





SUMMARY

Analytical expressions of the magnetic
fields, obtained for uniformly magnetized
polyhedrons of an arbitrary form, have been
described. The computer program has been
described used for calculating the field
from one or from combination of polyhedrons
composing the electromagnet. The expression
obtained can be used in calculating three-
dimensional confiqurations of magnets.

In this case the arbitrariness of the
polyhedron form allows the magnet body to
be described in the best way.

Introduction

There are a lot of methods of numerical calculation of the
magnetic field. Some of them are based on the solution of partial
differential equations(PDE),e.g.method of relgxntion or finite
element techniques.The others are connected with the solution of
nonlinear integral equations (IE).

If the magnetization of the iron is known,we can calculate
the magnetic field directly from the integral formulae.

Usually it is done under the assumption that the iron region
is divided into the constantly magnetized sections,

In this note the method of the direct calculation of the field
from constantly magnetizeq iron is described.

The methods based on integral formpulae were used by Turner [ 1]
for the solution of the integral equation describing the magnetic
field and by Danilov and Saveherkof2] for calculating the field
in magnetic channel. But in those papers the magnetic field was
calculated for iron elements of the shape of the right polygonal
prisms.

The method described here calculates the field for any poly-
hedral iron element and so has two advantages over the previous

methods:



1) Constantly magnetize: 1iron element can be calculated di-

rectly i.e. iron is not divided into sections. —{ ) C ﬁ —
‘ . 1.3) ( =C/M(g) xr )
2) For an unconstantly magnetized element the higher accura- ? 7 [¢ ’

cy can be reached because of the arbitrary shape of polyhedron. where A denotes the magnetization vector and /.  denotes the

vector normal to the surface S , directed outside the region V.

§1. rheoretical basis If the magnetization is constant i.e. b(q)=M , then
The magnetic induction of an iron bar is given in the Gauss
_ 1.4) / /?) =0
system of uriits by the formula
ky y - _ and the magnetic induction is given by the second term of formula
1.1) B—O = 1 Ma_ (,/V + _1 /(7) X'an / ’ (1.1)only. Taking(1.3)into account we receive:
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where B([Z) denotes magnetic induction vector in the point o

= denotes the radius . . .
a=(q,, a,,ua 3 ), )? a [%-9,, % 2,97 ¢ 2%4 If the iron element has a polyhedral shape,then its surface is

vector from any p01nt ; [7;;72, Z_, belonging to iron to the sum of polygons, and the field from such an element will be

an observation point a , the sum of fields from those polygons.

@” denotes the length of the radius,

/(7) denotes volume current density in the point $

Let I" denotesa polygonal part of the surface, and let S

be the sum of n polygona:

1.6) SUP,

[4

belonging to the iron,
(/%} denotes surface current density in the point %

belonging to the surface 5 of the iron, thern

,4—16— vector product of vectors .‘: and E’ 1.7) B/(l) Z j{M xn(g)) ga /,S
¢a

Thus 1f we can calculate the field from any polygon,we will be

C velocity of light.

In the lack of conductivity currents (i.e. the currents from

external sources) the volume current density is given by the for- able to find the field of the whole constantly magnetized poly-

hedron.
mula

1.2) /7(7) =¢. wl ﬁ/p)gﬂ

and the surface current density is given by



§2. The Calculation of the field of the polygon

Let us return to formula(1,5,,cxpressing the vector product
by the scalar one, and substituting the surface S by the poly-

gon P (formula is valid for every surface) we get

o J L 25 1,

Let the vectors B, i; ﬁ; n have the coordinates:

/51,32,85})/ Mé‘ _3’) /,Q,'/?,R) //? 72, /Z)

then the equation(2.l)we can write as a system of scalar equations:

3 3
B a,, ¢, 4 R - P
s e e

K=123.
Without loosing the generallty we can assume that our polygon P

lies in 2z=0 plane, and the observation point (point & ) lies
on 2z axis. That means that the first two coordinates of obser-
vation point and the third coordinate of points of polygon P are
equal to zero (@ =(0,0,2)), (; =/x,é/, 0)).

In this case n(q)=(0,0,1),

hence equations (2.2) get the form

/xa'y,
by,

b (0.0.2)=-My j/ma
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et us denote

P
2.4) [’Z “S‘ y 3 /x(/y
i) (,Xzfyz r 22 )
. - z d dy
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then equations(z.afyielld: X yZ *z2 ?
2.5) B/ =M/C3 ?
82 :MZC

- +
B3—/M’C1 MZCZ).
We shall calculate now plane integral(2.4).

according to Stokeas formula

ITE P/*‘”) 50( Ay - Plg)ds,

where 7)8 denotes the contour of the plane region S , we

obtainX):

x) We can use the Stokes formulas only if the observation point

does not lie on the contour.
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The contour 'ap of the polygon P is the sum of the line
m

2.6)

segments QL= U/ Ly and thus coefficiemts ¢, G, C,
K=f
are the sums of integrals: ,,
]
¢,- 5 § =L
1 k4 Veriez®
T VXHyteE
m C/X
2.7) CZ ':Z _"'_a_:" ’
I;( J
=23 x 4
- 2
3 VZrgh (Y5 2%)
let (xa, YA, 0) denotea the coord1nates of the beginning of
I, segment and (XB, YB, 0) the coordinates of it9

end. Then the integrals over the I, segment are given by the

following formulae: C( X

if XA=XB and YA#YB then j
Yx2 +g + 2%

and the other integrals like 1n(2.8) .
x dy

if  YA=YB and XA#£XB then Ny (y 2, X )m = y
<

and the third integral like in(2.8) ,1‘5‘ Vx2+ yz+zz

X

]
=)

=0

if YA=YB and XA=XB , then all the imtegrals are equal to
zero,
if XAfXB  and  YAFYB ,then )8

a = + +za bt ’
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in other cases.
In above formulae
a denotes M , 4  denotes XB YA -XA-Y8 ,
XB8-XA X8 -XA
& denotes M and ‘ denotes yB'X”‘XB’.'/ﬂ'
YB -yA Ys - ya
Formulae(2.8)were used for numerical calculation of the coefficients
G sz 03 and then a magnetic induction p for a polygon
was found.

§ 3. Field calculation for the whole polyhedron

On the basis of method described in § 2 we can calculate now
the magnetic induction of any polygon in any point (except the

boundary points). Indeed for any given observation point a and any



given polygon P we can transform the coordinatea in order to
obtain the Z axis passing through the point a and the 2Z=0
plane through the pelygon,

As an example let us calculate the magnetic induction from
the face P of the polyhedron shown in the fig. 2.

. . won

The polyhedron is shown in (x, y’ z } coordinate sys-

tem which we shall call the first coordinate system. When the verw

tices A, B, C are given we can calculate the mnit vectors i,

Jy k as follows:
. 7 — AB x AC
{ = — ’ AB K = — — -: X[
148 | ’ |AB x Ac) )/ K=,
ﬂ? x /]_B
or if the angle ABC is not convex.

| Ac x A B PR
In the coordinate system (X Y, Z} given by the unit

vectors i, J, k (the second coordinate system) the polygon
p is parallel to the ZI= (o] plane.

After the displacement (3.3) we obtain the third coordinate
system (X, g Z) in which the observation point a lies on the
A axis and the pdlygon P on the Z =0 plane (see fig. 1),

When the new coordinates of the vertices of the polygon P
and the new coordinates of the magnetization vector M are given,
we can calculate the vector B in this {i.e. the third) coordi-
nate system due to procedure described in § 2. Then we transform
the vector B from the third into the first coordinate aystem.
Finally we obtain t?; magnetic induction for every polygon

’ ' 4
3.1y B =2 Lo N; ’ P=1223,

P ;tf

were Qpg =L pz*/P/r)*”/C"w/?) G322

and ’ 4
(8,8, 8, )" M) M)e.cs, 5 oz % K. K)

denotethe coordinates of magnetic induction vector magneti-
zation vector M and unit vectors i, j, k all in the first
coordinate system. The coes#ficients g, Cz’ Cs are obtained

from formula(2.4).
Continuing such a procedure for every face of the polyhedron

we obtain the value of the magnetic induction of the whole constan-

tly magnetized volume.

In the procedure described above the following formulae were

used !

a) transformation from the first to the second coordinate system:

X -lX +L2y +iy Z

3.2)

= X +

/ /2 +/3

=K X s X,
Z =K, ¥4 +,(3Z
where /X y z / denote the coordlnates of an arbitrary point
/

or vector in the first and (X,y / in the second coordi-

nate system,

b) the displacement from the second to the third coordinate system
/
X =x'

3.3) 0‘/
= Z

where (a C/ 03)
point and //4’ ’ﬂz , ,43) the coordinates of the vertex 4

both in the second coordinate systemy

4
al
az

..A3

denote the coordinates of the observation



c) the inverse transformation of the magnetic induction vector
” - L4
= +
8, =i, B, H, 85 + 4, B3

n v .
B, =(8,+.8, +% 8,,
B =(38 +J.333 Y-

where B =(B') 82’ 83) denotes the field in the third

34)

i

o 4 ’ ”y. s .
and 8 = (5 ) 82 B 53} in the first coordinate system.
The inverse displacement is not necessary for the magnetic induction
depends on the location of the obaservation point due to the polygon

only.

§ 4. Applications

1) In the IE method of magnetic field calculation the iron region
is divided into the sections of a constamt magnetization (in gene-
ral those regions are spherea, parallelepipeds or right prisms).

Thus from the integral equation we obtain the system of
algebraic equations and the number of the equations depends on the
number of constantly mngnetizéd regions.

The large number of the algebraic equations is a great
disadvantage when the numerical methods are used. But if the
constantly magnetized pregions have the arbitrary polyhedral shape,
then the less number of regions and hence the less number of

equations can be used for the same accuracy of the csdsulations,

2

2) In the case when the magnetization vector is approximately
uniform inside the iron volume, while it is arbitrary on the

x)

surface of the iron”’,then approximation of the surface by the

polygons can be useful for the IE calculsations,

3) When we deal with the magnets with the narrow air gap ,then
IE method cannot be used because of limited number of partitio-
ning, effecting on the number of algebraic equations.
But if the vector M can be found in the whole iron volume
either from the field measurements or by the grid method then after

xx)

the partitioning of iron volume the megnetic induction can be

found directly due to the method described in §§ 2,3.

4) The method described in §§ 2,3 can be used also for a direct
calculation of the magnetic field of polygonal current sheets.
Speaking more accurately the magnetic induction of an arbitra-
ry set of polygonal sheets (éee fig. 3) can be found.
Then the final formulae for calculation are obtained from the
equation(l.l)where i is given and 3;0 . instead of from the
equation(l.5)like in the calculation for the uniformly magnetized

iron.

x) Magnets of such a type are desoribed in [ 3].

IX) phe method of automatical partitioning is described in [4].



§ 5. The vertification of the method

On the base of the theory described in §§ 2, 3 a computer
program was written. The program calculates the magnetic induction
of an arbitrary and constantly magnetized polyhedral iron (or of
a set of constantly magnetized polyhedrons).

As @ verification of the progrem,a magnetic induction for a
right parallelpipedal bar was calculated and the results coincide
with those of Danilov and Savchenko[ZJ. For the verification the
both methods of date input (see § 6) were used.

Then the program (with the modified method of data input) was
used for the field calculation of & constantly magnetized bell.

The ball was approximated by the polyhedron and for sufficient-
ly large number of its vertices the coincidence with analyticelly

calculated field was reached.

§ 6. Data input

The vertices of the polyhedron should be put in as
follows:

For every polygon the sequence of its vertices is ordered
due to the orientation of the polygon, and the second point in the
sequence should be the vertex of the convex angle of the polygon.

The vertices are put in one after another,i.e. three coordi-
nates of the first, then the three of the second etc.

An example of ordering the vertices of the polygon P is

given in fig. 4.

The proper orders are following:

8, 8, 8,5, bl, by, ba, €1» €2y a3y dl' d2' dS’

or

by b,, ba, €13 C3s C3s dl' 62, ds, a,, 85, 85,
or

dl, d2’ da, 8, 83, 8g, bl, by, ba, €39 C2v C3,
where

8;, 85, 23, bl’ bo, bas €13 Sy gy dl’ d2' d3

denotes the coordinates of the pointe , o o~ p , respectively.
? Al
The following sequences sre orimnted improperly:

€10 €3y €30 4y, dp, 43, 8y, 85, 85, Dy, by By
for the second vertex is the vertex of not comvex angle ,

dl' ‘20 dgv €3s €24+ €30 bln bzn bs’ ‘10 Ly 1) 8,

for the orientation is improper.



The faces of the regions are also put in one after another,i.e.
all vertices of first face (in the order described above) the all
vertices of the second a.s.o.

In this procedure the coordinates of every vertex are read in
many times (three times for one region at least) for the vertex of
any polyhedron belongs to three faces at least.

In order to omit this disadvantage & slight modification was

made which can be useful for the polyhedron vertices of which belongs

to two planes only (i.e. there exist such two planes that all the
vertic es of the polyhedron belongs to them).

1f those faces of the polyhedron which don't belong to the
planes are all quadrangles ,then every vertex will be introduced
once, If there are triangles among those faces jthen one vertex of
a triangle will be introduced twice (we tresat the triangle as a
degenerate quadrangle two vertices of which belong to the first
plane, and they coincide and two vertices (which do not coincide)
belong to the second one).

Examples of the both methods of data input for the polyhedron

are shown in fig. 4. We put in the following vertices:
-a) in the modified system:
e1r €25 ®35 1, Tps f3, 8y, 8, 830 My, by, by,

a;, &, 8,4, bl, by, b3, €15 €y, Cg, dl, d2' d3
b) 1in the o0ld system:

h11h2’h3v 81132183: f1,f2,f3, 91592593'

31,32,53, b1,b2,b3, c1.c2.03, d1,d2,d3,

€11€518s f1,f2,f3, b1,b2,b3, 51,32,53'

b f

1* 1o f3v &1y B2y 83» C35 Coy S5 bl’ bgt b3,

g1y 82 &3 hlv hzs h3s d1’ do, d3, C3» 25 Cg,

hy, hy, by, e, ey, eg, &), 8y, 83, d;, dp, dg,

For the polyhedron shown in fig. 5 we put in the following vertices:

a) in the modified system
81y 85, 85, by, by bgy €3y Gy €y ’
dl’ d2’ da, bl, b2’ b3, €15 Cgs Cg,

or 8y, 8y, 84, bl, b2’ ba, C1s Cgy Cg
4y, 4y, d3, 4y, dy, dg, dj, dp, 4y,

'b) and in the old system:
€1y Cgy Cgy bl, b2' b3,

8,, 85, ag, bl, b2, b3, dl’ d2, d3 R

by by, bgy €y, Cpy €35 dy, dp, 43,
€1y Cgy C3» By, ay, 84, dl, dg, dS'
14
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