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I. Introduction 

The use of the sextupolar second harmonic perturbation has been proposed / 1/, in 
order to acquire the slow resonant extraction of the proton beam from the 10 GeV Dubna 
synchrophasotron, by exciting the resonance 

2 radial betatron oscillations 

3 revolutions 

which seems to be the most suitable / 2 / for such a kind of accelerator. 
The design of the perturbing system, as well as that of the extraction channel, is 

very well ahead, and its main features are going to be considered in this note. 
First of all, the sextupolar 2nd-harmonic pattern is built up involving all four quad

rants; i.e. guide field and perturbing field have the same polarities in two opposite quad
rants and the opposite polarities in the other two quadrant~. This implies that the appro-
ximate azimuthal function has to be as follows: , 

F(0} 4 . 
:: - sin 2 0 

TT 

which has been successfully employed at Frascati 131 and at Princeton 
14

' 
51 

. 

(1) 

Moreover, the unwanted dipolar component 131of the perturbing field has been can
celled: .the· appropriate amount of current is fed into a few wires which are wound around 
the poles of two opposite quadrants, the sanie current, but in opposite polarity, is fed into 
the wires of the other two quadrants 161 Thus, the_ perturbfog field is a pure sextupo
lar /4, 51 one, namely 

2 = b
2

(R - R
0

) , 

3 

(2) 



where R is the radius of any ~rbit, RO 'is the equilibrium orbit radius, b2 0.0075Gs/cm2, 
as it has been assessed after the first results/ 7 I yielded by computer. 

Hence, the radial motio~ equation takes the simple form 

d2 X 
~~ Q2 
d 02 + Rx 

4 Ro b x 2 sin 2 0 , 
- - 2 

" Bo 

(3) 

(where x = R - R
O 

, B O is - the guide field. ·on the equilibrium orbit), which is far less 
sophisticated than equa!ion (4) of ref. l and it is quite close to equation (1,2) of ref. 3. 

l\ 
Solutions of equations similar to eq. (3) have been ·computed by Runge-Kutta prog

rams / 7 ,s/ , yielding results which are very similar / s/ to those obtained by matrix 
programs /4,5,B-10/. · , , · 

If these results are plotted in the phase plane ( x, x ') - withx:d(//R0 Jdx/ de-accord
ing to the stroboscopic representation (i.e. at a fixed azimuth), a very typical fe;iture is 
shown. Namely, there is a particle.which behaves as follows: 
- at any instant (0-th turn): it passes at a distan<:e x 0 from the equilibrium orbit, with 
a slope X ~ , defining a pointXO (XO' X ~ Jin the phase plane plot; 
- after one turn (1-st turn):· it passes at a distance x 1 , with a slope x' , defining . , l 
a point Xi( x1 , x 1); . 

- aUer two turns (2-nd turn): it passes at a distance x2 , with a slope x; , defining 
a pointX 2 ( x 2 , x ~ ) ; 
- after three turns (3-rd turn): it passes at a distance x

3 
= x

0
, with a slope x3 = x~ , 

definingapointX3 (x
3

,x'
3

J X
0

(x 0 ,x'
0

). - · 

Therefore this particle will go on repeating the same behaviour every three turns. 
Consequ1:nt1y, the three representative points X0 ,X 1 , X 2 will be transformed into them
selves every three revolutions, being for this reason called fixed points. 

If an appropriate phase plane plot ( x, x +) is chosen (Appendix I), th~ triangle ·de
fined by the three fixed points is equiangular. Moreover, bearing in mind that the analy
tical approximation /3/ yields the amplitude 

a = 
48 

K2 
(4) 

(with 8 = n - n,es andK 2 =(4/17 )(R0 /B 0 J,b 2=O.5 (dn/dx)of ref. 3) as being the. 
limit between the stable and unstable oscillations, one can state that the fixed points tri
angle is inscribed (Fig. 1) in the circle of radius a . 
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• Hence, the value of the stable are~ is 

(5) 

which is very near to the one obtained by matrix consideration (eq. (3) of ref. 10). 
In passing, the triangle of Fig. I rotates in the phase plane, as the a"Zimuth chosen 

for the stroboscopic representation varies. Numerical computations /7/ of equation (3) 
show· (Fig. 2) how this triangle revolves at eight different azimuths. In the real case, Fig. 2 

; must be looked at through a mirror, as the guide field is downward directed, still consi-
2 . 

dering b 2 x as positive, when both are in the same polarity. 

II. Slow Extraction 

The usual way of slowly extracting the beam is here considered. As the field index 
is slowly brought up to resonant value n res , according to the procedure extensively 

discussed in ref. l; the separator triangle of Fig. 1 squeezes (bear in mind eqs. (4) and 
(5)) tUl collapsing over the closed.,orbit representative point. 

Numerical computations 17,BI show that, due to the absence of the 2nd-harmonic 
dipolar term b O sin 20 , the perturbed closed orbit coincides with the unperturbed one 
0(0,0) and - very important - quite no relevant variation of n ,u results. 

The beam spill out begins to take place, when the sides of the separator triangle im
pinge the circle repfesenting the circulating beam. Indeed the bounded stroboscopic points 
do not keep their regular motion along circular paths,. but they trend to describe the usual 
pseudo-triangular curves, thus diluiting the phase plane density distribution. 

In fact, in the (a, cp) representation/3/the equation of the separatrix curve is 

cos 3¢ = _.L(..SJ 3 + L(A) 
2 a 2 a 

(6) 

/3/ 
which is nothing but eq. (l.5) of ref. . 

Solutions of eq. (6) for cos 3 ¢= - 1 and cos 3 cf}=. Jareb =al2and a = a , respecti-
vely, i'.e·. the betatron oscillation amplitudes of these particles undergo_fariations from 
a/2 to a (see upper part of Fig. 3). This means, that, in terms of( x, x;Jplot, the cor

responding stroboscopic points are moving around following the shape of the separator 
triangle, their amplitude being· equal fo a/2 , everywhere the triangle sides touch the 
profile of the unperturbed circulating beam (dashed circle 'in the lower part of Fig. 3) and 
equal to a in correspondence of each vertex. 
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-~ · The practical shrinking of the stable area takes place over an enormous number 
of turns: one turn means Zl/1.5)µsec,hence a 300-; 400.msec spill out means 450000-; 
,. 600000 turns. This implies (adiabatic hypothesis): 

i) the stable points (i.e. the strob. points belonging to the stable area) succeed in 
approaching the fixed points, without being turned into unstable (Appendix'II) by the inward 
d~splacement of the triangle sides; • 

ii) the fixed points can be considered as such, since o remains practically c_onstant 
over a quite big number of turns:~ al a "'0.001 for 600 turns. Nevertheless, a very slow 
inward displace~ent is however taking place, implying: 

iii) the stable points near the vertices become little by little fixed points; 
iv) concurrently, points, with betatron amplitudes slightly bigger than a , leave 

the fixed points moving away to infinity, along three of the unstable separatrices (look at 
the arrows of Fig. 1), with radial jumps faster than exponential. 

Hence, the whole extraction can be outlined as in Fig. 4, which shows from left to 
right: the fixed points triangle at the beginning of the spill ( a/2 = r beam "" 7.5 cm), 
a few triangles at different values of n , the final situation atn = n ,es,and finally the 
emittance thus obtained beyond the septum. (Notice that the former r b = 7. 5 cm,; cor
responds to a half of the radial width of the circµlating beam). 

3. Reduction of the Emittance of the Extracted Beam 

An analysis of Fig. 4 suggests a possible method for minimizing the emittance of the 
extracted beam. In fact, if a 2nd-harmonic dipolar field is added to ,the 2nd-harmonic sex
tupolar perturbation, the closed orbit representative point is upward displaced along the 
x + axis. (Notice that the resulting perturbation is now of the type (b +b 

2
x2 )sin20 , instead 

of the. former unwanted ( b
0 

- b
2 

x 2 jsin 20. ,
0 

. , · 

More exactly, at the beginning of the spill b
0 

must be null, at the end of th·e spill 
b

0 
must have such a value that the closed orbit displacement is 

x+ 
c.o. 

X = 0 c.o. 

(1/2)ast,ill = rb. 

(7a) 

(7b) 

Besides, it is necessary that b
0 

increases and o decreases both according to the 
same law, i.e. 

b
0 

(0) = ( b o ) . [ 1 - o( 0) 
/zn al ] 0 ·spill ' 

(8) 
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where 0 is null at the beginning of the spill out, and o( 0) = n ( 0) ~ n ,es ; 

Unde1: these c.onditions , all the. upper sides .of the successive fixed-point triangles 
should c_oincide (Fig. 5) during the whole extraction process, yielding an external beam 
with a vanishingly small emittance, in principle at least. 

The analytically predicted result, illustrated in Fig. 5, shows features in common 
with other results (obtained by numerical computations) regarding weak focusing synchro
trons perturbed by a radial magnetic bump /J 1-13/ located at a single azi~uth (lumped 
perturbation). 

More quantitatively, as the closed orbit equations are: 
Ko 

x = ---- sin 2 0 , 
c.o. 4 - Q 2 

R 

4 - Q2 
R 

cos 20. 

One has, over the resonance Q =2/3and at the azimuth 0 = 0° : 
R 

xc.o.=.O, 

x + = ( 27 /32) K • 
c.o. 0 

(9a) 

(9b) 

(IOa) 

(IOb) 

Combining eqs. (4), (7b) and (lOb), the following set of relevant equations is obtained: 

K2 (KO ) fin al 
64 
27 o spill ' 

(11) 

(KO ) fin al 
32 - r 
27 B (12) 

1 o = -2 K2 r B spill 
· (13) 

Equations (12) and (13) can be transformed into the following ones, more suitable 
for practical purposes: 

8 . r B 
(b ) = -17 B· -

0. final 27 0 R 
0 

(14) 

o spill 
2 
TT 
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which yields( b
0 

) "' 24. iaauss and o .
11 

"'
1 
0.0103, with the data considered in 

final i . sp, 
1 

this note. . . "' . . . 1 

2 , 
In the previous considerations, the difference between any general QR andQ 

2 
;(4/9) 

, , . . res 
has been disregarded, as being,a small quantity wit~ respect to 4 (look at eqs. (9)). · 

This kin<t of dipolar component has to lift the perturbed n ,es 1: just the opposite of 
wJiat-happened /B, 121 when b~, and,h

2 
x 2/were in opposUe"p~iarity. First results 

ob.tained by numerical computations I 7 I show that the · n ,e 5 · -displacement is not very 
big: from 0.626( b0 =0 )o 0.633 ( b O = 30 Gs )Incidentally~ ,es( b 

O 
= · 0 )coincides with the 

value of n; evaluated by setting QR = 2/iin equation (AI.5). 

4. Conclusions 

The resonant extraction via 2/3 non-linear resonance seems more and more promis-
. ing. The suggested method of distorting the closed orbit, by means of an appropriate 2nd- · 

harmonic dipolar component, looks very attractive. In fact, the proposed procedure suc
ceeds in minimiz'ing the emittance of the extracted beam and gives the possibility of having 
a double control - on both b 

O 
( 0 f _and o ( 0) · - over the -whole process of the slow spill 

out. 
A few words are going to be, spoken about the most appropriate time dependence of 

o(0}, and consequently ofb
0

(0Jaccording to eq; (8). (Notice that 0 = 2TT/t , where 
f. is the proton frequency at 10 GeV and t is the extraction time). The time dependence 

' of the QR -value for obtaining ·· . uniform spill-out has been evaluated elsewhere (see 
Appendix IV of ref. 10). Taking into accou_nt eq. (5) and e_q. (IV, 5) of ref. 10, assuming that · 
99% of the particles are contained in the triangle, circumscribing the circle of radius 
r 

6
;:: 7.5 cm, one has: 

_ ,z fl0. 
8(0) "' 0,466 ospill v n 0- (16) 

where o spm/= 0.0103, fl0=21TSOOOOO
1 

radians and 0 is counted from the beginning of 
the. spill .. Fig. 6 shows o( 0) /O ,466 o spill , which is nothing but .Fig. 15 of ref. 10. 

Acknowledgements 

This work has been conceived·after several illuminating discussions with Drs. I.B.Is
sinsky and V.A.Mikhailov, whom the author is deeply grateful to. 

The author wishes also to thank Mr. V.S.Shvanev and Dr. I.N.Semenyushkin for their 
kind hospitality during his visit. . .· 

8 



' · Appendix I 

Norm a 1 i zed Units ·, iL 
, . :I 

Any sector machine, wiJh IN straight sections, can be considered as a circµlar 
machine, with !he sa~e field imtex,-but fulfilling the following requirements: ' 

21rR0 = 21rR00 + NL 

(particles travel the same length per ~evolution), where I R 0, is the equilibrium orbit ra
dius of the equivalent circular machine; !R 00 is the equilibrium orbit radius in the sector · 
magnet; L I is the length of each straight sectiop; 
hence NL 

Ro = Roo (1 + ---) 
21rR oo· 

and if N1=4 
. L 

As 

L 
Ro= R oo (1 + 2---). 

17 R oo 

Bo Ro = Boo Roo 

one has, for 2 LI 1r R
00 

<< 1 

( same final energy) 

L 
B

O 
"' B 

00 
( 1 - 2 ---,,,-- ) • 

17 R oo 

. (AI.l) 

(AJ.2) 

If th'e actual values L = 8 m.' R 
00 

= 28 m and, B 00 = 12 .620 Gs are considered, 
"eqs. (AI.1) and (AI.2) yield: 

R O "' 33.J m (AI.3) 
I 

Bo"" 1 10325 'Gs (AI.4) 

which should be used instead of R 00 , B 00 whenever they appear. 
Moreover, the simplest periodic struct~re (one straight section one quadrant) is· 

described by a matrix, which half-trace is 
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1 ~ 11 -- L - . 11 
- T (M) - cos - .J 1- n - -.-- .Jl -n sin - .J 1 - n 
2 ' 2 2 R 00 2 

which becomes, for L/2R • << J 
00 

__!_ T (M) 
2 , 

1T Q -= cos 2- R - " L cos 2 .J J - n (1 + -R-), 
11 

00 i.e. 

Q "'.JJ -n(J+ 
R 

L 

11R oo 
) . (Al.5) 

Notice that equations (AI.2) and (AI.5) are given with an approximation of about 3%. 
Finally, if such units are required that unperturbed trajectories in the phase plane 

have to be circles instead of ellipses, it suffices to choose, as coordinates, the same dis
placement x but a slightly different d_ivergence, i.e. 

, R J dx 
x+= ~x = ...:.:!J ---

Q R d 0 
R O 

1 dx --
QR d 0 

or, according to (Al.5): 

+ 1 L dx 
X "'~-__ -_-_(]- ---)-, 

,11-n 11R dO 
00 

All over this note, the following equation has been used: 

where m 

K 
m 

4 Ro 
--b 
TT B m ' 

0 

0 - dipole, m = J - quadrupole, m 2 • sextupole and so on. 

Appendix II 

Bounded Orbits near the Separatrix 

(AI.6) 

(AI. 7) 

The simplest function which fulfils the requirements a (0) = a I 2 and a( oo )-= a is 

3-e-B0 
a(O) = a---- (Ail.l) 

3+e-B0 

10 
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~-~ --------:--:-:---:--:-:----------:--------....... 

If foot-page equations (i) of ref. 3 are here rewritten in a slightly different form: 
d a 3 2 . 

--. = - K 2 a sin 3¢, , (AII.2a) 
d 0 16 

d <f:, = _i_ K . a cos 3 <f:, - 1_ o (AII.2b) 
d 0 16 2 4 · 

_equation (AII.2b) can be written, taking into account equation (6), since only particles close 
to the separatrix are considered: 

3 
2 2 

a - a 
--o ----

8 a 
2 

Combining (Ail.l) and (AII.3) and making the approximations 

2 -B0 -B0 2h 
1--e ""(1-e ) 

3 

one has: 
(being B 0 >> J ), 

d(3 e
80 J 

.. 
i.e. 

1 0 B0 -B0 zh 
cp (0)"" t - TB arc.tan 3 e (J - e ) • 

Equation.· (AII.4) yields¢ (0 = 0) = rrl3, as it is due, and 

rr ·35 rr rr 9o 
¢ ( 00 J = 3 - 2 B 2 = 3 (1 - ·7 BJ 

whihch gives, as cp ( 00 J must be eqtial to rr / 6 : 

i.e. 

cp ( 0) 

a(0)=a 

B = (9/2) o, 
_2. o 0 

2 
3 - e 

_.J 80 
3 + e 2 

.2 80 
17 1 B 2 = - - - arc tan e . 

_2. 80 zh 
(1-<e2) 

3 3 

II 

(AII.3) 

(AII.4) 

(AII.5) 

(AII.6) 



_,. ..... . 

Taking into consideration the amplitude variation after the first turns, starting from 
a (OJ = a/2 , it is possible to write by means of equation (AIL5): 

~ 1,.., 

Bl 
/la= a('6,r) - a(O) '." 8 ,ra8 i (Ail.7) 

having considered the quantity 27 ,r 8 as being small with respect to unity. 
Concurrently, each side of the fixed-point triangle unde~go~~ an inward displacement, 

perpendicular to itself, given by 

da 
/lS = L·fla = J,r- ,.1 1

• 

2. d,0, . 
: (AII.8) 

as it can b.e found by simple geometrical consideratip~~ and by bearing in mind that, over 
three turns, the time variation of ~S, is obviously constant. 

As the adiabatic hypothesis implies that 

/lS .« Ila 

equations (Ail.5), (AII.8), (All.9), together with equations (4), yield: 

_!!_§_ .« 27 fj 2 

d 0 B spill 

(Ail.9) 

i (All.IO) 

meaning that the 3-turns variation of the field index must be much smaller than 0.01, 
roughly, if all the particles are due to spill out "through" the fixed points. 

Notice that the bounded points slow deadly down (see eq. (Ail.5)) when they approach 
-the vertices of the triangle.At this stage, equation (Ali.9) is no longer variable,as fl a · is 
almost null. 

Resonantly Blasting Orbits 

Over a resonance ( 8 = 0), equation (6) becomes just cos 3 cp =0, if equation (4) 
is considered. This implies that sin 3 cp = 1; hence equation (AII.Za) becomes 

~= _!_K a
2 

d 0 16 
2 (All.ll) 

being very simil~r to equation (I, 15) of ref. 10 where the Rayleigh frequency distribution 
has been considered. 

Integrating equation (All. 7), one has: 
ao 

a(0) = -----
3 1--K a 0 

16 2 O 

where a
0 

\ is a betatron amplitude slightly outside the collapsed stable area. 

12 

(All.12) 
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Equation (Ail.8) shows that a ( 0) becomes divergent tor approaching 
16 

0 00 = 
- 3K

2
a

0 

(AII.13) 

Notice that the weakerthe perturbation, the bigger the number of revolutions required 
; for reaching a given amplitude. 
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Fig. 1. Phase plane plot for 2/3 resonance. Arrows indicate the directions of the represen
tative points displacements. Notice the three. fixed points, as vertices of the separator 
triangle which contains the stable area. The outer part - 'unstable area - is divided in fur
ther six portions, by six unstable separatrix-lines. · Each of these portions defines a dif
ferent way of resonantly increasing the betatron amplitudes. 

•'• .,, - ' 

-M. 
- -¥lh.b,x' 

IDB 

UJ t f 
X , '(j' n>n•u x 

1 GUIDE O 

-b,ro ;~ 2. 

f~/0 1· >?f -r, 
a l t PHoroNS ', l ~ D RCYI'.\TIOI '/ 

2 

ODf f 2 

61 ° f?' Ov2 
f 

j! 

o~ Ba 

·k: 
Fig. 2. Rotation of the fixed points triangle at eight azimuths. The perturbing field is con
sidered positive when it has the same polarity of the guide field. 
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rW-~u Li.l Sol 

Fig. 3. Behaviours of stable stroboscopic points very near to the separatrix in both (a, <p) 
and ( x, x+) plots. The broken circle is the profile of the unperturbed circulating beam, 
shown as an useful reference . 
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BEGINNING 
OF THE SPILL 

mmnm 
THE SPILL 

END OF THE SPILL 

~ ., 

EXTRACTED 
BEAii 

ElfiTT 1NCE 

SEPTUU 

Fig. 4. Sketch of the resonant extraction procedure. Triangle on the left has its height 
equal to (3/2) r b where 2 r b ~ 15 cm is the radial width of the unperturbed circulating 
beam. 
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Fig. 5. Sketch of the proposed procedure for minimizing the ejected beam emittance. The 
closed orbit is continuously lifted during the spill-out, in order to keep up always· the same 
divergence at the septum abscissa. 
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Fig. 6. Time dependence of 8 ( 0) = n ( 0) - n -;;s for obtaining uniform spill out of 
the beam. 
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