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INTRODUCTION 

The coherent transverse beam· oscillation damper systems 

are used in all charg~d particle acc.elerators to prevent 

particle. losses due to transverse instabili tie's and to damp 

trans.:i:erse inje;tion oscillatio~s~ Theoretical investigation 

of the damper system for UNK-I · has been carried _out using 

Z-tr.aneform · method . of solving the problem .of .coherent 

transverse oscillation dampinef1 •21 . ·• It baa -b~en. found/ that 

such system including' two pairs of, pick.:.up elect~odee (PU) 

and damping kickers (DK) connected by, delayed negative 

feedback with· digital electronics damps the transverse 

inst~billty: with the increment of' about O. lW . 'But in many 
' ' . '' ' 0 ' ' ' 

acting and bf:ing designed accelerators the_: growth rate· of 

transverse oscillations ie' more slower. and a classical 

. ; transverse feedback system. with one PU and DK connected by 

feedback _with di_gital .electronics. is enough for damping. In . 

, this article the equations including the kick effect and the 

PU..'.signal : transformation in feedback a~e "obtained.· 'Th~ 

solvin~ of these equations. is carried .out using Z-transform 

meth~d- The results _are analyzed for an ideal_ feedback and 

for a.feedback with·a notch filter.All numerical results are 
' /3/ ' made for LHC • · . 

DAM;l?ER SYSTEM
1 

CONFIGURATION. AND BASIC EQUATIONS 
, ·, ', 

A · classical transverse feedback system for each of , two 

directions of beam tr~nsverse . oscillations inciudes 'one PU 

and DK connected by. delayed negative feedback _where the 

signal from. PU transfers to DK in opposite direction to the 

beam motion. 

As in12 •41 the equation of beam center oacillationa for 

complex value of deviation vfl3 fr~m the· closed orbit can be 
written in the following ·form: 

2~ ·· 2A,fll'•. , 
d v , ~2~ Q J.JF J.J · 
-- + Q V 
drp2 

2 F ,_ 
m'( v- ext • 
>, 0 0. 

Q:;, Q + M(W), (1) 

where (v,cp) are generalized co-ordinatea•in normalized phase 

apace to be applied;for describing the transverse beam ~oti~n 
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in accelerator; mf
0

v
0 

is the longitudinal momentum of a beam 

particle which ha~ the angular frequency W
0

; ~ is the 

normalized betatron wave length; Q is the number of betatron 

oscillations per turn; AQ(W) is the complex tune shift for Q 

to be conditioned by an electromagnatic field of the 

displaced beam and to be proportional to transverse coupling 

impedance z
1
141. The sign(~) means that the complex value v 

concernes the travelling wave of transverse displacement with 

the azimuthal wave number k and complex angular frequency W. 

The physical value of displacement is the real value of v. 

For particle oscillating 'in transverse direction its 

deviation vy'ff will be equal to displacement vy'ff of the beam 

center for eigenwave: 

w = wo(k - Q - AQ(W)). (2) 

The damper system effect is characterizied by Fext force. 

Out of the DK region, when Fext=O, we have in {1) an ordinary 

betatron equation where the frequency, however, is the 

complex value and depends on W. In the DK region we must 

solve the differential equation {1) with non-zero right-hand 

side. As in/l/ we shall suppose that the kicker is short. 

Then we can describe the DK effect in a matrix form11 •51 : 
A + AA - A A 
V((f)K) = IV((f)K) + QTAV{(f)K), 

A A 

where I is the unit matrix and the matrix Tis given by 

T = [~ ~]-
A ~ 

In column matrix V((f)) the first element is v{(f)) and the ~ A 
second one is equal to dv{(f))/d(f). The column matrix AV((f)K) 

describes the kicker effect. Its second element is zero but 

the first one Av is given by 

1Kta; 
Av = ,J F((f)K), 

m'(o o 

(3) 

where lK is the kicker length. Taking into account11 •21 it is 

not difficult to obtain the matrix equation where the 

transformation for a beam state matrix from then-th turn to 

the (n+l)-th turn is determined by a transfer matrix. Let us 
A 

suggest that the transfer matrix of any turn is M for 

t,;~1,r,;:;,Sll.'· ,:i-3! l\'.lCT•:rrr• 

1 fj)KJ- ,~:. 
' f 

.,, ,".~ .. 
/' 
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unperturbed machine and the transfer matrix from DK to PU is 

A. in which the phase advance between these two points is 

equal to <X.X. It is necessary to note that all elements for 

these two matrices depend on W. The DK effect at the 
" azimuthal angle ~K to be determined above as hV(~K) will be 

defined further at then-th turn as matrix 6V[n]. Taking into 

account all these assumptions we can write 
A AA AA A 

\ V[n+l] = MV[n] + QAT6V[n], ( 4) 

" " where V[n] = V(~p+2Xn) is the column matrix determining the 

beam center state at the azimuthal angle ~pat then-th turn. 

Before solving (4) it is necessary to determine the 
" column matrix 6V[n]. In accordance with feedback structure 

scheme the kick strength depends on the beam center 

displacement in PU position and on the PU-signal 

transformation in feedback electronics. Let us suggest that 

at the n-th turn the input voltage U in (n] at feedback is 

proportional to a beam center deviation in PU. Hence, put 

UJn[n] = KinRe~(n]. The kick strength will be proportional to 

the output voltage U t[n] at feedback. This means in (3) 
OU 

that 6v[n] = Koutuout [n]. For an ideal feedback we, should 

write that U ut[n)=U. [n). The time delay~ for such feedback o in 
is equal to the time of particle flight from PU to DK; hence 

~:<~K-~P)/W
0

.' Thus, for an ideal feedback the equation for 

hV[n] can be written as 
~ ~A -

6V[n] = KV[n], K=KinKout· 
It is not difficult to obtain the coupling equations between 

Ui and U t for other structure schemes of feedback with 
n OU /6/ 

digital electronics as discrete time systems . For example, 

such equation for a comb filter including p pure delays with 

time T and broadband amplifiers with gain b can be written 
0 • . 

as Uout[n]= Uin[n]- b1Uin[n-1]- ... - bpUin[n-p]. Thus, the 
basic equation for such feedback is given by 

p 

6V[n] = KLV[n] -m~
1

bmV[n-m]], 

It is essential for equation (5) that the time delay 

feedback correspond13 to such one when the kick and 

sample belong to the same particles. Equation (5) 

4 

(5) 

value in 

the PU-

for p=O 

\ 
I 

responds to the ideal feedback and these conditions can be 

realized in broadband amplifier with the linear phase-fre

quency characteristic. So the growth rate of transverse beam 

instability depends on W then the K value depends on W, too. 

More detailed discussion about K and gain-transfer 

characteristic in the radiotechnical sense has been performed 

in121 . 
Substituting (5) into (4) we get the following equation: 

p 

V[n+l] = MV[n] + QKAT[v[n] - L b V[n-m]]. m 
(6) 

/1 2/ . m=1 
As in ' the matrix equation (6) will be solved using Z-

transform16100for sequence V[n]: 

" " -n " 
1 

" n-1 V(z)= l V[n]z ' V[n] = - Jvcz)z dz. 
n=0 2Xi C . 

(7) 

Here C is a closed curve surrounding all singular points of 

" V(z) on complex z-plane. This method is convenient for 

analyzing different structure schemes of feedback systems 

with digital electronics and has wide applications for 

discrete time systems. 
Using the theorem about calculating the circulation 

integral by its singularities we can write: 

" , " n-1 
V[n]= £ Rez V(zk)zk 

k 
It is clear from this formula 

when all 

that the stable motion of ,., 
particles is possible singular points zk for V(z} 

on complex z-plane lie inside the 

lzkl~l. 

circle with radius R=l: 

(6) and taking 

(8) 

into Using Z-transform (7) for equation 

account its properties161 we get that 

are the roots of equation/l, 2/ 

all singular points zk 

,., ,., 
det(zkI - MT)= 0, (9) 

where 
p 

MT= M + QK[l - L bmz;~AT. ( 10) 
m=1 

The decrement for damped oscillations will be determined by 

the singular point with maximum absolute value of zk: 

D=-ln(maxl zkl). 
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Thus, determining the positions of all the singular points zk 

on complex z-plane we can find parameters of a damper system 

where betatron oscillations are stable and calculate the 

·decrement for damped transverse oscillations of particles in 

the accelerator. 

CLASSICAL TRANSVERSE FEEDBACK SYSTEM 
A classical transverse feedback system corresponds to the 

ideal feedback with p=O in (10). In this case MT=M+QKAT and 

singular points zk ~hen l~Q(W)l«Q are 

zk= cos(2XQ)+(K/2)sin(aXQ) ± 

± i /1,...[ s_i_n_(_2_X_Q_) ___ ( ~-K/-2_~_) c_o_s_(_a_X_Q_) ]-2 --i2-;--,~. ( ~ 1) 

It is not difficult to see that for K=0 we get zk=exp(±i2XQ). 

Hence, from ( 8) we find that oscillations are stable if 

ImQ=O. This coincides with the famous result for the 

stability criterion in the theory of betatron motion of 

particles in the accelerator. When ImQ=O, the max I zk I • values 
~ ~ ~ /3/ versus K for 0. 62<aReQ<l. 62 and ReQ=70. 31 are shown in 

Fig.1. In this region of a the damping of transverse 

oscillations is obtained for negative values of K. It is easy 

to find that the sign of K in stable region of parameters 

coincides with re=sign(sin((2-a)XReQ)) and we always have 

reK>O. The damping is absent for such PU-DK distances when 

aXReQ=2'.1CReQ-Xm, where m is integer that is less than 2ReQ. 

When betatron oscillation phase advance from PU to DK is in 

the neighbourhood of '.JCm+X/2 the damping rate has maximum 

values (curves 5,6,7 and 8 on Fig.1). It is necessary to 

emphasize that the highest damping rate occurs for 

(2-a)XReQ=103.377X not for 103.5%. This result differs a 

little from statement171 about distance from PU to DK for the 

highest damping rate. 

When the instability occurs, the stable 

narrowing when IImQI is increased. 

regions for Kare 

Figure 2 for 

(2-a)XReQ=Xm+X/2 shows such dependences. It has been seen 

from Fig.2 that for I ImQI >0.08 a classical feedback cannot 

damp the instability. To prevent fast instability the damper 
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system including two pairs PU and DK connected by feedback 

must be used. Thus, for UNK-I such system damps the 

transverse instability with IImQl=o.1121 . 

~\\~I 
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Fig.1. -The maxlzkl values versus K for aReQ=0.62+0.l(n-1). 

The digits near curves are n-values. 
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Fig.2. The maxlzkl values 

versus K. IImQl=O.l(n-1). 

a'.JCReQ=1.12X. 
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Fig.3. The maxlzkl values 

versus K. aReQ=0.62+0.l(n-1). 

The stable regions for K with different a, when 

IImQl=0.02, are shown in Fig.3. As can be seen from Fig.3 the 

instability is not damped for small values of K that differs 

from dependences in Fig.1. Thus, when the distance from PU to 

DK is (2-a)XReQ=Xm+X/2 (curve 6 in Fig.3), the damping occurs 
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for IKl>0.23. The highest damping rate for IImQl=0.02 

corresponds to (2-CX.)XReQ=103. 344X which differs from PU-DK 

distance in the same rate for ImQ=O. 

FEEDBACK SYSTEM WITH DIGITAL NOTCH FILTER 

The feedback with a notch filter for p=l in (5) will be 

considered further. In this case for (10) and for l~Q(W)l«Q 

we obtain from (9) the following cube equation for zk: 

3 - ~ - 2 - -zk - 2[cos(2'.ltQ)+ (K/2)sin(CX.XQ)]zk + [1- Ksin((2-<X.)'.ltQ)]zk+ 

+ bK[sin((2-CX.)'.ltQ)+ sin(CX.'.ltQ)]= 0, (12) 

where b=b
1

• It is easy to see from (12) that the roots of the 

reduced equation with b=O are given by ( 11). For non-zero 

values of b we have three roots zk which can be found by 

Cardano formula. It is necessary to emphasize once more that 

the stable region and the damping rate are determined by the 

maximum absolute value of zk among all three values. 
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0.5 
0.4 
0.3 
0.2 
0.1 

ReQ:70.31 

IIHQl=0,02 
o.n, 1 1 I 1 1 1 I K Ii 

-2.1 -1.B -1.5 -1.2 ~.9 ~.6 -0.3 

Fig.4. The maxlzkl values versus K. CX.'.ltReQ=l.12X. b=O.l(n-1). 

Figure 4 shows the max I zk I values versus K for 

(2-CX.)XReQ=Xm+X/2 when the instability is absent (ImQ=O) and 

occurs ( I ImQ I =O. 02). So the notch filter is used to weaken 

the influence of signals with frequencies multiple to 

revolution frequency. And that is why all curves in Fig.4 are 

shown for b>O. It is necessary to remind that the maximum 

effect of such a filter will be for b=l/l/. Figure 4 shows 
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that the stable regions for Kare narrowing when b increases. 

At the same time it is necessary to note that for small K the 

damping rate is larger than its values for b=O. Figure 5 . 

shows the maxlzkl values versus K for different PU-DK 

distances. It is necessary to emphasize that the highest 

damping rate (curve 2) will be for CX.'.ltReQ=0.826'.lt (when ImQ=O) 

and for CX.'.ltReQ=O. 849'.lt (when ImQ=O. 02). It can be seen also 

that for the smaller a ( curve 1) the damping rate quickly 

decreases. Due to this reason it is difficult to realize the 

regime with the highest damping rate. The PU-DK distances as 

(2-CX.)'.ltReQ='.ltm+'.lt/2 or near this values are preferable (curves 

4, 5, 6) because usually the damping regime corresponds to 

small values of K for acting accelerators. 
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ReQ=70.31. 

maxlzkl values versus K 
b=l. 

~ for CX.ReQ=0.75+0.l(n-1). 

CONCLUSION 

Having been obtained for the classical transverse feedback 

system in the accelarator, equation ( 4) including the kick 

effect on particle motion and equation (5) corresponding to 

the PU-signal transformation with digital electronics in 

feedback have been efficiently solved using Z-transform 

method. This method may be easily used for more complicated 

structure schemes in feedback systems. The simplicity of 

obtained solutions allows one to provide optimization of 
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damper systems for different parameters without intricate 

calculations. At the same time, it is necessary to note that 

final choice for PU and DK positions and for filter 

parameters may be done after theoretical investigation of the 

damper system capacity for operation in the presence of 

different external perturbations as it has been analysed 
. /1/ in . 

ACKNOWLEDGEMENT 

The author wishes to thank I.N.Ivanov (JINR), I.L.Korenev 

and L.A. Yudin (Moscow Radiotechnical Institute of the USSR 

Academy of Sciences) for support and for fruitful 

discussions. 

REFERENCES 

1. Zhabitsky V .M. - JINR P9-99-91, Dubna, 1991. 

2. Zhabitsky V.M. et al. - JINR P9-91-99, Dubna, 1991. 

3. Brian ti G. et al. - Design Study of the Large Hadron 

Collider (LHC). CERN/AC/DI/FA/90-06, 1990. 

4. Zotter B., Sacherer F. - In: Theoretical.Aspects of the 

Behaviour of Beams in Accelerators and Storage Rings. 

CERN 77-13, Geneva, 1977, p.175. 

5. Balbekov V.I., Gertsev K.F. - IHEP 87-120, . Serpukhov,· 

1987. 

6. Siebert W.McC. - Circuits, Signals, and Systems. The MIT 

Press, 1986. 

7. Mohl D. - In: CERN Accelerator School. Antiprotons for 

•Colliding Beam Facilities. CERN 84-15, Geneva, 1984, 

p.97. 

Received by Publishing Department 

on April 9, 1991 

10 

ti I 

[ 

}l{a611L1K11iii B.M. 
HccneAOBaH~e·Knacc114ecKoiii c11cTeM~ noAaBneH11R 
nonepe4H~X Kone6aH11iii ny4Ka B ycKop11Tene 
c 11cnonb30BaH11eM· Z-npeo6pa3oBaHl1R • 

E9-91-156 -

4nR KnacCl14eCKOiii Cl1CTeM~ noAaBneHl1R nonepe4H~X KOne6aH11iii ny4Ka B YCKOp!,1-
Tene nony4eH~ ypaBHeH11R, Y411T~Ba10U111e AeiiiCTBl1e KOppeKTl1PYIOlllero A11nOnbHOro 
MarH11Ta ~ npeo6pa30BaH11e c~rHana c AaT4HKa nono~eH11R L\eHTpa TR~ecT11 ny4Ka 
'i L1en11 oopaTHciiii CBR311 np11 L\11cjlpoBoiii oopaooTKe c11rHana. PeweH11R sT11x ·. 
MaTpl14H~X ypaBHeH11iii HaiiiAeH~ c.11cnonb30BaHl1eM OAHOCTOpOHHero Z-npeo6pa30Ba
Hl1R, KOTOpoe Wl1POKO np11MeHReTCR AflR aHan113a Cl1CTeM,A11CKpeTHOro BpeMeH~
nony4eHH~e peweH11R npoaHan11311poBaH~ AnR 11AeanbHoiii L1en1106paTHoiii CBR311 11 AnR 
L1en11 C cjl11nbTpoM· T11na rpe6eH4aTOro. 1'1aiiiAeHbl ycnoB~R· CTa6i'1nbHOro AB~~eHl1R 
4aCTl1L\ ny>-iKa AnR TaKl1X Cl1CTeM noAaBneH11R: nony4eH~ Benl1411H~ AeKpeMeHTOB 3a
TyxaHl1R nonepe4.t1~x Kone6aH11iii AnR pa3nl14H~x paccTORHl1iii Me~AY AaT411KOM nono
~eH11R 11 TOnKaTeneM. np11BOARTCR o6naCTl1 YCTOH411BOCTl1 11 rpacjll1Kl1 pa3nl14H~X 3a
Bl1Cl1,MOCTeiii AflR AeKpeMeHTOB 3aTyxaHl1R. Kone6aHl1iii ny4Ka B npoeKrnpyeMOM ycKo-

' p11T~ne LHC ( L\EPH) . 
PaooTa B~nonHeHa·B.naoopaTop1111 cBepxB~coK11x sHepr11iii OHHH. 

Coo6uiem1e 06MAHHeHHoro HHCTHyYTa H.D.epHblX HCCne,D,OBaHHH, ,lzy6Ha 1991 · 
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Theoretical Treatment of a Classical Transverse 
Feedback System Using Z-Transform 

' . 

E9-91-156 

The equation including the.kick effect and the equation corresponding 
to 'thi pick-up signal transformation with digital electronics in feedback 
are obtained for a.classical transverse feedback system.in an accelerator. 
The ~elution of these matrix equations has been found using Z-transform 
to be applied widely for the analysis of discrete time systems.These solu-

, tions are analyzed for an ideal feedback and for a feedback with a notch 
filter. The stability criterion for such damper systems is obtained. The 
damping rates for different distances from pick-up to kicker are found. 
The stability criterion and the dependences on graphics for damping rates 
are shown for LHC (CERN). 

The investigation has been performed at·the Particle Physics Laboratory, 
JINR. . 
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