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INTRODUCTION 

A great amount of papers is dedicated to the orbit theory in AVF cyclotrons (see e.g. /1,2/). In these papers more attention is pald to the study of particle motion about a fixed radius, assuming that the radius gain per turn during acceleration is negligibly small. 
/3/ 

Acceleration is either not studied at all, or is treated separately • 
Recently several papers on the general theory of accelerated orbits have appeared. We shall especially mention the paper by Hagedoorn and Carsten / 4/. In what follows an attempt will be made to develop a similar formalism for direct application to AVF cyclotrons. 
The motion of charged particles in AVF cyclotrons appears to be one of the most complicated in comparison with the other cyclic accelerators. Its complete description can be achieved by numerical integration of Hamilton's equations of motion in the canonical variables. Fortunately for the accelerator theorists, the role of different factors influencing the particle trajectory can be usually put by order of magnitude to some hierarchy. Consequently, taking into account more and more factors one can get more and more detailed description of the trajectory order by order. The study of particle motion "step by step" is usually well suited with experimental data and is preferable for its convenient physical meaning. 

1. HAMILTONIAN FORMULATION OF THE ORBIT THEORY IN CYCLIC ACCELERATORS 

It is well known /S/ that the Lagrangian of a particle with rest mass m
0 

and charge q, moving in electromagnetic field, defined by a scalar potential rp and vector potential A is 

( 1. I l 

where -;,dr/dt is the particle's velocity and c is the velocity of light in vacuum. The first step ls to define the design orbit of the 



particle r
0

(s), where sis the curve length along the design orbit. If 

the external field has a symmetry plane (median plane), the design 

orbit is a plane curve lying on it. The design orbit is completely 

determined by the curvature K and the centre of curvature in every 

point. 

Define now the natural coordinate system in which the position 

vector res) is 

1Cx, z,s) [ 1. 2) 

where x is the deviation from the design orbit in the direction of the 

unit normal vector nc s)' z - the deviation in the direction of the 

unit binormal vector b(s). The trlple ct;':b.~J (; being the unit. 

tangent vector) defines a local coordinate system along the design 

orbit, and satisfies the equations 

called the Fresnel formulae, where K(s) is the torsion (K=O for plane 

curves). Using the expressions 

v n + v b + v (1 +Kx); 
X Z S 

.--
v.A=v A+ v A + (l+Kx)v A XX ZZ ss 

and the relation 

where 

u=(x,z) 
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we can write down the Hamil toni an H as 

2 2 2 -1/2 H=m
0
c(1-v/c) +qrp 

or 

H 
I!. 31 

It is '..;ell known/
6

/ that a new Hamiltonian can be constructed 
from ( 1. 3) in the new independar:.l variable s, so that t, H become new 
canonical conj•.Jga ted variables. 

Suppose now that the vector potential A consists of two parts A
0 

the guiding magnetic field of the. accelerator and Aa- the accelera
ting field. The vector potential Aa and the scalar potential <.p obey 
the Lorentz gauge condition 

div A + c-2B<p/8t 0. I 1. Sl a 
Moreover we have 

B=rotA E
3

=-grad<p - aA /8t B =rotA ( 1. 6) 0 a a a 

The next step is to compute A . In doing so we review the method 
0 /7/ of Teng following the paper by T.Suzuki . Consider a gauge condition 

of the form 

We get 

A
0
x=-2F(x,2,s) 

xA + zA 0 . ox 02 

A
02

=xF(x,z,s) A
05 

=G(x, 2, s), I 1. 7 l 

where F(x,z,s) and G(x,z,s) are yet unknown functions. The first eq 
(1.6) yields 

2F + (x8/8x + zB/Bz)F B 
s 

-1 GKx(l+Kx) + (x8/8x + z8/6z)G zB - xB · 
X 2 

3 
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Equations (1. 8) enable us to apply Euler's theorem for homogeneous 
terms, supposing that F and G are series of homogeneous polinomials in 
x and z, so that 

F 1128 (O)+ 1/38 (l)+ 1/48 ( 2 )+ 
s s s 

G ~(l+Kx/2)8 (0)+(1/2+Kx/3)8 (l)+(1/3+Kx/1)8 (Z)+ 
X X X X 

(1. Sa) 

G :(1+Kx/Z)8 (O)+(l/Z+Kx/3)8 ( 1 )+(1/3+Kx/4)B (Z)+ z z z z 

G == (zG - xG )(l+Kx)- 1 , 
X Z 

where B(O),B( 1 ),B(Z) etc. denote homogeneous p~inomials in x and z of 

orders 0, 1,2 etc. Neglecting the beam current, J~axwell's equations for 
B are 

rot B = 0 div B 0 . ( 1. 9) 

The first equation (1.9) gives the opportunity to express the f.ield by 
a scalar potential ¢ as 

B =- grad 1/1 

and the second equation is simply the Laplace equation for 1/J 

6 1/1 : 0. 

(1. 10) 

( 1. 1 I l 

If we use the midplane symmetry the scalar 

1/J= (a
0 

+a 
1 
x+a

2
x

2
12! +. )z- (b

0 
+b

1 
x+b

2
x

2
12! + .. 

+ 

potential is odd in z and 

Jz
3
/J!+(c

0
+c

1
x+ ... Jz

5
1S!+ 

( 1. 12) 
where the coefficients are functions of s and b" s, c' s etc. are 
related to a's by equation {1.11) as 

b =-2K8 "-K' a '+a "-Kza +Ka +a 1 0 01 123 
(1.12a) 

b
2

=6K
2

a
0

"+6KK'a '-4Ka "-2K'a '+ZK
3

8 +a "-2K
2

a +Ka +a 01-1 12"234 

The prime denotes differentiation with respect to s. The coefficients 
a"s have the following simple meaning 

a :::(B ) 
o z x=z=o (1.1Zb) 
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It is easy to see from eqs. (1.10) and (1.12) that the magnetic field 
can be computed if B

2 
evaluated in the median plane is known, so we 

ccm find the functions F and G by (l. 8a) and therefore complete the 
calculation of A

0 
using (1. 7). 

The accelerating structure in AVF cyclotrons is usually a dee 
system where Aa==O, and rp:;!:Q. Taking the midplane symmetry into account 
we casL the potential rp in the form 
rp(x, z, s )=A

0 
+A

1 
x+A

2
x 2 /2! + ... - (B

0 
+B

1 
x+B

2
x 2 /2! + ... Jz 2 /2! + (C

0 
+C

1
x+ ... ) z 4/4. 

(1. 13) 
If the series (1. 13) is substituted in the Laplace equation (1.11) for 
rp, the relations between B's C's etc. and A's obtained, are exactly of 
the form (1. 12a). 

Let us introduce a canonical transformation by the generating 
function 

S = xP + zP +Eo"+ q Jrp(x,z,s,rr)dcr 1 2 X Z 
where cr=-t is a canonical variable conjugated to H. Then 

~ = as /aP = x 2 X z = as /8~ = z 2 z 

p = as2/au = P -q JE (x,z,s,rr)drr = ~ -~ u u u u u u=(x,z) 

2 H = aS2/8<r = E + qrp(x,z,s,cr) = m0~c +qrp(x,z,s,rpl, 
where Eu=-8rp/8u ; u=(x,z). The new Hamiltonian is 

(1. 14) 

A 22 22_..,..... 2A 21/2 H=-(l+Kx){E /c -m c -(p -qE -qA ) -(p -q£ -qA ) } -q(l+Kx)A 0 X X OX Z Z OZ OS 
-q(1+KxlE c1.1sJ s with the notation 

~ -1 E
5

(x,z,s,rr)=JE
5

(x,z,s,O")d<r=-O+Kx) Jacp(x,z,s,<r)/8sd0' ( 1. 16) 
In the new variables 

P =P /p =P /(m c) u u 0 u 0 
u={x,z) 

( 1. 17) 
the scaled Hamiltonian reads as 

-.,... 2 - ·-- .... 2 ,.... .... - ,._ 2 l/2 "' H=H/p =-(l+Kx){~ -1-{p -qE -qA ) -(p -qE -qA ) } -q(l+Kx)A 0 X X _,OX _ Z Z OZ OS 
-q(l+Kx)E (1. 18) 

- s where q~q/p . The terms 
0 E and E are small X Z compared with A and A 

- ox oz and may be omitted. The part of H in {1.18) depending on A
0 

denoted by 

- 2 - 2 1/2 Hb=J3~{1+Kx){-[1-(p -eA ) -(p-eA ) ) -eA } X OX Z OZ OS J 
(1. 19) 
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where 

P =P /p=P /(p ~r) u u u 0 
u::o(x, z). I 1. 201 

The relative momenta Px and P
2 and the deviations x and z are usually small, so that the square root in (1. 19) may be expanded in power 

series in x,Px.z,P
2

. After quite tedious calculations one finds
171 

Hb::oHb
0

+H
1+H2+if3 +H4+. (1.21) with 

11.221 

Let us now briefly review some basic relations from the theory of AVF cyclotrons. The isochronous field is given by
181 

B
1
s(R) ==- B(0)(1-R21R

00

2 )-l/Z, (1.23) 
where 

B(O)::o(m w )/q::o(A/Z)(m w )le 0 0 p 0 
R::ol/K R =clw 

00 0 
(1. 24) 

and w
0 is the angular frequency of motion on the design orbit, A- the 

mass number, 2- the charge state, m - the proton mass, e- the elep mentary charge. The curvature K of the design orbit is found from the 
relation 

,or (1.251 
the pe and Se being the design momentum and the design relative 
velocity of the particle respectively. Furthermore

111 

where 

IB I ~B (R.~I~BIR) [!+FIR.~)], 11. 26) z z=o z 

BIRI ~ <B IR.~)> z 
1 '" (2rr}- J B (R,D)d~ • z 

6 
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F(R O)=[B (R o)-<8 (R 1'7)>]/<B (R,o)>=c[B (R,BJ-8(!1JJ/B(R) (1.28) , z , z , z z 
and 1'7 is the azimuthal angle depending on the curve length, so that 

di7=Kds. (1.29) 

The function F(R,,J) is periodic in il and may be Fourier analized to 
give 

F(R,O) 
( 1. 30) 

Define now the relative change in guiding field for a deviation 
from a fixed radius R 

Jl(x,tl)=B (R+x, ,J)/i3(R) ,or 8 (R+x, i7l=B(R)J1(x,B) (1.31) z z 
whose expansion in Taylor series in x/R reads 

J.-dx, il) =1 +JJ.' x!R+JJ." ( x/R) 2/2! + ... +[ [ (An +A
0

' x/R+An" ( x/R) 
2 
/2! +. . ) cosni7+ 

where 

j.i'=(Rii3lct8/dR 

G '=RdG /dR 
n n 

and Gn=(An,8
0

). Note that 

11"=CR2
;i3Jct

2
8;ctR2 

G "=R2d2G /ctR2 
n n 

G '=(R/8)d(BG )/dR=J1'G +RdG /dR n n n n etc. 

etc. ( 1. 33) 

etc. ( 1. 34) 

( 1. 34a) 
Usually 11-'G

0 
is much smaller than RdGn/dR and therefore eq. (1. 34a) is 

transformed to eq. (1.34). In the case of N- fold symmetry the 
flutter profile F(R,tl-) consists of two parts: the structural part 
including harmonics of the form n=kN and a nonstructural part (the 
remainder of the sum (1.30)) which we shall treat as a perturbation. 

The mean field 8(Rl can be expressed as 
B(R) =B. (R)[l+,B(R)/B. (R)] (1.35) 1S 1S J 

where l>B(R) is a small perturbation to the isochronous field due to 
imperfections of the cyclotron magnet. Let us for convenience write 
down some coefficients a's from (1. 12b) 

a =Ei(R)!J-(O,tl-)=8. (1+t;8/B
1 

)(1+F) 0 1S S 

a
1

='B(R)(BP-/Bxl :=KB. (1+ll.B/B. )(ll'+F'l x=o 1s 1s (1. 36) 

a
2

=B(R) CB
2

j.l/ax2 J =K2B. (l+l\.B/B. l (!l"+F"l x=o 1s 1s ' 
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The entire Hamil toni an is obtained if the term -qr (l+KxJE 1 
s x=z=o is added toHb in (1.21) and (1.22). We are not interested here in the 

focusing effect of the accelerating gap so we have dropped terms of 
higher order in x,z. that arise from the last term In (1.18). Involving 
thin lense approximation for the accelerating gap 'n'e get 

- - -1 -qR[(1+Kx)E] =::-(2/A)(eUd/(m cl](kN w) f(fllcos(kN w Tlc-rp ) s x=z=o p o o o o o ' 
( 1. 37) 

where Ud is the dee voltage, k is the harmonic acceleration mode, N
0 is the number of dees, 1(!

0 
is lhe initial phase of RF-field, and f(~'}) 

is a function determining the location of accelerating gaps, so that 
f(fl)= [ {C{-6-fl -27Tp)-0(1':1-fl -iJ -2rrp)+O(fl-1J -2rr/N -2n:p)]. (1.38) , o au o o 

In equation {1.38) O(x) is the Dirac 0-function, fJ
0 

is the angle 
between the reference point of flutter profile and the nearest accele
rating gap and Ou is the dee angle. 

Making profit of eqs. (1.12a), (1.17), (1 20), (1.?.5) and (1.36) 
from (1.22) we obtain 

where 

- -1 H =-R{3r-(Z/A) [eUd/(m c) I (kN t.J ) f(Olcos(kN w -r/c-rp ) 0 p 00 00 0 li
1

={3 r x(l+h )-{3rx e e x 

h = F + 
X 

+ 11-' + F 

6.8/B. 
>S 

+ F'+ ~BIB. 
>S 

gz = 11-' + F' 

(1.39) 

h = BF/8"0 z (I. 40) 

gJx = 11' + F' + (IJ."+F")/2 
iF/8"6

2
+ K- 1 

(8K/8V) (BFIBO) + 3(11' +11"+F' +F") 
The Hami llonian expansion ( 1. 39) describes the motion now ln 

terms of a new independant variable {} instead of s. 

8 



2. CALCULATION OF THE DESIGN ORBIT 
Let us now perform a canonical transformation with a generating 

function 

F 
2 

so that 
(2. 1) 

li=aF ;a~ =u 2 u u=(x,z) 

aF21a-r = 'i+oe 

(2. la) 
;: 

Asst:ming that the quantities t, Y are small compared with -re and Oe 
respectively we obtain 
dTe/d~=-R/~e do /d~=-(2/A)[eUd/(m c2 )]f(~)sin(kN w T /c-~) l2.2) e p ooe o and the transformed Hamiltonian reads as 

"H =R~21(2~ 3o 3 )+(2/A)[eUd/(m c2 )JkN (2R J- 1 f(~J~2cos(kN w -r /c-~) o e e p o oo ooe o 
";;"

1 
= ~ o h ;( - :;X'i(3 e e x e 

_, -2-22 3 3 H4 = (px +pz) /(8Kj3e Oe) + (2.3) 
The solution of the first equation (2.2) is trivial and we imme

diately write it down 

t = t -c(~-~ )lw e eo o o (2. 4) 
Substitute now (2. 4) in the second equation (2. 2) and note that the 
expression f(~)sin(kN0w0-re/c-~0 ) is periodic in~ with a period 2n/N

0
. 

Therefore 

f(~)sin[kN (~-~ J+; J=(N /rr){a +[[sin~ cospN (~-~ )-- 0 0 0 0 Op ·O 0 0 -sin(tp
0 

+kN
0

-&u) cospN
0 
(-&-~ 

0 
-~u)]} (2. 5) 

- -1 a =-sin(kN ~ 12)cos(q) +kN 1f 12) t.p0o~0-kN0TeR~ (2. Sa) o au o au 
w It is evident from the above equations that the maximal energy gain is 

achieved if kN-& =(2s+l)n for s=O, 1,2,. 
0 u -1 

k = (2s+l)rr(N 1f ) 
0 u 

. , that is 

(2.6) 
In this case equation (2.5) becomes 

- -1 -f(ff)sin[kN (-&--& )+~ ]=N tr sint.p {1+2[ o o o o o r 
Cos(pN

0
-&U/2)cospN

0
(ff-1?

0
--&U/2)} 

(2.7) 
and the second equation (2.2) is written in the form 

dO /dff=A [1+2[ cos(pN -& /2)cospN (-&--& --& /2)] e o r au o au 

9 
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where 

A == (N /n)(Z/A)[eUd/(m c 2 )Jsln-; . (2.9) 
0 0 p 0 Integration of equatlon ('2. 8) gives the design energy ~ ==~ +A (1'J-fi )+2A '"cos(pN v /2)/(pN ) [sinpN (fl-fi -fi /2)+sin(pN .,') /2) 1. 

e eo o o aL. o u o o o u o u r 
(2. 101 

In the case of 1'Ju==rriN
0 

eqs. (2.8) and (2. 10) are further simplified to give 

d~ ldfl = A [1+2[ ~os2pN (0-0 )] e o ,. o _
1 

o ~ =~ +A (fl-O )+A E (pN) sln2pN (ft-ft ). e eo o o op o o o 

(2. Sal 

(2. 10a) 

3. INTRODUCTION OF "O.UASIEQUILlBRIUM ORBIT" AND DISPERSION Firstly we must note that the term "quasiequillbrium orbit" may not be the most suited and one can argue about it. 
Let us now perform a second canonical transformation with a generating function 

..... - ':11:1' - _,., -=::. E
2 = (x-x0 )(px+p0 )+zp2+T~ (3. 1) aiming to cancel the term /3 r h X in H

1
. The quantity X we call the e e x 

o "quasiequillbrium orbit" and j)
0 

the "quasiequllibrium momentum". Using the relations 

= X = X + X 
0 

it is easy to get 

- = p = p z z 

2- 2 -1 - -d x
0
idfl +~e (d;re/dfi)(dx

0
/dft)+gxx

0
=-Rhx 

and 

(3.2a) 

(3.2b) 

p =({3 r /R) CdX idfl) (3. 3) o e e o 

(3.4) 

The last canonical transformation is given by the generating function 
..... 1':$...... :::=..... -1 ..... 2 ;:ow..., ~ ..... 

G2 =px(x-;rD)+{{3e;re/R)(dD/dft)x;r-/3e;re(2R) D(dDidO);r +zp
2

+T;r. (3.5) Noting that 

10 
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we have 

ct2Did~2 +o -l(do /dO)(dD/d~)+g D=R(~ 2a )-l e e x e e (3. 61 

(3. 71 

The quantity Dis called the d.ispersion function of the cyclotron. 

4. CALCULATION OF THE "QUASLEQUILIBRTL:M ORBIT" AND DISPERSION 
The quantity >..

0 
in (2.9) i.s quite small so that \doe/dl'J)/;ye« 1 

for a wide range ·of energies and we can explore the quasistatic appro
ximation. This means that instead of R in eqs. (3. J) and (3. 6) we take 
the mean value of R: 

2 3 -1 
<R>=R [ 1 +n>.. ({3 o ) ] o o eo eo I 4. 1 I 

The condition for the gap-crossing resonance
131 

is 

2pN
0 

- mN = ± 1 1 (4. 21 
where p and m are some arbitrary integers. It is clear that if the 
number of sectors N is even the eq. (4. 2) is no longer valid. In such 
a way we exclude the gap-crossing resonance and do not consider its 
effects here. 

Introduce a new independant variable ¢ and a new coordina t.e y 
0

, 

def lned by: 

(4. 31 
where 

rt
2w /ct~2+g w "W - 3 

0 X 0 0 

-2 -1;!'"' -2 dtjJ
0

/d'6=w
0 

u
0
=(2n) Jw

0 
(,O)dl'J. 14. 4 I 

With these relations in hand eq. (3. 3) is transformed as 

ct2 y /d¢?·+v 2
y =-<R>v 

2
·h w 

3
-

0 0 0 0 xo 
(4.51 

-(do ldO)[v 2w 3 (dw /dO)y +v w 3 (dy /d¢)]/r e o o o o oo o e 
First of all we must find the solution of the first of eqs. (4.4). It 
.is easy to obtain: 

II 

(4. 61 

(4. 6a) 



v 
0 

=1 + (11' +68/8 is )/2+ ( l/4 lpk2
Nz-11) -l ( AkNZ +BkN 

2
). ( 4. 6c l 1/1

0
"' 1J

0
fi or ¢"' 0 

(4.6d) Inserting th~ for-mulae (4.6) into equation (4.5) one can find that y i<R>=v l/Z[(k2N2-v 2 J- 1 [AkNcoskNO~BkNslnkNfi]-o 0 ~ 0 

-J/2 2 ? -1 - --[uo liB/Bls+(J/Z)Fk N--4) (AkNAkN+BkNBkN)J Turning back to the equation (4.3) we have ....., 112 2 2 2 -1 . I -
x

0
/<R>=v

0 
fCk N -v

0 
) [AkNcoskNfi+BkNswkNO - ·x

021<R>, (4. 7] where 
....... -3/2 2 2 -1 -- -·x

02
i<R>::ov

0 
"6BIB

15
+(3/2)[(k N -4) (AkN\N+BkNBkN)-• 

(4. 8] 

The dispersion D is calculated exactly in the same manner, repeating the above considerations and therefore 
-3/2 2 -1 DI<R>==v

0 
[</3e> <re>J (t+w01 + .. · ), (4. 9] 

5. CALCULATION OF THE BETATRON FREQUENCES 
The Hamiltonian describing the betatron oscillations may be "' ... ,\ _, 

obtained in the following way. The terms quadratic in x, px' z, P
2 encountered in H

3 rrom cz.3l, arter the substitution X~X+X. P =P +P "' 

0 X X 0 
are added to H

2 
from (3. 7). The result is: -1 ,, 2 _,,... -1 ..,z Hb=[((2~>1 RFp +Rup+(2R) ~>Gu} u=(x,z](5.1) 

w ee uu u u eeu Where 

F =l+X /R+3(ctX /d~J 2 (zR2 )-l R =(dX /d~l/R X 0 0 
X 0 

- -1 R ~h X (3R) (5. 2] z z 0 

-1 - -1 -G
2

=2(3Rl h 2 (dx0/d~)-g2-(3Rl g
32 x

0 In order to cast the Hamil toni an (5. 1) in a canonical form we introduce a canonical transformation /l/ whose generating function is: F
2
=[ {F -uzup +({3 "1 /R)[(4F z)-t(dF /d~)-(ZF )-lR 1~2 } u=(x,z) 
~ u u ee u u u u .......... The above canonical transformation cancels the cross term R

0
up

0 
and the result is: 

~=F -1/2~ 
u 

; =F -1/Zp +((3 ;r /R)[{2F z)-l(dF /d~)-R /F ]F -l/Z·~ u u u ee u u u u u 
(5. 3) 
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u=(x,z) (5. 4) 

where 

g (0)=(2F l- 1 Cd2F /d~2 )-3(4F 2 J- 1 (dF d~J 2-R 2+F G + u u u u u u uu 
+[R (dF /dfl)-F (dR /dfl)]/F (5.5) u u u u u 

t;Hb=I (2R)-lf3 (do /dfl)[(2F l-l(dF /dfl)-R J~2 • (5.6) e e u u u 
Introduce now the action-angle variables (Ju' o:u) by 

(5.7) 

(5.7al 
·- 1/2 -1 pu={2Ju{3eae/R) [(dwu/dfl)cos(o:u+~u-vu~)-wu sin(o:u+~u-vu~)] 

where [see eqs. {4. 4)] 

ct2w /d~2+g w =w- -J 
u u u u 

The new Hamiltonian Hb is written as 

H = '\o + 'Hb b 

Hbo l: v J 

" 
u u 

The solution of the first of eqs. (5. 8) with regard of 

~N=AkN+(k2N2+2J(k2N2~1J~1'kN/2 

AkN 2'kN' + 
is found to be 

w=l+w+w+ x xl x2. 
where 

13 

(5.8) 

(5. 9) 

(5.9a) 

(5. 10) 

(5.10b) 

(5. lOc) 

(5. 11) 

(5. 12) 



2 2 2 2 -2 - 2 ...... 2 wx2==-(1/8)pk N -10) (k N -4) (AkN +BkN )-gx2/4. (5. 13) For the betatron frequency vx given by the third of eqs. (5. 8) we find 

2 2 -1 .- 2 - 2 Vx=1+(1/4)pk-N -4) (AkN +BkN )+gx212. (5.11) Repeating the above considerations for the z-coordlnate it is easy to obtain 

(5. 15 I where 

and 

(5. I Sa) 

~z2=-~'-(l/2)f(k2N2-1)-1(Ak~kN+Bk~J3kN)-(1/8)~2N2(k2N2-1)-2• 

(A 2 B 2) (1/2)[k2N2(k2N2-1)-1(A 2+8 2) "leN + kN + I< kN kN (5. 15b) 

(5. 16) 

A = [A +(1/2)~ k-2N-2(A 2+B 2)]-1/4 o gz2 r kN kN . (5. 17) For the betatron frequency v
2 

one finds 
v A - 2 

(5. 18 I z 0 

6. THE PHASE MOTION 
The phase motion (i.e. . ,, the motion in T, ~ variables) is governed 

A 
by H

0 
from equations (3.7). Noting that 

2 -1 D = (~e rei R"M (6. 1) where ~ is the momentum compaction factor, and 

-2 ~M = (pe/wo)(dwo/dpe) == ~e -~ (6.2) which is equal to zero (l)M=O) f.or isochronous cyclotrons, we obtain " -1.-A 2 -1 A2 H =-ff X r+(Z/A){eUd/(m c )](ZR) kN T f(~)cos(kN w T /c-~ ) 
o e o p ro o ooe o 

(6. 3) With equations (2.5) and (2.6) in hand the Hamiltonian H
0 

given by the last equation is transformed to give n -1- A ......, -1 
..... 2 

H ==-ff x r+~ ctg~ (2R ) kN {1+2E cos(pN ~ /2)cospN (~-~ -~ /2)}T . 
o e o o o ro o f au o o u 

The Hamilton equations following from {6.1) are 
d~/d~ :: -{3 -t; 

e o 
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(6.4) 

(6.5a) 



dJI:itl=-r.. ctg;j,' (kN /P. ){1+2[ cos(pN ·[} /2)cospN [13-tJ -t'f /2)}~ (6.5bl 
0 0 0 OJ j" ou 0 0 u 

The phase motion is given by the so 1 u tl on of equa ~ion ( 6. Sa J in the 

form 
..... ,, - 11? 2 ? 2 -1 
T=T +(R x 

2
;<R>)(tJ-{} )-R v ·-r [kN(k N--v )] * o rna o ooo I< o 

¥{AkN[sinkNO-slnkNt70 ]+8kN[cos~No0-coskNtl]}. (6. 6) 

CONCLUDING REMARKS 

An attempt is made to apply a fully six-dimensional Hamiltonian 

formalism to the analysis of accelerated orbits in AVF cyclotrons. It 

should be mentioned (although it is quite obvious) that slight 

modifications are needed for the presenl theory to be applicable to 

spiral ridged cyclotrons. ln the central region, however, the quantity 

Kx is not small. so that equations (1.21) and (1.22) are not valid. 

This disadvantage is overcome by a reasonable compromise of 

simplic.i ty. 

We do not discuss here the effects of adiabatic damping and 

adiabatic change of betatron frequences [see eq. (5. 9) ]. All tr.e 

nonlinear effects are not studied too. We inlend to treat them in a 

futur·e publication. 

The author wishes to thank J.RV.\nogradov and G.G.Gulbekjan for 

many stimulating discussions and p8rmanent support. 
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