


INTRODUCTION

A great amount of papers is dedicated to the orpoit theory in AVF

cyclotrons (see e.g. 1,2/}, In these rapers more attention is paid to

the study of particle motion about a fixed radius, assuming that the
radius gain per turn during acceleration is negligibly small

Acceleration is either not studied at all, or is treated separately/3/

Recently several papers on the general theery of accelerated

orbits have appeared. We shall especlally mention the paper by

Hagedoorn and Corsten /4 In what follows an attempt will be made to

develop a similar fermalism for direct application to AVF cyclotrons.
The motion of charged particles in AVF cyclotrons appears to be

one of the most complicated in comparison with the other cyclic

accelerators. Its complete description can be achieved by numerical

integration of Hamilton's equations of motion in the canonical

variables, Fortunately for the accelerator theorists, the role of
different factors influencing the particle trajectory can be usually
put by order of magnitude to some hierarchy. Consequently, taking into
account more and more factors one can get more and mere detailed
description of the trajectory order by order. The study of particle
motion "step by step” is usually well suited with experimental data
and is preferable for its convenient physicail meaning.

1. HAMILTONIAN FORMULATICN OF THE ORBIT THEORY IN CYCLIC ACCELE-
RATORS

It is well known 50 that the Lagrangian of a particle with rest
mass m, and charge g, moving in electromagnetic field, defined by a
scalar potential ¢ and vector potential & is

L = —mocz(l—vz/czll/2 + qv. A - qp , (1.1)

where vedrvdt is the particle’s velocity and ¢ is the velocity of

light in vacuum. The first step is to define the design orbit of the



particle.;;(s), where s is the curve length along the design orbit. If
the external field bas a symmetry plane (median planel), the design
orbit is a plane curve lying on it. The design orbit is completely
determined by the curvature K and the centre of curvature

in every
point.

Define now the natural coordinate system in which the position
vector T(g) is

Tix,z.8) = ?;[s} + xnls) + ég[s)‘ (1.2}

where x is the deviation from the design orbit in the direction of the

unit normal wvector ﬁts), z - the deviation In the directicn of the

unit bincrmal vector'-E(s]. The triple (EJB,?] (T being the wunit

tangent vector) defines a local coordinate system along the design
orbit, and satisfies the equations

"%'{s)=d'r'o/ds ; disds=-Kn ; dnsds=KT + kb : dbsdg=-kiy

called the Fresnet formulae, where k(s) is the torsion {k=0 for plane

curves}. Using the expressions

Vedr/dt = v R +v b+ v (14Kx)T
o z S

(1—v2/c2)1/2=(1—[vx2+v22+§sz(1+Kx121/c2}1’2

e

VAV A+ v A+ {1+4Kx)v A
X X Z Z 5 5

and the relation

H= ViPyt VPt VaPeT L.

where

_ _ 2, 2.-1s2 ] ~
P7 aL/avu- movu{l v©/e™) + un ; u=(x, z)

_ _ 2. 2, 2.-1/2
p = 8L/av_= movs(1+Kx) {(1-v"r/c™) + q(1+Kx]AS



Wwe can write down the Hamilfonian w as

1
H = mocz(lkvz/czi 2, qe

or

_ 22 Y 2 2,102
H = c{mO oS pr qAX] + fpz qu) + (ps/(1+Kx) qA 17} +oagp (1.3)
s AES . -
It is well known that a new Hamiltonian can be consiructed
from {1.3} in the new independant variable S, 50 that t, H become pew
cancnical conjugated variables.

H=—ps=—(1+Kx){(H—q@)z/cz—mozcz-(px—qAx)Z—[p —qA ]2}1/2 1+Kx)qA 4

Suppose now that the vector potential A consists of two partsrAO

the guiding magnetic field of the accelerator and A - the accelera-

ting field. The vector potential A and the scalar potential ¢ obey

the Lorentz gauge condition

div A+ ¢ sp/at = 0. (1.5)
Moreover we have
B=rota : E_=-gradp - dA S8t 5 B =rotA . (1.6)
Q a a

The next step is to compute A . In d01ng 50 we review the method

of Teng following the paper by T. Suzuk1 Consider a gauge condition
of the form

XA + zZA = 0.
ox 0z
We get

A =-zF(x,z,s) : A =xF(x,z,s) ; A =Gix,z,8), (1.7)
ox oz o0s

where T(x,z, 8] and Glx,z,s) are yet unknown functions. The first eq
(1.6) yields

2F + (%8/8x + z3/0z)F = B

GKx[l+Kx)_1 + (x8/8x + z8/82)G = zBX - xB



Equations [(1.8) enable us to apply Euler’s theorem for homogenecus

terms, supposing that F and G are series of homogeneous polinomials in
x and z, so that

F =1/2B (O)+ 1/3B (1)+ 1/74B (2]+ -
s s s

6 =(1+xe238. a2z Vet e 2
= x > X

{1.8a)
~ (0) (1) (2)
GZ—(1+KX/2]BZ +(i/2+KX/3)B7 +(1/3+Kx/4)R? + L.

G = {26 - xG ) (1+Kx) !,
= Z

where B(D],B[lj,B(Zl etc. denote homogeneous polinomials in x and z of
orders 0,1,2 etc. Neglecting the beam current, ﬁaxwell's equations for

-

B are

rotg=0 : divEZO. (1.9)
The first equation (1.9) gives the opportunity to express the field by
a scalar potential ¢ as

B = grad ¢ (1.10)
and the second equation is simply the Laplace equation for i

Ay = 0. (1.11)

If we use the midplane symmetry the scalar potential is odd in z and

yi=la +a_x+a x2/2!+...)zﬁ(b +b, %+b x2/2!+,..)za/3!+[c +c x+_,_)zs/5!+
o 1 2 o 1 2 o 1

+ L. (1.12)

where the coefficients are functions of s and b's, c’s etc. are

related to a’s by equation (1.11) as

b0= a, + Ka1+ a2

PR ol
b]——ZKaO K a,'+ay K a1+Ka2+a3 (1.12a)

il w I "oy f 3, P—
bzméK a +6KK a 4Kal 2K 3, +2K a]+az 2K 32+Ka3+a4

The prime denotes differentiation with respect to s. The coefficients

a’'s have the following simple meaning

2 2
= H = ; = > - 1.12b
a fBz)x:z:o Poay {aBz/aX]x=2=o ;oA (8 Bz/ax )x=ztc { )



It is easy to see from ags. (1.10) and (1.12) that the magnetic field
can be computed if Bz evaluated in the median plane is known, so we
can {ind the functiens F and G by {1.8a) and therefore complete the
calculation of E; using {1.7).

The acceleraling structure in AVFE cyclotrons is usually a dee
system where I;tO, and ¢=0. Taking the midplane symmetry into account

we casl the potential ¢ in the form

2 4
¢(x,z,s)=AO+A1x+A2x2/2!+A..—(BO+B1x+B2x2/2!+...]z /2!+[CO+C1X+...]Z /4,

(1.13)
If the series (1.13) is substituted in the Laplace equation (1.11) for

¢, the relations between B's C’s etc. and A’s obtained, are exactly of
the form (1.12a).

Let us introduce a canonical transformation by the generating
function

SZ = x§x+ z§;+ Eo + q felx,2,5,0)do,
where o=-t is a cancnical variable conh jugated to H. Then

% = 8s_s6m Z = 85 /8p = i T = 85./8E =
X = SSZ cpx— X ; z = 5 pz— z ' o = 2 =g

—

-~ -~
P = oSz/au =p,q IEu{x,z,s,s)da = puquu : u=(x, z) (1.14)

H = 352/36 =E + gqpix,z,s,0¢) = mowc2+q@(x,z,s,w),

where Eu=—6$/5u i u=(x,2). The new Hamiltonian is

ﬁ=k[1+Kx){Ez/cz-mozcz-(BX—QE;—qAOX)Ziiﬁz—éié—quz)Z}I/Z—q(1+Kx)AOS—
-c[(1+KX)Es (1.15)
with the notation
E;(x,z,s,aJ:fEs(x,z,s,a}dc=~(l+Kx]_1I6w[x,z,s,a)/asdc (1.16)
In the new variables
$u=ﬁu/p0:§u/(moc] powslx,z) ; T=eco nt/EO=E/(moc2) (1.17)

the scaled Hamiltonian reads as
Bel/p == (1) (5P-1- (5L 5F a 125 “GE_-Ga_ V2 ke -

o X ¥ o ox —Z z OZ os
—q(l+Kx)ES (1.18)

where E¥q/po. The termg EX and E; are small compared with AO and AO
and may be omitted. The part of ¥ in (1.18)

Hb is

—

depending on AO denoted by

—~—

- T 2 - 2,172
H=Br{1+x){-1 (p e 2 (p,-eA_ 171 €A}, {1.19)
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where

-~ Fal
e—q/p—q/(poBy) ; pu:pu/pzpu/[pOBy) ; u=(x,z) . (1.20)

The relative momenta Bx and 32 and the deviations x and z are usually

so that the square root in (1.19)
series in x,px,z,pz.

small, may be expanded in power
. 7
After quite tedious calculations one finds/
o =~ R — B —~ ) 1
iy By HHy Py e (.21

with
o= By
H1=Bx(€a0*K]x
H2=Bz(EX2+EZZ)/z N cBr[(KaO+al)x2-alzzl/2
] =Bakx(p. 245 %) /2 + Bya ‘z{zp -%p )/3 +
3 ETAX px pz € Brao z pr sz
+ eByl(Ka +a/2)% - (Ka,+a_+b /2)x22]/3 (1.22)
1 72 172 "o

—2_22 , , — 2 22, 2 2
H4=Baf(px *p, } /8+€By(KaD +3a1 ]xz[sz—xpz)/12+c Bgao 27 (% 42" ) 718+

.4 : 22 4
*EB?[(Ka2/2+a3/6)x —(Ka2+a3/3+Kbo/2+bl/2Jx z +b12 /6174

Let us now briefly review some basic relations from the theory of

AVF cyclotrons. The isochronous field is given by/S/

B, (R) = B(OY(1-R% R 2)"/2 (1.23)
s ]
where

B(O)={m w )/q=(A/Z) (m w /e : R=1/K : R =c/w (1.24}
oo P o @ [

and vy s the angular frequency of motiecn on the design orbit, A - the

mass number, Z - the charge state, mp — the proton mass, e - the ele-
mentary charge.

The curvature ¥ of the design orbit §s found from the
relation

,or K=(BeRm)_1 (1.25)

being the design momentum and the design relative
velocity of the particle respectively. Furthermore/I/

(B)),_ =B (R,#)=B(R)[1+F(R,8)],
Z Z=0 z

K=[qBiS(R]]/pe
the P, and Be

(1.26)
where

-— _s 2 -
B(R) = <B_{R,9)> = (zn) IJFBZ(R,ﬂ)da (1.27)



FIR.9)=[B, (R, 9)-<B (R, $)>1/<B (R, 8)>=1B_(R.8) E(R)]/B(R) (1.28)
z .
and ¢ is the azimuthal angle depending on the curve length, soc that

dd = Kds . {1.29)

The function F(R, %) is periodic in ¢ and may be Fourier analized to
give

F(R,9) = ¥ [AH[R)cosnﬂ + BU(R)Sinnﬁ], (1.20)
n

Define now the relative change in guiding field for a deviation
from a fixed radius R

iix,8)=B_(R+x, 8)/B(R) .o B_(Rex, 9)=B(R)u(x,s) (1.31)
whose expansion in Taylor series in x/R reads
p(x,ﬁ):1+u'x/R+u”(X/R)Z/Z!+...+E [(An+An’x/R+An"(x/R]2/2?+._.)Cosnﬁ+
L3
(B B x/ReB " (x/R) %200, )sinng] (1.32)
where
. = bl e 2z D .
u =(R/B}dB/dR ; u”"=(R"/B1d"B/dR etc. (1.33)
G_"=RdG_/dR ; G "=de2G /dR2 etc. (1.34)
n n n n
and G_=(A_,B ). Note that
nonm
Gn’=(R/B]d(BGn)/thp’Gn+RdGn/dR etc. (1.34a)

Usually u’Gn is much smaller than RdGn/dR and therefore eq. (1.34a) is

transformed to eq. (1.34). In the case of N -

flutter profile F(R,#) consists of two parts:

fold symmetry the

the structural part

including harmonics of the form n=kN and a nonstructural part (the

remainder of the sum (1.30}) which we shall treat as a perturbation.

The mean field B(R) can be expressed as

B(R) = Bis{R}[1+AB(R]/BiS{RJ], {1.35)

where AB{R} is a small perturbation to the isochroncus field due to

imperfections of the cyclotron magnet. Let us for convenience write

down some ccefficients a's from {1.12b)
a_=BIRIu(0,9)=B, (1+AB/B. }(1+F)

o is is
al=B(R)(5u/3x]x=otKEiS(1+AB/BiS}(u +F7) (1.36)
i 2 2 ol P
asz(R)(a W ax ]X:oﬁK Eis(l+AB/Bis)(“ +F7)

(n}

where 'V =RMa%ag™



The entire Hamiltonian is obtained if the term —a[(l*Kx]E

. s]x:z:o
is added to Hb in (1.21) and (1.22).

We are not interested here in the
focusing effect of the accelerating gap so we have dropped terms of
higher order in %,z that arise from the last term In (1.18). Involving
thin lense approximation for the accelerating gap we get
~ ~ _ -1 B
qR[(l+Kx)ES]x=2=O— {Z/A)[eUd/(mpc)](kNowO) f(ﬂ]cos(kNOwot/c wo},
(1.37)

where Ud is the dee voltage, k is the harmonic acceleration mode, N

is the number of dees, wo is the initial phase of RF-field, and f(®)
is a function determining the location of accelerating gaps, so that

f{9)= g lé(ﬁ—ao—znp)—5(ﬁ—ﬁo—au—znp)+5(ﬂuﬂo-zn/No—an)l. (1.38)
In equation (1.38) &(x) is the Dirac &-functiecn, ﬂo is the angle
between the reference point of flutter profile and the nearest accele-
rating gap and 6u is the dee angle.

Making profit of eqs. (1.12a), (1.17), (1.20), (t.25) and (1.36)
from (1.22) we obtain
§0=‘R37—[2/A)[eudifmpc)](kNowO)_lf(ﬂ]cos(knowor/c—wo)
HliBezex(14hx)—Byx

o ~ 2 o~ 2 2 2
H2=R(pX P, )/[28?)+Beye(gxx -e,7 1/ (2R}

R R ~
HJ_x(px P, )/(ZBy]+IBeae/(Bz)lzhz(sz—xpz)/(3R]+ (1.39)
3 2 2
+Beare(g3X.x "84, %7 /2)/(3R7)
~ =222 213
Hq— (pX v, Y7/(BKB 7T + ..
where

h =F + AB/B.
1=

x
gx=1+p+F+F+AB/BiS
gzzp+F
hZ = aF/a9 (1.40}

B = g+ Fr (uoeb7) 2
2.2
By, T 9F/807+ K (8K/89){8F/38) + 3(u +p”+F' +F%) |
The Hamiltonian expansion (1.39) describes the motion now in

terms of a new independant variable ® instead of s



2. CALCULATION OF THE DESTGN ORRBIT

Let us now perform a cancnical transformation with a generating
function

= = — .
F2 =xp_ + zp, + [rure][g+ye] (2.1)
so that
= = D = = . = L1
u=dr /apg u ; Py 5F2/5u B R u=(x,z) N (2.1a)
T = anfay = 1T-T : ¥ = aFZ/ar = 3+3e

Assuming that the quantities'?, ¥ are small compared with Te and ye

respectively we cbtain

dr /d6=—R/B ; dx /dg=-(2/4) [eU /[m o )]f(@151n[kN wT, Ao ¥, ) (2.2

and the transformed Hamiltonian reaqs as
- -1 2 _
HO—R? /[23e ¥, )+(Z/A {eUd/(mpc )]kND(ZRm) f#)T cos(kNowOre/c @O]

= T - T
Be?ehxx s Be

R ~2 2 —~ 2 2 3 2
Hy=R(p,“+5 J/(ZBeye]+Beze(gxx -8,z )/EZRJ—Rz(pX *p, /2B "y

e D L2 s 3 a2, 2
H3 (p_“+p )/(ZBeye)+h22(sz—xpz)/(3R)+Beze(g3xx 8, %2 /2)/(3R7)
~ w2202 33
H4 = (pX P, ] /[SKBe 7, )+ L (2.3)

The solution of the first equaticn (2.2) is trivial and we imme-
diately write it down

T, =T _-c(9-86 J/w (2. 43
e eo o] Q

Substitute now (2.4) in the second equation (2.2) and note that the

expressicn f(ﬁ)sin[kNowore/c—@oJ Is periodic in ® with a period ZH/NO.
Therefore

fl®)sinleN_(9-9_ );; J=(N_/m)ia +E[sln@ cospl_(9-6 _)-
—sin($g+kNoﬁ )cospN (-0 o iyt (2.5}

&, =sin(kN o, /2)cos (G viN 8 /2) ;7 0o kN T R t (2.5a)

It is ev1dent from the above equations that the max1ma1 energy gain is

achieved if kN06u={ s+l)m for s=0,1,2,..., that is
1

k= (2s+1)m(N o )70 (2.6)
In this case equation (2.5) becomes
. -~ -1~ . :
f(ﬂJSLn[kNO[ﬁkﬁ0]+wo]—Non 51nwo{1+22 cos(pNO@u/Z)cospNO[ﬁ 9,7%,72)}
P
(2.7
and the second equation (2.2) is written in the form

- -9 - .8
dy_/do AO[1+2§ cos(pNoﬂu/Z)cospNo(ﬂ 8.-8,/2)], (2.8)



where
AO = (N /n]{Z/A)[eU /(m c )151nw (2.9}
Integration of equation (2 8) gives the design energy
¥,oT, +A (9- ﬂ J+2A Ecos[pN 7 /2)/(pN )[sinpN (9-9 -ﬂu/2)+sin(pNoﬁu/2]].
(2.10)

In the case of 3 -n/N eqs. (2.8} and (2.10) are further simplified to
glive

dy sde = A o 1+2F FOSZPN_ (8- ) (2.8a)

e Tan R (8-8_)0n oL o, 5 lsianNo(ﬂ—ﬁo). (2. 10a)

3. INTRODUCTION oF "QUASIEQUILIBRTUM OREIT" AND DISPERSION
Firstly we must note that the term quaSLequllibrlum orbit" may
not be the mogt sulted and one can argue about it
Let us now perform a second canonical transformation with a gene-
rating functien
= (%% )(p +p )+zp +Ty (3.1)
aimlng to cancel the term B 7o h % in H1 The quantity ;; we call the

qua51equilibrium orbit” and po the "quasiequilibrium momentum”. Using
the relations

‘)\c’=";<=+; ; ~=:;+§ (3.2a)
-~ = L X X 7o -~
z =z ; pP=p : T =7 ; =7 {3.2b}

1t is easy to get
2w 2 ~ —~
/de s =-
d X, do ¥, (dye/dﬂ)(dxo/dﬂ)+gxxo th

: po=[Beye/R)[dxo/d0J 3.3
and

_— —~
H1 *?X/Be F3.4)

The 1last canonical transformation ig gElven by the generating
function

P, (& 301+ 7 /RJ(dnxdmxz-se;e(zn}“n(dn/dm?zfz'szﬁ;,?. (3.5)
Noting that

=

et P, p+(51r/R)(dD/dﬂ)3 cZ=2 ”;'5:82 (3.52)
—r+i§ D-(8_7_/R)(dbrde)x ; =7 (3.5b)

10



we have

2 2 -1 B 2 -1
d7D/an ey (dye/dﬁl(dD/dﬂ]+ng—R[Be v, (3.86)
A = _
H =R -D(2g )7 137 (3.7)
~ ~ 2 s3] e

A2 “~2 “2
H_ =R T QB - -g R
2 [pX * Z ]/(‘— G?EJ Be?e(gxx ZZ )iz A

The quantity D is called the dispersion function of the cyclotron

4.CALCULATION OF THE "QUASTEQUILIBRIUM ORBIT" AND DISPERSION
The quantity AO in (2.9} is quite small so that (dge/dﬁ}/ze« 1
for a wide range ‘of energies and we can explore the quasistatic appro-
ximation. This means that instead of R in egs. (3.3) and (3.6) we take
the mean value of R:
2 3,-1

<R><R_[1+mA_(B_ Ty ") 1 (4.1)

. . . 737,
The condition for the gap-crossing resonance is

ZpNo = mN =i 1, {4.2)
where p and m are some arbitrary integers. 1t is clear that if the
number of sectors N is even the eq. (4.2) is no longer valid. In such
4 way we exclude the gap-crossing resonance and do not consider its

effects here.

Intreoduce a new independant variable ¢ and a new coordinate yo,
defined by:

xo(ﬁ)=w0(ﬁ)yo[¢) ; ¢ = wo(ﬁ)/uo y (4.3)
where
2 2 -3 -2 -7 -2
: 97+ = . - . = ) _

d wo/d 2. MW, ; dwo/dﬁ L sovy (2n) Iwo (9)as (4.4}
With these relations in hand eq. [(3.3) is transformed as
2 2.2 2 3

=-<H> —
d yo/d¢ +u0 Yo <R v hxwo
(4.5)
-(dy /d®) v 2w 3(dw /A8)y U w 3(dy sdey ]y
e o o o o 0o a e
First of all we must find the sclution of the first of eqs. {4.4). It
is easy to obtain:

wo(aJ:1+w01(0)+u02(@)+_.. (4.6)
e

2,2 -1 - = -
8)= - i .
wol( ) § (k"N“-41) (AchoskNﬂ+BstlnkNﬁ] G {4.6a)

KN Cin Gy

. 22 2T 2= 2 22 -1+ 2= 2
=-{u"+AB/B, - - ‘ -
Wop= UM +AB/B, 3§(k NT-4) T (A B ]+(]/2J§(k NT-4) (A, 4B 1 ia
(4.6b)
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. 2.2 -l 2= 2
U0=]+(u +AB/BiS)/2+(1/4)X(k N"-4} fAkN +B ).

] KN (4.6c)
wo = ; or ¢ =9 (4.6d)
Inserting the formulae (4. 6) 1nto equatlon (4.5) one can find that

1/2

= ! J_ 2 - . -
¥/ Bo=u [(k N ) {AkNCOSkNﬂ‘BkNSIDkNﬂ]

Y ZAB/B TN -0 (4

k
Turning back to the Equatlon (4.3) we have

% /<R> = 1/2}:(1(

kNAkN BkN kN)]

~1 A —~
v, J [AchoskNﬁ+BstznkNﬂ] X 5/ <R> (4.7)

o2
where
~ =302 2.2
x02/<R>—u0 AB/BiS+{3/2)¥(k N“-a)~ {AkNAkN BkNBkN)
(4.8)
1/2 2.2 2,-1, 2 2
—(uo /Zlf(k N v, ) H{kNT-ay” (AkNAkN BkN kN]
The dispersion D is calculated exactly in the same manner,
repeating the above considerations and thérefore
D/<R>=uo‘3/2[<3e>2<ye>]‘1(1+w01+,_.), (4.9)

5. CALCULATION OF THE BETATRON FREQUENCES
The Hamiltonian describing the

betatron oscillations may be
obtained in the following way

Fal & 5 )
The terms quadratic in x, Py 2, p

. r A e
encountered in H3 from (2. 3), , px—pxﬂ)D

after the substitution % x—x+x

o~
are added to HZ frem (3.7). The result 15

_ -1 N D A2
= g {(Zﬁexe) RFupu +Ruupu+(2R) BeweGuu }

; u=(x,z) (5.1)
where
- ~ 2.2 -1 ~ -1, =
F =14+% /R+3(d% /d8)7 (2R} R =(dx /d8)/R : ¢ =g _+2R "g_ x
X s} o X Q X Sx 3
Pl Mo sa9)2 r%) L L R Ly 3 (ary] (5.2)
z 0 Q z Z 0

- pamyml
,=203R)” h (d3_/d0)~g_-(3R) 4.7

In order to cast the Ham11ton1an (5.1) in a canonical form we

. eV
introduce a cancnical transformatlon whose generatlng function is:

FL A _l/zﬁp By RIar Py g WA9)=(2F ) IR 13%)
The above cancnical

ous{x,z)

transformat1on cahcels the cross term R up and
the result ig-

S VR N, 2 -1 _ -1/2=
u—Fu u pU—Fu pu+(BEJe/R][(2Fu )‘ [dFu/dﬂ) Ru/Fu]Fu u

(5.3}
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-l.= 2 -1 A -7 = . _
wz ?B 7, Rpu +{2R) Beyegu(ﬁ)u 1+ AHb ; u=(x,z) (5.4)
where

2 (8)=(2F )7 % sa0%)-30aF 2) M aF d9)2-R F ¢ +
1 u u u 1 u u u
+{R _(dF /d®)-F (dR s/d8)]/F

vl 1 u u

(5.5)
8,7 (200718 (dy_sas)[(2F ) M (e sao)-n T30 (5.6)
b e' e u u ut
Introduce now the action-angle variables (Ju, o ) by
S5.=% (2R 78y Tu (dw sde)w Ctg (et v 6)) (5.7
1L e'e u u uu i
= 142 “1/2 B
u—[ZRJu) (Beye) wucos(au+wu Vu?)
(5.7a}
1

= /2 -1
p -(Zjuﬁcy /R) [[dwu/dﬁ)cos(mu+wu qu) v,
where [see egs. (4.4)]
2 2 -

Sin{au+wu—vuﬁ)]

dw sasag w = L gy sasmw 2L v (o) Urw 2(e)as.  (5.8)
u T ooy saes u 4T Y ' :
The new Hamiltonian Hb is written as
Hb = Hbo + AHb (5.9)
Hbo = g vuJu (5.9a)

=y 1 2 -1 _
AH =y (dye/dﬂlg Il (dw /a9 ) sw “C(2F )77 (dF /d9) R )1+

*Cos (au+wu—vuﬁ)—[1/2)51n2fau+wu-uuﬂ1} . (5. 9b3
The solution of the first of eqs. (5.8) with regard of
A o~ ~ A
- i 5.
£, 1+§ (AchoskNﬂ+BkN51nkNﬂ)+gx2 {5.10)

8, +(5/8)Zk2N2(k2N? 1% 2B 2y

kN kN
+(1/2)TkN-1) " (A ) zk N2 LOENP-1) (k2N%-a) 1 e
. Aot kN kN BN
(A By (5.10a}
AkN kN+(k NZ+2) (kONZ-1)” AkN/Z C AT Ay (5.10b)
AkN = 2AkN + AkN (5.10c)
is found to be
wX =1+ wxl+ wxzf A (5.11)
where
wxlzg (k N2—4)—1(KLNcoskNﬁ4§;NsinkNﬁJ (5.12)
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v =1+ (1/8)F (k2N%-1) 1[A B Pree e (5.14)
k
Repeating the above conslderations for the z-coordinate it

easy to obtatn

is

p o T 2 (5.15)

gz—~§ (AchoskNﬂ+BstinkNﬂJ+g22 . 5. 1%
where .

AT N R

ARN = AkN +HRKTNT (KN~ AkN/z {5.15a)

A

e 2,2 ~ 232,22 2
g, =k (l/Z)E(k N-1)" (AkNAkN+BkNBkN (1/8)§k N (KN"-1) %

2 2 2.2 .22 -1 2 2
[AkN +BkN )+(1/2)§k N7 (k™N"-1) (AkN +BkN ) {5.15b)

and

N2 No+B, N ) ) (5.16)
= A0[1~§ k °N (Achosk e+Bstink L] .
2™ 2. .-1/4
[g +(1/2)E K N (AkN +BkN )]. (5.17)
For the betatron frequency v, one finds
v_= a2 (5.18)
z o T

6. THE PHASE MOTION
The phase motion ({.e. the motion in ?,
Fal

3 variables) is governed
by Ho frem equations (3.7}, Noting that

- 2. 41,
= (Be we] RaM , (6.1)
where aM is the momentum compaction factor, and

(p 7w ) (dw o/dp,) = 7ek —oy {6.2)

“0] for isochronous cycletrons, we obtain
Bo=-p, "% Stz ey /(m )1tz )1

which is equal to zero (n

kN 7 f(ﬂ]cos(kN W T_/Cep )
(o] e [e]
(6.3)

With equationg (2.5) and (2. 6) in hand the Hamiltonian u given by the

last equation ig transformed to give

A =1~ -1 o ~2
H = Be X 3+A ctgw (2R )] kNo{l*Zg cos(pNoﬂu/ZlcospNo(ﬂ ﬂo ﬁu/z]}r .

(6.4)
The Hamilton equations following from (6.1) are
dt/de = -g 1% (6.5a)
e s
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Fal ) o~ ~r
dy/dﬁ—fhoctgwo[kNo/Rm]{l+2§ Cos(pNO@u/4)cospNOuv*ﬁO-@u/Z]}t {6.50)

The phase motion is given by the soluticn of equation {6.5a)] in the
form
a\

A ~
=7 +(R x
o o

5 ey [kN(kzNz—u02)171*

A<RF)(8-9 )-R »
*{AkNI51hkNﬂ—51nkNﬁO]+BKN[cosaNﬂo—coskNﬂ]}, (6.6)

CONCLUDING REMARKS

An attempt is made to apply a fully six-dimensional Hamiltonian
formalism to the analysis of accelerated orbits in AVF cyclotrons. It

should be mentioned (although it is quite obvious) that slight

modifications are needed for the presenl thecry to be applicable to

spiral ridged cyclotroms. In the central region, however, the quantity

Kx is not small, so that equations (1.21) and (1.22) are not valid

This disadvantage 1is overcome by a reascnable compromise of

simplicity.

We do not discuss here the effects of adiabatic damping and
adiabatic change of betatron freguences [see eq. [(5.9)]. All the
nonlinear effects are not studied too. We intend to treat them in a
future publication.

The author wishes to thank J.B.Vinogradov and G.G.Gulbekjan for

many stimulating discussions and permanent suppert
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