

объединенныи институт ядерных исследовании дубиа

Yu.I.Alexahin

A SYNTHESIS METHOD FOR THE DESIGN OF RELATIVISTIC MAGNETICALLY-FOCUSED BEAM SOURCES

Submitted to VII International Conference on High-Power Particle Beams
Karlsruhe, F.R.G., July 4-8, 1988

INTRODUCTION

In a varlety of applications, such as generation of high-power short-wavelength electromagnetic radiation, high-quality (desirably laminar) intense relativistic electron beams are needed. An effective approach to laminar beam source design is the synthesis method', which includes two main steps. The first one, called the internal problem, is to build a solution to cold-fluid equations possessing the specified characteristics, and the second step (the externai problem) consists in subsequent determination of electrode shapes oltside the beam required to realise this solution.

BASIC EQUATIONS

In the stationary case the laminar flow equations ${ }^{2}$ may be cast into the form

$$
\begin{equation*}
\operatorname{rot}\left(\operatorname{rot} \vec{\eta}+x^{2} \mu \vec{\eta}\right)=-x^{2} \vec{\eta}, x^{2} \vec{\eta} \cdot \nabla \mu=0, \Delta r=x^{2} r, r^{2}=1+\vec{\eta}^{2} \tag{1}
\end{equation*}
$$

where mc $\vec{\eta}$ is the electron momentum, $w=\sqrt{4 \pi e \rho} \boldsymbol{m} \boldsymbol{\gamma}$ is local value of beam plasma frequency and ρ is charge density. The variable μ, conserved along the trajectories, at the cathode is proportional to the ratio of magnetic field normal component to the emitted current density. An equation for \boldsymbol{z}, deduced from the set (1), explicitly depends on the choice of the coordinate system, which is convenient to make so that the surface $x_{1}=0$ coincides with cathode ${ }^{3}$. For the axially symmetric flow $\left(\partial / \partial x_{3}=0\right)$ this equation has the form

$$
\begin{align*}
& (\vec{n} \cdot \nabla)^{2} 1 n x^{2}+x^{2}(1-\mu \vec{n} \cdot \operatorname{rot} \vec{n})=-(\nabla \gamma)^{2}+\left(\nabla n_{m}\right)^{2}+\left[\frac{n_{9}}{n_{0}}\right]^{2}+\left(\vec{n} \cdot \nabla 1 n h_{3}\right)^{2}+ \tag{2}
\end{align*}
$$

6vionlucten
where $h_{i}, i=1,2,3$ are the Lame coefficients. Eq.(2) may be regarded as the generalization of laminar beam envelope equation to the case of non-uniform charge density over the beam cross-section.

Another useful characteristic, the current function $\psi\left(x_{1}, x_{2}\right)$, is related to the azimuthal self-magnetic field as

$$
\begin{equation*}
\psi=\frac{\mathrm{eh}_{9} \mathrm{~B}_{3}}{2 m c^{2}}=-\frac{h_{s}}{2}\left(\operatorname{rot} \vec{n}+\mu x^{2} \vec{n}\right)_{s} \tag{3}
\end{equation*}
$$

and equals to the current in terms of the unit $1_{0}=m c^{3} / \mathrm{e}=17 \mathrm{kA}$, which flows through the circle enclesed by coordinate line $x_{1}=$ const, $x_{2}=$ const. The current density may be expressed with the help of function ψ as

$$
\begin{equation*}
\frac{1}{I_{0}} j_{*}=x^{2} n_{1}=\frac{2}{h_{2} h_{3}} \frac{\partial \psi_{2}}{\partial x_{2}}, \quad \frac{1}{I_{0}} j_{2}=x^{2} n_{2}=-\frac{2}{h_{1}} \bar{n}_{9} \frac{\partial x}{\partial x_{1}} . \tag{4}
\end{equation*}
$$

paraxial expansion

At distances from the axis, that correspond to the current values small in comparison with electrostatic limit, solution to the system of equations (1)-(2) may be sought in the form of power series in the transverse coordinate, x_{2} (paraxial expansion). In the case of solid beam substitution of series
$\eta_{1}=\sum_{n=0}^{\infty} \eta_{2 n^{2}} x^{2 n}, n_{2, a}=\sum_{n=0}^{\infty} \eta_{2, s n} x^{2 n+1}, x \sum_{0=0}^{\infty} x_{n} x^{2 n}, \mu=\sum_{n=0}^{\infty} \mu_{n} x^{2 n}, \psi=\sum_{n=0}^{\infty} \psi_{n} x^{2 n+2} \cdots$
into eq. (2) leads in the lowest order to the equation ($h_{10}=1$ is assumed)

$$
\begin{equation*}
\frac{3+\eta_{10}^{2}}{1+\eta_{10}^{2}} \eta_{10}^{2}=2 x_{0}^{2}-f^{2}+f^{2}-4 n_{10}^{2} x_{0}\left(\frac{1}{x_{0}}\right)^{\cdots} \tag{5}
\end{equation*}
$$

where $f=\mu_{0} x_{0}^{2} \eta_{10}=\beta-2 \eta_{90} / \lambda, \lambda=h_{20}, \beta=e B_{10} / \mathrm{mc}^{2}, B_{10}$ is the longitudinal component of magnetic field, prime denotes differentiation by x_{1}. An approximate substitution $x_{0}^{2}=41 /\left(I_{0} \cdot \eta_{10} \cdot R^{2}\right)$ with I and R being the beam current and radius converts eq. (5) into the well-known laminar beam envelope equation ${ }^{2,3}$. However, in the contradistinction to the latter the former is an exact equation. In the next order $\left(x_{2}^{2}\right)$ eq. (2) yields a linear differential equation for the variable
$\tau=\infty_{1} / \infty_{0}$, which characterises the flow non-paraxiality:

$$
n_{10}^{2} \psi_{0} x_{0}^{2}\left[\frac{1}{x_{0}^{2}}\left(\frac{\tau}{\psi_{0}}\right]^{\prime}\right]^{\prime}+\left(x_{0}^{2}+f^{2}\right) \pi=-\frac{1}{2}\left(\frac{\mu_{1}^{1}}{\mu_{0}}+\frac{\eta_{11}}{\eta_{10}}\right] t^{2}+\frac{1}{4} \lambda+(\lambda \cdot-\lambda x) f^{2}+
$$

$+\frac{1}{8} \lambda^{2} x_{0}^{2}(\beta-f)^{2}\left(1-\mu_{0}^{2} x_{0}^{2}\right)+\frac{1}{8}\left[\lambda^{2} \beta^{\prime}\left(\beta^{\prime}-f\right)-\beta\left(\lambda^{2} \beta^{\prime}\right) \cdot 1-\gamma_{0}^{*}\left(\gamma_{i}^{\prime}-\gamma_{0}^{\prime} h_{11}\right)-\frac{2 \gamma_{1}^{2}}{\lambda^{2}}+\right.$

$+\frac{3_{2}}{2} i_{0}\left(n_{11}^{\prime}-n_{10}^{\prime} n_{1,}-n_{10} h_{11} x\right)+\frac{2}{\lambda^{2}}\left[n_{11}+\frac{1}{4} \lambda \lambda \lambda_{10} x-\psi_{0}-\frac{1}{4} \mu_{0} x_{0}^{2} \lambda^{2}(\beta-f)\right]^{2}$,
where notations $x=w_{0}^{\prime} / \psi_{0}, \quad \alpha=x_{o}^{*} / x_{0}$ are introduced. For other flow characteristics interconnection between coefficients of different orders may be found from eqs. (1), (4). In particular

$$
\begin{equation*}
n_{11}=-n_{10} h_{11}+\psi_{0}-\left[\frac{\psi_{0}^{\prime}}{\frac{x_{2}}{2}}\right]_{0}^{\prime}+\frac{1}{2} \mu_{0} x_{0}^{2} \lambda n_{90}: \quad \mu_{2}=\operatorname{const} \cdot \psi_{0} . \tag{7}
\end{equation*}
$$

The rest of relations have the sane form as in the case of a non-vortical flow ${ }^{3,4}$. Correctness of eqs. (5)-(7) has been verified with the help of algebraic programming system REDUCE ${ }^{5}$.

cathode asymptotics

In the considered order of paraxial theory coordinate surfaces $x_{1}=$ const, including that of the cathode ($x_{1}=0$), in the $r-z$ plane of cylindrical coordinates are represented by fourth-order parabolas

$$
\begin{equation*}
z=a_{1} r^{2}+a_{2} r^{4} \tag{8}
\end{equation*}
$$

To simplify the formulae let us assume as a unit the characteristic length

$$
\begin{equation*}
x_{0}=\left(\frac{\mathrm{l}_{0}}{8 \pi \mathrm{j}_{\mathrm{eo}}}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

where $j_{e o}$ is the emitted current density at the cathode center. In the following the values of x_{1}, h_{2}, h_{3} are meant to be expressed in the terms of x_{0}. A subsidiary condition $\lambda(0)=1$ may be imposed without lack of generality.

As the initial conditions let us consider those of a space-charge limited flow: $\vec{\eta}(0)=0, \gamma^{\prime}(0)=0$. Together with the requirement of ψ function being finite they lead to an equality $\psi^{\prime}(0)=0$, which implies that tangential component of current densityvanishes at the cathode ${ }^{3}$. In the vicinity of the cathode the characteristics of such a flow may be presented as power series in agregate $u=\left(3 / 2 x_{1}\right)^{1 / 3}$. The above-mentioned conditions and eqs.(5)-(7) impose interrelatlonship between the series coefficients. Analytical computation with REDUCE program ${ }^{5}$ gives the result:
$\frac{1}{\sqrt{2} \cdot x_{0} e_{0}}=u+\sum_{k=1}^{\infty} u^{6 k+1} t_{6 k}-\frac{44}{45} a_{1} u^{4}-\frac{1}{126} u^{5}+u^{6} b_{0}\left(-\frac{27}{280} b_{3}+\frac{9}{35} b_{0} a_{1}\right)+$ $+u^{8}\left(\frac{44}{4725} b_{3} b_{0}^{3}-\frac{352}{14175} b_{0}^{4} a_{1}+\frac{22}{1575} a_{1}\right)+u^{9}\left(-\frac{27}{770} b_{6} b_{0}-\frac{257}{15400} b_{3}^{2}+\right.$ $\left.+\frac{514}{5775} b_{3} b_{0} a_{1}+\frac{9}{15400} b_{0}^{4}-\frac{243}{1925} b_{0}^{2} t_{6}+\frac{19718}{433125}-b_{0}^{2} a_{1}^{2}-\frac{4511}{1455300}\right) \times u^{10}\left(-\frac{13}{24948} b_{3} b_{o}^{5}+\right.$
$\left.+\frac{9881}{1746360} b_{3} b_{0}+\frac{26}{18711} b_{0}^{6} a_{1}-\frac{3931}{654885} b_{0}^{2} a_{1}+\frac{392}{495} 6_{6} a_{1}-\frac{286904}{3007125} a_{1}^{3}+\frac{1856}{13365} a_{2}\right)=$ $+u^{11}\left(\frac{11}{7020} b_{6} b_{0}^{3}+\frac{87589}{27518400} b_{3}^{2} b_{0}^{2}-\frac{33941}{77395500} b_{3} b_{0}^{3} a_{1}-\frac{11}{421200^{6}} b_{0}^{6}+\frac{11}{1950} b_{0}^{4} t_{6}-\right.$
$\left.-\frac{8359354}{290233125} b_{0}^{4} a_{1}^{2}+\frac{53}{442260} b_{0}^{2}-\frac{49}{1170} t_{6}+\frac{28694}{2764125} a_{1}^{2}\right)+u^{12}\left(-\frac{747}{40040} b_{9}^{b} o_{0}-\frac{1}{55} b_{6} b_{3}+\right.$
$+\frac{25174}{525525} b_{6} b_{0} a_{1}+\frac{126667}{5255250} b_{3}^{2} a_{1}+\frac{2}{105105} b_{3} b_{0}^{7}+\frac{60353}{113513400} b_{3} b_{0}^{3}-\frac{5625}{56056} b_{3} b_{0} t_{6}-$
$-\frac{375812}{7882875} b_{3} b_{0} a_{1}^{2}-\frac{16}{315315} b_{0}^{8} a_{1}-\frac{18679}{38697750} b_{0}^{4} a_{1}-\frac{16941}{875875} b_{0}^{2} t_{6} a_{1}{ }^{2} \frac{82223464}{8445975} b_{0}^{2} a_{1}^{3}-$
$-\frac{608}{45045} b_{0}^{2} a_{2}-\frac{1610311}{21283762}$
$45045 \sigma_{2} \quad 212837625 a_{1}+\cdots$
$\beta=\sum_{k=0}^{\infty} b_{3 k} u^{3 k}+u^{7}\left(\frac{1}{14} b_{3}-\frac{4}{21} b_{0} a_{1}\right)-\frac{1}{120^{b} b_{0}} u^{8}+u^{10}\left(\frac{1}{35} b_{6}+\frac{268}{1575} b_{3} a_{1}-\right.$ $\left.-\frac{1}{2100} b_{0}^{3}+\frac{18}{175} b_{0} t_{6}-\frac{69404}{118125} b_{0} a_{1}^{2}\right)+\ldots$
$\mu_{0}=2 b_{0}, \mu_{1}(0)=-\frac{9}{4} b_{6}+6 b_{3} a_{1}+\frac{7}{16} b_{0}^{3}-\frac{81}{2} b_{0} t_{6}-\frac{283}{25} b_{0} a_{1}^{2}$, $\boldsymbol{r}=1+\frac{1}{2} u^{4}+\frac{32}{45} a_{1} u^{7}+\frac{13}{504} u^{8}+u^{9} b_{0}\left(\frac{1}{140} b_{3}-\frac{2}{105} b_{0} a_{1}\right)+u^{10}\left(\frac{1}{60} b_{0}^{2}-\frac{8}{5} t_{6}+\right.$ $\left.+\frac{2284}{3375} a_{1}^{2}\right)+u^{11}\left(-\frac{2}{4725} b 3^{b_{0}^{3}}+\frac{16}{14175} b_{0}^{4} a_{1}+\frac{272}{4725} a_{1}\right)+u^{12}\left(\frac{1}{770} b_{6} b_{0}-\frac{19}{15400^{b}}{ }_{3}^{2}-\right.$ $\left.+\frac{6}{275} b_{3} b_{0} a_{1}-\frac{1}{46200} b_{0}^{4}+\frac{9}{1925} b_{0}^{2} t_{6}-\frac{24034}{433125} b_{0}^{2} a_{1}^{2}+\frac{3127}{5821200}\right)+u^{13}\left(\frac{1}{62370} b_{3} b_{0}^{5}\right.$ $\left.+\frac{1301}{873180} b_{3} b_{0}-\frac{4}{93555} b_{o}^{6} a_{1}+\frac{139814}{3274425} b_{0}^{2} a_{1}-\frac{11128}{2475} t_{6} a_{1}+\frac{12634096}{15035625} a_{1}^{3}-\frac{4736}{13365} a_{2}\right)_{1}$ $+u^{14}\left(-\frac{1}{24570} b^{b} b_{o}^{3}+\frac{10247}{27518400} b_{3}^{2} b_{o}^{2}-\frac{280581}{77395500} b_{3} b_{0}^{3} a_{1}+\frac{1}{1474200} b_{o}^{6}-\frac{1}{6825} b_{0}^{4} t_{6}\right.$ $\left.+\frac{1892599}{290233125} b_{0}^{4} a_{1}^{2}+\frac{953}{884520} b_{0}^{2}-\frac{92}{815} t_{6}+\frac{72074}{921375} a_{1}^{2}\right)+u^{15}\left(\frac{64}{25025} b_{9} b_{0} * \frac{2}{1925} b_{6} b_{3}-\right.$ $-\frac{1296}{175175} b_{6} b_{0} a_{1}-\frac{18296}{2627625} b_{3}^{2} a_{1}-\frac{2}{4729725} b_{3} b_{0}^{7}-\frac{88741}{1135134000} b_{3} b_{0}^{3}-\frac{1236}{175175} b_{3} b_{0} t_{6}^{2}$
$+\frac{7632983}{118243125} b_{3} b_{o}^{a_{1}^{2}}+\frac{16}{14189175} b_{o}^{8} a_{1}+\frac{1679}{12162150} b_{0}^{4} a_{1}+\frac{31456}{875875} b_{0}^{2} t_{6} a_{1}-\frac{10656824}{84459375} b_{o}^{2} a_{1}^{3}+$
$\left.+\frac{2048}{289575} b_{0}^{2} a_{2}+\frac{321956}{212837625} a_{1}\right)+u^{16}\left(-\frac{1}{5985} b_{6} b_{0}^{5}+\frac{4471}{307230} b_{6} b_{0}+\frac{2027}{4189500} b_{3}^{2} b_{0}^{4}+\right.$
$+\frac{2039}{512050} b_{3}^{2}-\frac{2533372}{311070375} b_{3} b_{0}^{5} a_{1}-\frac{4345907}{622440750} b_{3} b_{0} a_{1}+\frac{1}{359100} b_{0}^{8}-\frac{2}{3325} b_{0}^{6} t_{6}+$
$+\frac{88931764}{4666055625} b_{0}^{6} a_{1}^{2}+\frac{46867}{663616800} b_{o}^{4}-\frac{5603}{307230} b_{0}^{2} t_{6}+\frac{61364911}{933211125} b_{0}^{2} a_{1}^{2}-\frac{67}{19} t_{12}+$
$\left.+\frac{1497}{950} t_{6}^{2}-\frac{20993576}{3526875} t_{5} a_{1}^{2}+\frac{6181585192}{7141921875} a_{1}^{4}-\frac{1962496}{3809025} a_{1} a_{2}+\frac{234813757}{167231433600}\right)+\cdots$
$\tau=\left(-\frac{7}{96} b_{0}^{2}{ }_{0}^{27} \frac{27}{4} t_{6}+\frac{1}{6} \lambda^{\prime \prime}+\frac{61}{50} a_{1}^{2}\right)-u^{2}\left(\frac{9}{160 b_{3}} b_{3}^{2}-\frac{3}{10} b_{3} b_{0} a_{1}+\frac{2}{5} b_{0}^{2} a_{1}^{2}+\frac{1}{160}\right)+u^{3}\left(\frac{1}{18} \lambda^{\prime \prime \prime}-\right.$ $\left.-\frac{3}{5} \lambda^{\prime \prime} a_{1}-\frac{176}{45} a_{1}^{3}+\frac{176}{45} a_{2}\right)+u^{4}\left(-\frac{1}{112} b_{3}^{2} b_{0}^{2}+\frac{1}{21} b_{3} b_{0}^{3} a_{1}-\frac{4}{63} b_{0}^{4} a_{1}^{2}-\frac{55}{648} b_{0}^{2}+\frac{3}{4} t_{6}-\right.$ $\left.-\frac{1}{189} \lambda^{11}+\frac{61}{450} a_{1}^{2}\right)+u^{5}\left(-\frac{729}{2240} b_{9} b_{0}=\frac{27}{280} b_{6} b_{3}+\frac{99}{70} b_{6} b_{0} a_{1}+\frac{58}{1755^{2} 3^{2}}+\frac{39}{5600 b^{b_{3}} b_{0}^{3}}-\right.$ $-\frac{243}{280} b_{3} b_{0} t_{6}-\frac{9}{112} b_{3} b_{0} \lambda^{11}-\frac{14491}{5250} b_{3} b_{0} a_{1}^{2}-\frac{13}{700} b_{0}^{4} a_{0}=\frac{81}{35} b_{0}^{2} t_{6}{ }^{a_{1}} 1^{\frac{3}{14}} b_{o}^{2} \lambda^{11} a_{1}{ }^{2}$
$\left.+\frac{23204}{7875} b_{0}^{2} a_{1}^{3}-\frac{36}{35} b_{o}^{2} a_{2}+\frac{13}{1575} a_{1}\right)=u^{6}\left(\frac{13}{9576} b_{6} 5_{0}^{5}-\frac{7841}{102144} b_{6} b_{0}-\frac{403}{109440} b_{3}^{2} b_{0}^{4}-\right.$
$-\frac{2759}{102144} b_{3}^{2}+\frac{8021}{123120} b_{3} 0_{0}^{5} a_{1}+\frac{120979}{3447360} b_{3} b_{0} a_{1}-\frac{13}{574560} b_{o}^{8}+\frac{13}{2660} b_{0}^{6} t_{6}-$
$-\frac{1243463}{8079750} \sigma_{0}^{6} a_{1}^{2}-\frac{16257}{110315520} b_{o}^{4}+\frac{267}{10640} b_{0}^{2} t_{6}-\frac{7}{216} b_{0}^{2} \lambda^{14}+\frac{3472601}{18468000} b_{0}^{2} a_{1}^{2}+\frac{17325}{608} t_{12}-$
$-\frac{22041}{6080} t_{6}^{2}-4 t_{6} \lambda^{\prime \prime}-\frac{1210957}{57000} t_{6} a_{1}^{2}+\frac{1}{81} \lambda^{(12)}-\frac{86}{405} \lambda^{\prime \prime \prime} a_{1}+\frac{1}{27} \lambda^{\prime \prime 2}{ }_{4}^{2}$
$\left.+\frac{158}{405} \lambda^{\prime \prime} a_{1}^{2}+\frac{9817171}{1038825000} a_{1}^{4}-\frac{186676}{115425} a_{1} a_{2}-\frac{1230209}{115831296}\right)+\ldots$
algorithm for solving the internal problem
As eq. (5) is the only relation petween three functions $\eta_{10, ~} \beta$ and x_{0}, there is a certain freedom in specifying two of them, which are chosen as generic functions. This freedom may be used in order to obtain the optimum source characteristics. The form of generic functions is not quite arbitrary: they should provide the required beam parameters at the source output and satisfy the initial conditions at the cathode.

In the case of a non-vortical flow $(\mu=0)$ it is convenient to choose $\beta\left(x_{1}\right)$ and $x_{0}\left(x_{1}\right)$ as the generic functions and consider eq. (5) as an equation for momentum of electrons at the axis $\eta_{10}\left(x_{1}\right)$. Owing to this equation, being the first-order differential equation, its solution (if it exists) tends to the final value at $x_{1} \rightarrow \infty \quad$ without oscillations, thus automatically ensuring the beam matching in the lowest order of paraxial theory. Subsequently solving eq. (6) gives information on the aberrations in the designed system which can be minimized by a proper choice of the cathode configuration (fixed by parameters a_{1}, a_{2}).

A computation example is shown in the flgure of the beam source with current 100 A and energy 330 kV . The beam compression factor in radius on entering the focusing magnetic field (not shown) is about 30 at a moderate level of aberra-
tions. Equipotentials outside the beam (indicated in kV) are found by approximate method of Ref. [6]

REFERENCES

1. D.S.Colburn, K.J.Harker, G.S.Kino, In: Microwaves (Proc.4-th Int. Congress on Microwave Tubes. Centrex, Eindhoven, 1963), p. 572.
2. Yu. l. Alexahin, JINR Rapid Comm. H 10-85, 53 (1985).
3. Yu. l, Alexahin, Zh.Tekh.Fiz., 56, 461 (1986).
4. Yu.1.Alexahin, Radiotekh. Electron., 32, 2178 (1987).
5. A.C. Hearn, Reduce Users Manual. Version 3.2. RAND Publ. CP78, Santa Monica, 1985.
6. Yu. I.Alexahin, Radiotekh. Electron. . 31, 1398 (1986).

лексахин 10.И.

Метод синтеяа источников релятивистских
Магнитофокусируемых пучков
Описан метод расчета источников релятивистских пучков, которыи позволяет находить геометрию электродов, необходимую для формирования пучков с заданными характеристикамн, в частности, согласованнвх пучков в продольном фокуси рующем магнитном поле. Метод основан на параксиальном разложении негеометризованньх уравнений ламинарньк потоков пространственного заряда и включает аналия н устраненне абераций надлехащим выбором формы эмиттирующей поверхности.

Работа выполнена в Общеинститутском научно-методическом отделе ОИяИ.

Alexahin Yu.I.

A Synthesis Method for the Design
of Relativistic Magnetically-Focused

Beam Sources

A system of equations governing stationary laminar spa-ce-charge flow is presented. In the case of solid axisymmetric flow it is reduced to a set of ordinaty differential equations in the longitudinal coordinate. In the vicinity of the cathode the solution is given in the form of power series. A synthesis method of relativistic Pier-ce-type gun design is proposed, employing the obtained set of equations.

The investigation has been performed at the Scientifi-cal-Methodical Division, JINR.

Preprint of the Joint Inetitute for Nuciear Research. Dubha 1988

