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Computer Investigation of Nonlinear Dynamical 
Problems of Plasma Theory 

The results of a numerical investigation of three 
plasma theory nonlinear problems are given: 1) the evo­
lutions of the Langmuir wave spectra due to their 
induced scattering on plasma ions and four-plasmon 
interactions; 2) the correlation function structure of 
quasi-steady isotropic Langmuir turbulence; 3) the dy­
namics of radiation instability of relativistic electron 
ring's up to a saturation. 
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I. The spectrum of quasi-steady isotropic Langmuir turbulence 
has been obtained via computer by Makhankov et al. / 1!. There natu­
rally appears a question about ,the dynamics of reaching this steady 
spectrum, i.e. about evolution of quite arbitrary initial spectrum lo-

1 W V 
cated in the region of large wave number k >Jc,,. - 3 :2 1 (the 

e 

usual notations). The problem is reduced to a study of behaviour of 
the spectral energy density of I-wave Wk(t) in time. This yields 

(I) 

for the definition of Q(k,k,J and R(k,Tci,k21 k3J seel1!. It is not dif­
ficult to verify that the quantity Wo- 411 f wk (t)k2xdk is the constant 
in the evolution process (the energy conservation law). 

Three-dimensional integrals were calculated by the repeated 
integration. The time derivative was approximated by the simple 
explicit scheme of the first order accuracy. The deviation of the va­
lue W0(evolution constant) is less than 3% in the end of the calculation 

if the time step /!, .10.....1 (where r • ;;e n:~~t ). The following ini­

tial data considering nearly all physical conditions have been stu­
died: 

a) a broad wave spectrum (parcel) lik~;k and k
0
» k*,, 

,b) a narrow wave spectrum lik«k and k.fi>> 1. • , 
I c ) a wave spectrum lik < k and k

0 
> 2k * , 

ko is a center of a wave spectrum (_see Fig. 11. -
Results of the calculation show (see Figs. 2,3) if an initial spectrum 
is broad enough (case a) the evolution leads it quickly to become 
too narrow and the wave energy locates near the left-hand side of the 
initial spectrum. Thus we come to the conditions of b) type. In this 

... 
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case the fol lowing process of transformation occurs: the initial spect­
rum growing more narrow becomes nearly a I ine-spectrum, unmov­
ing along k -axis, simultaneously the accumulation of wave energy 
proceeds in the reg'ion corresponding to the maximum of nonlinear 
growth rate. 

Then the energy from the first spectrum transforms into anoth­
er quite narrow one. This is the two-level mechanism of energy trans­
formation {through a set of satellites) first predicted in work /2/ .As 
an energy level at the left-hand side of the appearing spectrum being 
larger than that of the initial one the above mechanism of energy 
transformation goes to be broken and the new packet moves quicker 
than energy needed to create a new sate I I ite accumulates. When the 
wave packet center has gone to a region of k- 3 k* at the left of it 
there arises a broad packet overlaping with the main one and energy 
transforms from the first packet to another with their simultaneous 
displacement to smal I k , where the four-plasmon interaction and 
pair collisions should be taken into account. As a result of all these 
factors proceeding there can appear a quasi-steady spectrum. 

2. Correlation functions being one of the most important charac­
teristics of plasma turbulence have been measured in a lot of expe­
riments. Knowledge of these functions enables us to know both the 
frequencies of turbulent pulsations and the level of their energy. Cal­
culations of correlation functions of isotropic Langmuir turbulence 
have been made for some yalues of k and-based on the equation ob­
tained in / 3 / • · 

Results show {see Fig. 4) that the width of the correlation curve 
increases with increasing k up to a maximum at k • k0, which cor­
responds to the maximum of the turbulence spectrum W (tJ • Wma/1~ 

Thereafter the width of curve decreases with increasing k . 
The shift of the curve maximum as a function of k is deter­

mined mainly by the linear dispersion, therefore it increases with 
increasing k . 

The calculation of correlation functions of the plasma-beam ex­
periment (rt./41) has been proceeded. Sufficiently good coincidence 
between computation and experimental data was obtained to reach if 
the level of turbulence is (',JI /n0 1e) .. 10-.1that corresponds to other 
measurements. . 

3. There are many common .topics {problems) of turbulent plas­
ma theory and explosively evolved by now theory of collective acce­
leration/ 51. The study of electron-ion ring stability is one of the main 
problems. As it is well-known the radiative instability being of a hyd-
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rodynamical nature is the most dangerous for the mentioned accele-
. ration. Its investigation comes mathematically to solving the one­
dimensional Vlasov equation for oscillations of electronswith"comp­
lex" effective mass. Therefore the instability is of a hydrodynamical 
type and is attended with an intensive coherent radiation of electro­
magnetic waves with their lengths being larger than the minor ring 
radius, i.e. ,\ »a. · ' 

The dynamics of this instability has been considered beginning 
with disregarding azimuthal perturbations ( - 10-5 ) of electron dis­
tribution function. There were taken into account 10 coherent harmo­
nics. The Couchy problem for a set of21 quasilinear (i~ a mathemati­
cal sense) equations was solved numerically. We used an implicit 
qifference scheme, having verified its stability for parameters em­
ployed (most interesting from the point of view of the Dubna and Ber­
keley experiments). Results were obtained for three versions of ini­
tial data (two versions of initial perturbation energy distribution over 
harmonics (spectrum) a) and b); for the case ia) two values of initial 
energy spread were taken (Fig. 5)). 

The results of a linear theory (growth rates and thresholds) 
at the initial stage of instability de~elopment with a good accuracy 
have been confirmed. The system has a tendency, due to evolution, 
to distribute energy equally over all the harmonics because of their 
non-I inear interaction (Fig. 6). At the moment of time near 3-3.5 re­
verse linear growth rate of the first harmonic, a nonlinear limitation 
of the amplitude increase occurs in all the cases considered then 
during a short time the field energy grows sharply (it may be under­
stood as an exposive instability (Fig. 7)) and finally further behaviour 
of the wave energy in time is of oscillation nature with some average 
value (small enough/6 / ) that justifies the saturation of the instabi­
lity observed. 

The zero harmonic describes the particle distribution over 
energies in a ring. The calculation results show that at 1 • 3.5 a step 
of a "shock-wave" type in the energetic space passing inio the region 
of a smal I energies appears. The froni of this wave gradually flat­
tens and a velocity of its moving decreases. This process is repeat­
ed, and a shape of the distribution funciion becomes approximately 
of a Gaussian type wiih energy ~pread io be of order of threshold 
one (see Fig. 8). 
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Fig. l(c), 2(c). The initial spectra W(v,O) and corresponding to them 
non I inear growth rates. 
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Fig. 3(a,b,c).The evolution of the I-wave spectra due to induced scattering 
on -the plasma ions. · 
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Fig. 4a. The correlation functions of the isotropic Langmuir turbu­
lence. 
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Fig. 4b. The correlation functions calculated for plasma-beam ex­
periment. 

12 



6 
10 Wn 

t = 0.0 

6 

Lt 

2 

6 '6 lO 
n. 

0 2. ~ 

a. 

106 WI'\, 
t :::0.0 

6 

Li 

2 

0 '-i 68 10 

Fig. 5a, 5b. Two forms of initial distribution of the perturbation 
field energy over harmonic numbers. Plots of evolution of functions 
sought are shown in Figs. 6-8, case a. 
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Fig. 6. The spectrum of the perturbation in various times. 
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