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SUMMARY 

Analytical expressions of the magnetic 
fields, obtained for uniformly magnetized 
polyhedrons of an arbitrary form, have been 
described. The computer program has been 
described used for calculating the field 
from one or from combination of polyhedrons 
composing the electromagnet. The expression 
obtained can be used in calculating three­
dimensional configurations of magnets. 

In this case the arbitrariness of the 
polyhedron form allows the magnet body to 
be described in the best way. 

Introduction 

rhere are a lot of methods of numerical calculation of the 

magnetic field. Some of them are based on the solution of partial 

differential equations(PDE),e.g.method of relaxation or finite 

element techniques.The others are connected with the solution of 

nonlinear integral equations (IE). 

If the magnetization of the iron is known,we can calculate 

the macnet it~ field directly from the integral formulae. 

Usually it is done under the assumpti,on that ,the iron region 

is divided into the constantly magnetized sections. 

In this note the method of the direct calculation of the field 

from constantly magnetized iron is described. 

rhe methods bas.ed on integral formulae were used by Turner [ 1] 

for the solution of the integral equation describing the magnetic 

field and by Danilov and Savcherko {2 1 for calculating the field 

in magnetic channel. But in those papers the magnetic field was 

calculated for iron elements of the shape of the right polygonal 

prisms. 

The method described here calculates the field for any poly­

hedral iron element and so has two advantages over the previous 

methods: 
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1) Constantly magnetize.-1 iron element can be calculated di­

rectly, i.e. iron is not divided into sections. 

2) For an unconstantly magnetizeu element the higher accura­

cy can he reached because of the arbitrary shape of polyhedron. 

§1, fheoretical basis 

rhe magnetic induction of an iron bar is given in :he Gauss 

system of ur.its by the formula 

- 1 5 iffj} ;1. Rr;a 
1.1 l Bta) = c --;p 

V ~a ~ 

J~ .;J t/Cf) }( Rrta 

n,u Js~' 
where B{a) denotes magnetic induction vector in the point 

a =(a, 
1 
a 2 1 

a
3
), R:ra = [a, -<]1 , a2 -'h_ , 0 3 -<f3 J denotes the 

vector from any point o = [ u t? q J belonging to 
r "''.rz 1 F'3 

an observation point a 

*fu denotes the length of the radius, 

j~(~} denotes volume current density in the point 

-belonging to the iron , 

rrc;; denotes surface current density in the point 

radius 

iron to 

Cf 

ff 
belonging to the surface 5 of the iron, 

- -
A~ B vector product of vectors A and s, 

C velocity of light. 

In the lack of conductivity currents (i.e. the currents from 

external sources) the volume current density is given by the for-

mula 

1.2> /""r'J) ;: c. "tot 11 {P} i~'f 
and the surface current density is given by 
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1.3) t(fJ} <=C/1(CJ} xii(~), 

where )1 denotes the magnetization vector and n. denotes the 

vector normal to the surface $ , directed outside the region V. 
If the magnetization is constant,i,e. ~>•<ql=il then 

1.4) I rry) =o 
and the magnetic induction is given by the second term of formula 

(1,1)onl~ Taking(1.3Jinto account we receive: 

1,5) B (a} ~ s (M xiiJ~ )x R~ dS7 . 
Aju 

s 
If the iron element has a polyhedral shape,then its surface is 

the sum of polygons, and the field from such an element will be 

the sum of fields from those polygons. 

Let p. 
( 

denoteaa polygonal part of the surface, and letS 

be the sum of n polygons: 

1,6) 

tlwr. 

1,7) 

n. 

S=U 
i=t 

n 

B(aJ =L 
i ~1 

p 
l 

5 
p,· 

Thus ,if we can calculate the 

(ff X fl('f)) X ~a .J 3 
R3 1 

r;a 
field from any polygon,we will be 

able to find the field of the whole constantly magnetized poly-

hedron. 
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§2. The Calculation of the field of the polygon 

Let us return to formula(1.5;,expressing the vector product 

by the scalar one, and substituting the surface S by the poly­

gon P (formula is valid for every surface) we get 

2.1) B(o) = 5 (if· R~o )' n- ('j) ;11 (fi17) ·~aJ . j 5 

P Rr, 7 
Let the vectors B, M, R, n have the coordinates: 

(6,,132 ,8~), (11.,,fl12 ,M3 ), (R,,R2 ,~3 )_, (n,, /22 , ll3 } 

then the equation(2.l)we can write as a system of scalar equations: 

r 1 3 3 

2.2) f3x(o,, u2, a3) = Jt(·~(/'!lK L 11t ~- -1'1K'!- ll; ~)Js, 
/{= 1,2,3. p 

r Z ~--}' i =1 c=f 

Without loosing the generality we can assume that our polygon P 

lies in z=O plane, and the observation point (point a ) lies 

on z axis. That means that the first two coordinates of obser-

vation point and the third coordinate of points of polygon P are 

equal to zero (a =(o,o,z)), (1=(x,y,OJ). 
In this case n(q)=(O,O,l) , 

6 

hence equations (2.2) get the form 

B,(o,o,2)=-lvf1Jr 2 ·n Jxd'j, 
t/x.Z+y2. +z.Z 

p 

B /ODE)- -M s 2 Jxlll 2.3) ',?(1, , - 2 {'r -- --n:.. ' ' 
P rx2+lj2+;/' 

!3 d s /'1, x _, Mz 'I l J 
3 (~0,~ =- ('~---------~) £X $f. 

- et us denote P 

rxz +-yz _,_ 2 2 3 

C, = -f x Jx lu 
( Yx 2 2 e I ) 3 fl ' p +tj +Z 

2.4) {'2 ::: -s 'I clx eft 
P (Yxe_~rz ,,~ d Y, 

c = - s z :/x tfly 
3 p ( yz 2. •)3 

then equations(2.3Jyield: X +'I -f" ze I 

2.5) 
B, = 1'1, c3 , 
Bz = M2 c.3 ' 
8

3 
= ( Mf c1 + !12 C2 ) • 

We shall calculate now plane integral(2.4). 

According to Stokes formula 

5£('d Q {X,!/) -t- 'd P(x.'l'= 5 Q (x,LJ) J'J - P(x,y} d.x, 
'<lS s 

where <:l 8 denotes the contour of the plane region S 
1 

we 

obtainx): 

x) We can use the Stokes formula only if the observation point 

does not lie on the contour. 
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c = -S x Jx Jv = S Jv 
1 {Vx2 +!J2+z2)3 '(x2. +'Jz+z2 ' 

p dp 

2.6)[=-5 X JxJy=-\ rlx 
:! P (Vx2+f/r:?.2J3 ~p fxz+'Jz.+j! 

(' dx Jy s X -:/y 
(j= -z ~ (Yx 2 +1J2+zzp :=: -z~e f:I2+Z}(x2+)J~z2 • 

·rhe contour ()P of the polygon P is the sum of the line 
m -

segments JP~ U lK 
K=f 

and thus coefficients ~· <i· c_, 

are the sums of integrals: m ~) 

c =I. 1 K=1 

c/y 
'fK'2+uz+z2 

I" iJ 

2.7) 
m s dx c = ' 

2 £., I fx2+'Jz.+z2' 

~ s X Jy 
C 3 = - l L '1. 1 2 I" (v z. + 1z) · 

X=1 IK X +'J +~ II 
denotes the coordinates of the beginning of Let (XA, YA, 0) 

r,. segment and (XB, YB, O) the coordinates of its 

end. ·rhen the integrals over the I K segment are given b·y the 

following formulae: 

if XA=XB and YA~YB then 
S dx 
I" fx2.+ f2 + ze. = 0 

and the other integrals like in(2. 8 ) • 

if S X jtj _ 
then - f¥2+x2.)yKz +yz.+2E' -0, 

11( J 
S f =0 

and the third integral like in( 2. 8) , I K 'fxz + y 2. + ~ z 

YA=YB and XA~XB 

• 

if YA=YB and XA=XB , then all the illlll:.egrals are equal to 

zero, 

if XA/.xB and YA/YB , then ( 

.~S clx =In [fa 2
+1 )x +aRt Yf«2+1){(a~1)x"+2a4.+8~z)J , 'a +7 Vx2+!f~l?! 

IK 

Vii2+t.C ely 
2.8) J Yx2+'J 2+lA 

YB 
=In {1Q'~f)y +ai + jfcr~f}{fa~1Jt+za-ly+l~Z§] jy~ 

IK 

S xiy _ 
-l ry ~I) rx2+fl~z2-; -

IK 

In above formulae 

a denotes 

a denotes 

Y8- YA 
X8 -X.II 

XB -xA 

Y8-yA 

0 

& 

w-1.1!/l z =0 o-r a=/, =o 
I 

az2 -I'J 
'1='18 

Z '/(a~1)J/+2a'f?+z2' I'J=YA 

denotes 

and I 

in other cases. 

X8 ·YA -XII·YB 

denotes 

' XB-XA 

YBXII-XB·YR 
IJB- Yn 

Formulae(2.8)were used for numerical calculation of the coefficients 

1• ~ c3 and then a magnetic induction B for a polygon 

was found. 

§ 3. Field calculation for the whole polyhedron 

On the basis of method described in § 2 we can calculate now 

the magnetic induction of any polygon in any point (except the 

boundary pointe). Indeed for any given observation point a and any 
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given polygon P we can transform the coordinates in order to 

obtain the Z axis passing through the point a and the Z=O 

plane through the polygon. 

As an example let us calculate the magnetic induction from 

the face P of the polyhedron shown in the fig. 2. 
II II I 

The polyhedron is shown in (X 
1 
y 

1 
Z ) <:oordinate sys-

tem which we shall call the first coordinate system. \VhBn the ver~ 

tices 

j, k 

l 

or 

A, B, C are given we can calculate the unit vectors i, 

as follows: 

t 
/AB/ · AB K== 

' 
At' x A 8 

K"' I !iC x A-8 I 
In the coordinate system 

II B x IIC 

lAB x Acl 'j=J<>ei, 

if the angle ABC is not convex. 

( 
I I Z II . h . X , !/ ., / g1. ven by t a un1. t 

vectors i, j, k (the second coordinate system) the polygon 
I 

p is parallel to the z = 0 plane. 

After the displacement (3.3) we obtain the third coordinate 

system (X 1 }/, Z} in which the obser•at ion point a lies on the 

z axis and the pQJ..ygon P on the z =0 plane (see fig. 1). 

When the new coordinates of the vertices of the polygon P 
and the new coordinates of the magnetization vector y are given, 

we can calculate the Teetor 8 in this {i.e. the third) coordi-

nate system due to procedure deecribed in f 2. 'lh«1 we trane~ora 

the Tect.or 

Finally we 

3.1) 

B h'oa the third into the ~iret coordinate ey•t••• 

obtain the magnetic induction ~or e•ery polyson 
, 3 , 

8 = Z aD, 11o. 
p 1cfr rl 

p = f, 2~ .3, 

tO 

where aP't = ~ (ip l9- + ~P~K) + ~ ( C1 ~ + C2 j~), P=f,2,3 
9r = 1, 2., 3 

and ( B 11 
' ' " 11 11 11 • • • • 

f, 82 I 83 ),(11, I 112 ,113 }IL,, [.? 'i3)fi,J.s.,JJ/K,,K2,~) 
denotethe coordinates of magnetic induction vector B magneti-

zation vector M and unit vectors i, j, k all in the first 

coordinate system. The coedrficients ~· Cz' C:3 are obtained 

from formula(2.4). 

Continuing such a procedure for every face of the polyhedron 

we obtain the value of the magnetic induction of the whole constan­

tly magnetized volume. 

In the procedure described above the following formulae were 

used 

a) transformation from the first to the second coordinate system: 

v' • II • II • H 
1- =£1 X + L2 !f + L3 Z , 

3.2) 'I' =i x" + j~ !Ill+~~ z'~ 

z = K,x'+ K~ f 11 
+ K3 z: 

( 
H ,jf IIJ 

where X, j' 1 Z / denote the coordinates of an arbitrary point 

( 
I I J or vector in the first and X 1 j 1 Z in the second coordi-

nate system, 

b) the displacement from the second to the third coordinate system 
I f 

X =X -a_, , 
3.3) lj :: lj I - Ql 

1/ d 2 ' I I z = z -A 
I I 3 J (a a Q I) denote the coordinate!!! of the observation 
I I 2 .1 3 

and (II' Jl' IJ 1 
} the coordinates of the vertex A 

,, ;<, 3 

where 

point 

both in the second coordinate syetem, 
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c) the inverse transformation of the magnetic induction vector 

B;' =i, 81 +;: B; + K, 83' 

Bll • • 

2 = L2 81 +d 2 82 + K2 83 ' 
3.4) 

B; = i38, +J~82 + A3 83, 
where B =(8,) 82, B3) denotes the field in the third 

-, ( II , 'I 
and 8 = £l) Bz.., 8.3/ in the first coordinate system. 

rhe inverse displacement is not necessary for the magnetic induction 

depends on the location of the observation point due to the polygon 

only. 

§ 4. Applications 

1) In the IE method of magnetic field calculation the iron region 

is divided into the sections of a constant magnetization (in gene­

ral those regions are spheres, paral~elepipeds or right prisms). 

Thus from the integral equation we obtain the system of 

algebraic equations and the number of the equations depends on the 

number of constantly magnetized regions. 

The large number of the algebraic equations is a great 

disadvantage when the nuaerical methods are used. But if the 

constantly magnetized regions have the arbitrary polyhedral shape, 

then the less number of regions and hence the leas number of 

equations can be used for the eaae accuracy of the c'la~ations. 
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I 

2) In the case when the magnetization vector is approximately 

uniform inside the iron volume, while it is arbitrary on the 

surface of the ironx>,then approximation of the surface by the 

polygons can be useful for the IE calculations. 

3) When we deal with the magnets with the narrow air gap,then 

IE method cannot be used because of limited number of partitio­

ning, effecting on the number of algebraic equations. 

But if the vector i can be found in the whole iron volume 

either from the field measurements or by the grid method then after 

the partitioning of iron volumexx) the magnetic induction can be 

found directly due to the method described in §§ 2,3. 

4) The method described in §§ 2,3 can be used also for a direct 

calculation of the magnetic field of polygonal current sheets. 

Speaking more accurately the magnetic induction of an arbitra­

ry set of polygonal sheets (see fig. 3) can be found. 

Then the final formulae for calculation are obtained froa the 

equation(l.l)where i is given and j=O instead of from the 

equation(l.5)like in the calculation for the uniforaly magnetized 

iron. 

x) Magnets of such a t7pe are described in ( J], 

xx) The method of auto.atical partitioning is described in [4]. 
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§ 5. The vertification of the method 

On the b88e of the theory described in §§ 2 1 3 8 computer 

program was written. The program calculate8 the magnetic induction 

of an arbitrary and constantly magnetized polyhedral iron (or of 

8 set of constantly magnetized polyhedrons). 

As a verification of the program,a magnetic induction for a 

right parallelpipedal bar was calculated and the re8ults coincide 

with those of Danilov and Savcl.enko[2]. For the verification the 

both methods of date input (see § 6) were used. 

Then the program (with the modified method of data input) was 

used for the field calculation of 8 constantly magnetized ball. 

'fhe ball was approximated by the polyhedron and for sufficient­

ly large number of its vertices the coincidence with analytically 

calculated field wa8 reached. 
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§ 6. Data input 

rhe vertices of the polyhedron should be 

follows: 

put in as 

For every polygon the sequence of its vertices is ordered 

due to the orientation of the polygon, and the second point in the 

sequence should be the vertex of the convex angle of the polygon. 

The vertices are put in one after another,i.e. three coordi­

nates of the first, then the three of the second etc. 

An example of ordering the vertices of the polygon P is 

given in fig. 4. 

The proper orders are following: 

81 1 8 2' a3, bl' b2, b3' cl' c2 , e3 , dl' d2' d3, 

or 

bl' b2 , b3 , el, c2' c3, dl' d2' da• 4 1' 8 2' 8 3 t 

or 

dl' d2 , d3 , 8 1' a2, 8 3 1 bl' b2, b3' e1' c2, c3 ' 

where 

8 1' 8 2• 8 3' bl' b2, ba, 0 1' e2, 0 3' dl' d2' d3 

denotes the coordinates ~ the pointe A 8 C D , reepeetbe1y. 
I I , I 

The followinc sequences are or anted iaproperl.,y: 

el' c2, c3, dl' d2' da• 8 1' ~· &a• bl' b2' b3 

for the eecoDd YerteJt ia the vertex of DOt. coaYeX aasle , 

dl' 42• da• cl' Cz• c3, bl' b2• b3• ~· -a• &a 
for the oriellt.a\ioa ia ~r. 
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The faces of the regions are also put in one after another,i.e. 

all vertices of first face (in the order described above) the all 

vertices of the second a.s.o. 

In this procedure the coordinates of every vertex are read in 

many times {three times for one region at least) for the vertex of 

any polyhedron belongs to three faces at least. 

In order to omit this disadvantage a slight modification was 

made which can be useful for the polyhedron vertices of which belongs 

to two planes only {i.e. there exist such two planes that all the 

vertices of the polyhedron belongs to them). 

If those faces of the polyhedron which don't belong to the 

planes are all quadrangles ~hen every vertex will be introduced 

once. If there are triangles among those faces then one vertex of 

a triangle will be introduced twice {we traat the triangle as a 

degenerate quadrangle two vertices of which belong to the first 

plane, and they coincide and two vertices {which do not coincide) 

belong to the second one). 

Examples of the both methods of data input for the polyhedron 

are shown in fig. 4. We put in the following vertices: 

a) in the modified system: 

el' e2 , e3 ,. fl' f2, f3' gl' g2' g3, hl' h2' h3 , 

al' a2 , a 3 , bl' b2, b3' cl' c2, c3' dl' d2' d3 

b) i• the old system:· 

h1,h2.h3' g1,g2,gJ' r,,r2,f3' e,,e2,e), 

a1 ,a2 ,a
3

, b1 ,b2 ,b
3

, c 1 ,c2 ,c3 , d1 ,d2 ,d
3

, 

e 1 ,e2 ,e3 , r 1 ,r
2
,r3 , b1 ,b2 ,b3 , a1 ,a2 ,a3, 
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fl' f2' f3, gl' g2, g3, cl' c2' c3, bl' b2' b3 , 

gl' g2' g3, hl' h2' h3, dl' d2, d3' cl, c2, c3' 

hl' h2, h3' el' e2' e3' al' a2, a3, dl' d2' d3' 

For the polyhedron shown in fig. 5 we put in the following vertices: 

a) iB the modified system 

al, a2' a3, bl' b2, b3' cl' c2 , c3 1 

dl' d2' d3' bl' b2' b3' cl' c2, c3 ' 

or al, a2' a3, bl' b2' b3' cl' c2 , c3 , 

dl' d2' d3' d1 , d2' d3 1 dl' d2' d3 , 

b) and in the old system: 

cl' c2 , c3 , bl' b2' b3' al, a2, 83 ' 

81' a2' a3, bl' b2' b3' dl' d2, d3 ' 

bl' b2' b3' cl' c2, c3, dl' d2' d3 , 

cl' c 2 , c3 , al' 82' a3, dl' d2, d3 
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