into (4) we get the following eguation:

: r

Mtn1 + QKAT[VIn] - 2 b Vin-m]].

More discussion and gain-transfer

Vin+1] = (6)

As in/l 2/ the matrix equation (6) w1ll be solved using Z-

transform/ /mfor segquence V[n].

A A -n A 1 A n-1
V(z)= ) Vin1z™®, ¥tn1 = — [¥(z)2""az. (7)
2%1 C
n=0
Here C is a closed curve surrounding all 51ngular points of
V(z) on complex z-plane. This method 1is convenient for
analyzing different structure schemes of feedback systems
with digital electronics and has wide applications for
discrete time systems.
Using the theorem about calculating the - circulation

integral by its singularities we can write:

Vinl= 2 Rez Q(Zk)z;—1.

k
It is clear from this formula that the stable motion of
particles is possible when all singular points 2z for V(z)
on complex z-plane lie inside the circle with radius R=1:
<
Izkl\l.

egquation

(8)

(7) for (6) and taking into
account 1its properties/e/ we get that all singular points Z)
are the roots of equation/l’z/

det(zkI - MT) =

Using Z-transform

(9)

where
P
M M+QK[1-sz“‘]AT
m1
The decrement for damped oscillations will be determined by

(10)

the singular point with maximum absolute value of Z):
D=—ln(max|zkl).

%



Thus, determining the positions of all the singular points 2y
on complex/z—plane we can find parameters of a damper system
where betatron oscillations are stable and calculate the
‘decrement for damped transverse oscillations of particles in

the accelerator.

CLASSICAL TRANSVERSE FEEDBACK SYSTEM

A classical transverse feedback system corresponds to the
ideal feedback with p=0 in (10). In this case M =M+QEAT and
singular points z, when |AQ(W) [«Q are .

z,= cos(2%@)+(K/2)sin(0%Q) =

+ i V/Tsin(216)-(i/2)cos(ala)]z—i2/4. (11)
It is not difficult to see that for K=0 we get zkzexp(iiZ%a).
(8) we find that oscillations are stable if
coincides with the the
in the theory of betatron motion of

Hence, from
Im@=0. This
stability criterion
particles in the accelerator. When Im§=0, the maxlzkl
versus K for 0.62<aRea<1.62 and Re5=70.31/3/ are shown in
Fig.1. 1In this of « the
oscillations is obtained for negative values of i. It is easy
to find that the sign of £ in stable region of parameters
coincides with #=sign(sin((2-0{)TReq))
&i>0. The damping is absent . for such PU-DK distances when
d%ReE:Z%Reé—ﬁm, where m 1is integer -that is less  than 2Re§.
When betatron oscillation phase advance from PU to DK is in
the neighbourhood of %m+%T/2 the damping rate has maximum

famous result for

,values

region damping of transverse

and we always have

values (curves 5,6,7 and 8 on Fig.l1). It is necessary to

emphasize that .the highest damping
(2—&)%Re§=103.377% not for 103.5%. This result differs a
little from statement/7/ about distance from PU to DK for the

rate occurs for

highest damping rate.

When the instability occurs, the stable regions for K are
narrowing [ Im@}
(2—a)%Re5=%m+x/2 shows such dependences.
from Fig.2 that for |[Im@|>0.08 a classical feedback cannot
damp thelinstability. To prevent fast instability the damper

when is increased. Figure 2 for

It has been seen
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system including two pairs PU and DK connected by feedback

must be used. Thus, for UNK-I such system damps the
transverse instability with |Im§[=0.l/z/.
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values versus K for dRe§=0.62+0.1(n—i).

The digits near curves are n-values.

Fig.1l. .The max|zk|
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Fig.2. The maxlzkl values Fig.3. The maxlzkl values

versus K. |Im@)=0.1(n-1). versus K. ORe@=0.62+0.1(n-1).
OXRe@=1.12%.
The stable regions for K with different ., when

lIma!=0.02, are shown in Fig.3. Aé can be seen from Fig.3 the
instability is not damped for small values of ¢ that differs
from dependences in Fig.l1l. Thus, when the distance from PU to
DK is (2—d)1Rea=1m+%/2 (curve 6 in Fig.3), the damping occurs
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for |K|>0.23. The highest damping rate for |ImQ|=0.02
corresponds to (2—d)1Re5=108.844% which differs from PU-DK

distance in the same rate for Ima=0.

FEEDBACK SYSTEM WITH DIGITAL NOTCH FILTER

The feedback with a notch filter for p=I in (5) will be
considered further. In this case for (10) and for |AQ(W)|«Q
we obtain from (9) the following cube equation for Zyt

2y - 2[cos(21@)+ (K/2)sin(ax®)]2z5 + [1- Ksin((2-0)7d)]z,+
+ bK[sin((2-0)%Q)+ sin(axQ)]= 0, (12)
where b=b1. It is easy to see from (12) that the roots of the
reduced equation with b=0 are given by (11). For non-zero
values of b we have three roots Z) which can be found by
Cardano formula. It is necessary to emphasize once more that
the stable region and the damping rate are determined by the

maximum absolute value of z, among all three values.
WRTZK] HARTZKT
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Fig.4. The maxlzk| values versus K. a%Rea=1.12%. b=0.1(n-1).

~

Figure 4 shows the maxlz | values versus K for
(2-&)%ReQ-%m+%/2 when the instability is absent (ImQ 0) and
occurs (]Im@|=0.02). So the notch filter is used to weaken
the influence of signals with frequencies multiple to
revolution frequency. And that is why all curves in Fig.4 are
shown for b>0. It is8 necessary to remind that the maximum

effect of such a filter will be for b=1/1/. Figure 4 shows

8

PRy

*

~ that the stable regions for K are narrowing when b increases.

At the same time it is necessary to note that for small K the
damping rate is larger than its values for b=0. Figure 5.
shows the maxlzkl values versus K for different PU-DK
distances. It is necessary to emphasize that the highest
damping rate (curve 2) will be for WXReQ=0.826% (when Im5=0)
and for O%ReQ=0.849% (when Im@=0.02).
that for the smaller O (curve 1) the damping rate quickly

It can be seen also

decreases. Due to this reason it is difficult to realize the
regime with the highest damping rate. The PU-DK distances as
(2—&)%Re5=%m+%/2 or near this values are preferable (curves
4, 5, 6) because usually the damping regime corresponds to

small values of K for acting accelerators.
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0.3 i i L u L X4 jo.3 l { L i | K
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Fig.5. The maxlzkl values versus K for OReQ=0.754+0. 1(n-1).
ReQ 70.31. b=1.

CONCLUSION

Having been obtained for the classical transverse feedback
system in the accelarator, equation (4) including the kick
effect on particle motion and equation (5) corresponding to
the PU-signal transformation with digital electronics in
feedback have been efficiently solved using 2Z-transform
method. This method may be easily used for more complicated
structure schemes in feedback systems. The simplicity of

obtained solutions allows one to provide optimization of

9



damper systems for different ﬁarameters without intricate
calculations. At the same time, it is necessary to note that
final <choice for PU and DK positions and for filter
parameters may be done after theoretical investigation of the
damper system capacity for operation in the presence of

different external perturbations as it has been analysed

1n/1/2

ACKNOWLEDGEMENT

The author wishes to thank I.N.Ivanov (JINR), I.L.Korenev
and L.A.Yudin (Moscow Radiotechnical Institute of the USSR
Academy of Sciences) for support and for fruitful

discussions.

REFERENCES

1. Zhabitsky V.M. - JINR P8-99-91, Dubna, 189391.

Zhabitsky V.M. et al. - JINR P9-91-839, Dubna, 1991.

3. Brianti G. et al. - Design Study of the Large Hadron
Collider (LHC). CERN/AC/DI/FA/90-06, 18990.

4. Zotter B., Sacherer F. - In: Theoretical Aspects of the
Behaviour of Beams in Accelerators and Storage Rings.
CERN 77-13, Geneva, 1977, p.175.

5. Balbekov V.I., Gertsev K.F. - IHEP 87-120, " Serpukhov,

‘ 1987.

6. Siebert W.McC. - Circuits, Signals, and Systems. The MIT
Press, 1986.

7. Mohl D. - In: CERN Accelerator School. Antiprotons for
‘Colliding Beam Facilities. CERN 84-15, Geneva, 1884,
p.97.

Received by Publishing Department
on April 9, 1991

10

'maGMuKMM BM. e M"~ e R o i:kj”‘ £9-91-156 - |-

MCCHEAOBaHMe KNaccu4eCKor CUCTeMbl nOAaBﬂeHMR
nonepeyYHbx KOﬂeﬁaHMM nyvyka B ycxopMTene '

.| -€ ncnonb3osanveM . Z-npeobpa3zosaruna ~ s \ )

ﬂnn KNaccu4ecKon cucTemMbl ﬂOAaBHEHMﬂ nonepeHHux Koneﬁanm nyHKa ‘B yCKOpM'
Tene nony4eHsl ypaBHeHWUs,' quruaawmue AedcTBue KoppeKTwpywmero AnnonbHOro
MarHuta u npeoﬁpaaoBaHMe CUrHana c- AaT4vKa NonomeHws LUEeHTpa -TAKeCTU nyuxa

‘8 yenvm oﬁpaTHou cBA3U Npn undposoil obpaboTKe curHana.. .. - PeleHna aTnx.-
 MaTpUYHBIX yPaBHEHWiA - HallAeHbl C .UCMONb30BaHWeM OAHOCTOPOHHero Z- npeoﬁpaaoaa--
HUA, KOTOPOEe WMPOKO MPUMEHAETCA ANSA ‘aHanu3a CUCTeM. ANCKPETHOro BpeMeHN.

- MlonyyeHHbie peweHUA NpoOaHanM3vpoBaHs ANA naeanbHoi uenw: 0GpaTHOW -CBA3N U ans

tenu ¢ ¢Manp0M Tuna rpebeHvartoro. HaMAEHH ycnosus crabunbHoro ABVMEHUA
YACTUL, NysiKa -ANA TaKUX cUCTeM MOAaBNeHUA. [lonyyeHbl :BennuYUHL AEKPEMEHTOB 3a-

- . TYXaHUAa nonepevHbix KoneﬁaHMH ANA. pa3nU4HbIxX pacCcTOAHWA Mexay AATYMKOM nono=,
7 KeHnAa. n TonkateneM. anBOAﬂTCﬂ OﬁﬂaCTM yCTOMNMBOCTM n.rpaduku pasnuUuHLIX “3a-

BUCUMOCTel ansa AereMEHTOB 3aTyxann KoneﬁaHMM nwaa 8 npOEKTMpyeMOM yCKO'

“.puTene LHC {UEPH). :
i Paﬁora 8bNONHEHA’ B naﬁoparopwm caepxaucoxwx 3Heprmm OMHM

" Coobuiettne OB beRrHEHHOTO HHCTHTYTA AREPHBIX Hecnenoaaijuﬁ. Jy6ua 1991 -

iJINR

7;Zhab1tsky V. M A LR 0 E9-91-156 -

Theoretical Treatment’ of a C]ass1ca1 Transverse |

\‘kFeedback System Using Z-Transform

~Theequation 1nc1ud1ng the: k1ck effect and the equat1on correspond1ng

“ to'the pick-up.signal transformation with digital. electronics’ in feedback
are obtained .for a.classical transverse feedback system in an accelerator.
- The solution of these matrix equations has been found using Z-transform
to.be applied widely for the analysis of discrete time systems.These solu-
“tions are analyzed for an ideal feedback and for a feedback with a notch

filter. The stability criterion for such damper systems is obta1ned The

“'damping rates for different distances from p1ck—up to kicker are found.

The stability criterion and the dependences on graph1cs for damp1ng rates
are shown for LHC (CERN)

The 1nvest1gat1on has been performed at the Particle Phys1cs Laboratory,
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