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1 Introduction 

In recent years fairly extensive experimental material has been accu­
mulated on the observed fission fragment distributions as functions of 
various para.meters of the compound nucleus such as excitation energy, 
angular momentum and fissility parameter (or parameter Z 2 /A). This 
material was systematized and analyzed in [1, 2, 3]. Analysis of the mod­
ern understanding of the formation of the fragment distributions shows 
[1, 2, 3] that overall it does not correspond to the bulk of the existing 
experimental data. The elucidation of the mechanism of formation of 
the observed fission fragment distribution (mass, energy, angular) on the 
basis of a systematic dynamical treatment of the process remains one 
of the principal unresolved problems of fission physics. This situation is 
due in the first place to the well known [4] difficulties of constructing a 
dynamical theory of an extremely non-equilibrium process such as fis­
sion. Among several theoretical schemes for describing fission dynamics, 
the stochastic approach [5, 6, 7] is the most promising and evolving. 

In last decade a stochastic approach [5, 6, 7] based on the Fokker­
Plank equation (FPE) [8, 9] or on the set of stochastic Langevin equa­
tions (LE), which is equivalent [10, 11) to the multidimensional FPE, 
has been successfully used to describe many salient features of fusion, 
deep inelastic heavy ion collision, and induced fission ( see recent reviews 
[6, 7] where relevant literature can be found). Until recently the FPE 
has been used for these studies rather than the LE because the latter 
contains random force and requires gathering many fission events to re­
duce statistical error and obtain confident results. Only the impressive 
development of computers enables us to apply practically [11, 12, 13] the 
LE to study nuclear dissipative phenomena. Almost all the problems of 
collective nuclear dynamics are multidimensional but the multidimen­
sional FPE can be solved only approximately. On the other hand the 
multidimensional LE can be solved numerically without any approxima­
tions. With this approach one can study many interesting properties of 
induced fission, such as fission fragment energy and mc.1,ss distributions, 
dynamical competition between fission and particle emission and so on. 

Several papers have already been published (12, 13, 14, 15, 16] to 



explain the large variances of the fission-fragment kinetic energy dis­
tribution, and rather satisfactory results have been obtained for the 
parameters of the fission-fragment kinetic energy distribution. 

On the contrary there is not even one publication with a theoretical 
investigation of the main features of the fission- fragment mass distribu­
tion using the LE. 

In the present paper we report the first results of a calculation of 
fission-fragment mass distributions performed with the Langevin ap­
proach to fission dynamics. 

All transport coefficients of the LE were calculated with a macro­
scopic approach withont taking into account the effect of pairing corre­
lations of nucleons and shell effects, since we considered the fission of suf­
ficiently excited compound nuclei ( with excitation energy E* 2'. 25M e V 
and temperature T 2'. lM eV). The calculations were carried out for a 
wide range of the fissility parameter (Z2 /A). Two versions of the liquid 
drop model were used in the calculations: the LDM with the sharp sur­
face of nucleus and the LDM with the diffuse surface [17] with Sierk's 
parameters [18]. These models predict the different values of the po­
tential energy of the fissioning nucleus at the saddle point as well as 
at the scission region, the stiffnes::;es with respect to mass-asymmetry 
coordinate are also different in both models. Therefore, it is interest­
ing to check the predictions of the dynamical calculations of the fission 
fragment mass distributions using two different mass formulae. 

2 Formulation of model 

2.1 Parametrization of nuclear surface, potential energy, 
inertia and dissipation 

For parametrization of the nuclear surface we used a two-parametric 
family of shapes based on Cassini ovaloids which have been introduced 
in nuclear physics in [19, 20]. 

In cylindrical coordinates the surface of the nucleus is given by [20] 
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Here z is the coordinate along the symmetry axis, p is the one per­
pendicular to z, p3 is the value of p at the nuclear surface. £ is the 
elongation parameter and K is the coordinate of mass asymmetry which 
defines the mass ratio of the nascent fragments. In the Eq.(1) a scale 
factor c11 ensures volume conservation of the nucleus. In th.e symmet­
rical case (t.: = 0) the nuclear shapes corresponding to the Eq.(l) are 
Cassini ovaloids [19, 21], for the case "' > 0 we obtain different asym­
metric forms. The condition £ < ½( 1 + K, )-2 gives axially symmetrical 
ovaloids, ½(1 + K)-2 < e < ½(1 - ti:)-2 leads to pear-shaped figures and 
finally, £ > ½(1 - ti:)- 2 lea~s to asymmetrical figures·with a neck on the 
surface of the nucleus. 

The value e = 1 at any ti: corresponds to the figures with zero neck 
radius and can be considered as one (simplest) scission condition. But 
often it was supposed [4, 22] that scission occurs at the critical defor­
mation with relatively thick neck radius. 

In [19] it was shown that Cassini ovaloids with an accuracy that is 
surprising for the single-parameter family of shapes describe the charac­
teristics of the saddle-point shapes (the barrier heights and the effective 
moments of inertia) obtained by Strutinsky et al. (23] with using the 
numerical solution of the exact integro-differential equation for equilib­
rium shape in a static drop model for arbitrary deformation. The sit­
uation is worse for the mass-asymmetric saddle-point shapes when for 
the adequate description it is necessary to introduce a few parameters 
of asymmetrical shapes up to ten {24]. 

The deformation parameters £ and K are treated as collective coor­
dinates (q1 ,q2 ) = (c,K). 

The potential deformation energy, as mentioned above, is calculated 
using two versions of the liquid drop model. The LDM with the sharp 
surface was used with parameters taken from [25] and the finite range 
LDM [17] was used with parameters taken from [18]. 

As usually the potential energy is calculated as a sum of the Coulomb 
and nuclear interaction energies. In the LDM with the sharp surface of 
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the nucleus the surface energy plays the role of the nuclear interaction 
energy. The LDM with the diffuse surface takes into account the finite 
range of the nuclear forces by means of Yukawa-plus-exponential folding 
function (17]. The resulting potential energy surfaces for a few fissioning 
systems as a function of parameters E and Kare shown in Fig.I and Fig.2. 

The inertia tensor is calculated by means of the Werner-Wheeler ap­
proximation for incompressible irrotational flow (26]. As it was shown 
in Ref.(27] the Werner-Wheeler method rather correctly allows the cal­
culation of the inertia tensor practically for all shapes of the fissioning 
system. For dissipation we used two different models: two-body hydro­
dynamical viscosity and one-body wall-and-window dissipation (28, 29]. 
The following expression was applied to calculate the friction tensor for 
wall-and-window dissipation: 
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where Pm is the mass density of the nucleus, v is an average nucleon 
speed inside the nucleus, /),,.a is an area of the window between two 
parts of the system, R is the distance between centers of mass of future 
fragments, D1 , D 2 are positions of centers of mass of the two parts of 
the fissioning system relative to the center of mass of the whole system. 
Zmin and Zmax are the left and right ends of the nuclear shape, ZN is the' 
position of the neck plane which divides the nucleus into two parts. For 
the symmetrical forms this formula is reduced and becomes similar to 
that which is presented in Ref.[29] where a misprint in the sign before 
the term with the derivative {)D/8q; has taken place. We used the full 
wall-and-window dissipation formula, i.e. with coefficient k 8 = 1 (see 
Ref. [30]) before the wall formula; however, the comparison between the 
calculated and the experimental results of the mean values of the total 
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Figure 1: The potential energy surfaces for nuclei 249 Fm, 244Cm, 210 Po, 
124Ba, 117[, 105Ag calculated within the LDM with the sharp surface of 
the nucleus. Contour energies are in Me V. 
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Figure 2: The potential energy surfaces for the same nuclei as in Fig.I 
calculated within the finite range LDM. · 

6 

.. 

,. 

,.. 

}. 

r 

kinetic energy of the fission fragments for all fissioning nuclei throughout 
the periodic system suggests (30] the limits 0.2 :s; ks :s; 0.5. The value 
of ks could depend upon both the excitation energy and the type of 
collective motion . 

2.2 Basic equations 

The evolution of collective degrees of freedom is considered in the stochas­
tic approach (5, 6, 7] as the motion of Brownian particles (31] in a 
medium (heat bath) formed by the set of single-particle degrees of free­
dom. The coupled Langevin equations used in the dynamical calcula­
tions have the form: 

q; 

Pi 
i,j,k 

µ;iPi, 

1 oµjk av 
- 2PiPk oq; - oq; - 'YiiµikPk + 0;j~j, 

l. .. N. (3) 

Where q = (.s, l'i:) are the collective coordinates, p = (p.,p"') are 
the momenta which conjugated them, V( q) is the potential energy, 
m;i(llµ;;II = llm;ill-1 ) is the tensor of inertia, 'Yii is the friction ten­
sor, and 0;;~; is a random force, ~i is a random variable satisfying the 
relations: 

< ~i >= 0, < ~i~j >= 28;;, 

< ~;(ti)~;(t2) >= 28;;8(t1 - t2)- (4) 

The second equation means that no time-correlated random force 
is assumed, i.e. Markovian approximation. The amplitudes 0;i of the 
random force are related to the diffusion tensor D;i by the equation: 

D;j = 0;k0kj. (5) 

The tensor D;; satisfies the Einstein relation 
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D;i = T,;i· (6) 

Here Tis the nuclear temperature which is determined by the Fermi­
gas formula [32, 33] 

T = (E;ntf a)l/2_ (7) 

Where E;nt is the internal excitation energy of the nucleus and a is 
the level density parameter. For the latter we took the value of a= A/10 
(A is the mass number of the fissioning nucleus). 

In our calculations we used the energy conservation law in the form 

E* = Eint +Ek+ V(q), (8) 

where E* is the total excitation energy of the nucleus and Ek is the 
kinetic energy of the collective degrees of freedom. 

The initial conditions for the dynamical calculations were chosen by 
Neumann method (sometimes the so-called hit and miss method) with 
the generating function 

f ~ exp (- V( q~+ Ek) , (9) 

that is we used the Maxwell-Boltzmann distribution function. The q 
values were found at the ridge line separating the ground state from the 
fission valley. Initially the momentum PE was always directed toward 
the scission region. This choice of initial conditions is fully consistent 
with ideas that form the conceptual framework of the statistical model 
[33J and can be considered as the generalization of the initial conditions 
at the saddle point which are commonly used in the dynamical LDM 
calculations [34, 35, 36]. 

3 Results and discussions 

As mentioned above, the potential energy surfaces are shown in Fig.1 
and Fig.2. The s~rfaces are divided into two groups in the same manner 
as in Refs.[3, 37, 38]. Light nuclei with the parameter Z 2 /A < 32 have 
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saddle points very close to scission configurations; therefore the mass 
distributions for these nuclei are defined mainly at the saddle point. 
Whereas heavy nuclei with the parameter Z 2 

/ A > 32 have a sufficiently 
long descent from the saddle point to scission, and their mass distribu­
tions are influenced by the descent dynamics. It can be seen that the 
position of the ridge line ( thick dashed line) which separates the ground 
state region and the scission one is ,cardinally different for light (105 Ag, 
117 I, 124 Ba) and heavy (210 Po, 244Cm, 249 Fm) nuclei. Moreover, the 
potential energy surfaces of light nuclei are significantly different for the 
LDM with the sharp surface of nucleus and for the LDM with the dif­
fuse surface. For the LDM with the sharp nucleus surface, the ridge 
line is closer to scission than for the finite range LDM. And throughout 
the whole range of the c~lculated nuclei, the difference of the potential 
energy between the saddle point and scission in the LDM with the dif­
fuse surface is greater than that in the LDM with the sharp surface. It 
should be stressed that the most obvious difference in landscapes of the 
potential energy surfaces of the two versions of the LDM is observed at 
the scission region (see, for example, the potential energy for 105 Ag in 
the finite range LDM there is only ohe peak at the scission region with 
a maximum for symmetrical shapes at K = 0 whereas in LDM [25] there 
are two peaks at the scission region with a minimum for symmetrical 
shapes). Also fission barriers calculated with the finite surface diffuse­
ness LDM are lower than fission barriers of the sharp surface LDM, 
especially for light nuclei as was shown in Refs.[17, 18]. 

Results of our dynamical calculations are presented in Figs.3-6 for 
one-body dissipation only, because in several calculations [6, 12, 16, 
39] of the prescission neutron multiplicities and fragment kinetic energy 
it was shown that the one-body type of nuclear viscosity is preferable 
for the consistent description of the data. About 104 trajectories were 
calculated for each nucleus and for each excitation energy. Our detailed 
calculations with both types of nuclear viscosity will be discussed in 
further publications. 

The calculated mass distributions in Fig.3 and Fig.4 reflect the fea­
tures of the potential energy surfaces which are presented for the same 
systems in Fig.1 and Fig.2. The presented results of our calculations 
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Figure 3: The mass distributions of fission fragments of 249 Fm, 244Cm, 
210 Po, 124Ba, 117[, 105Ag compound systems calculated within the LDM 
with the sharp surface of nucleus. 
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Figure 4: The same as Fig.3, but calculated within the finite range LDM. 

11 



are normalized by a full number of fission fragments ( so-called 200% 
normalization). It is well known that one very interesting and salient 
prediction of the static calculations [40, 41] in the LDM or in another 
macroscopic model (42, 43] is the existence of the so-called Businaro­
Gallone (BG) point as a function of the fissility parameter ( or of the 
parameter Z 2 /A) in which the nucleus completely loses its stability to 
mass-asymmetric deformations. Different versions of the LDM predict 
the different values of Z 2 /A for the BG point. The LDM with the sharp 
surface gives (Z2 / A)sG '.:= 19, whereas the LDM with the diffuse sur­
face gives ( Z2 / A )BG '.:= 22 + 23 in dependence on the set of parameters 
[17, 18]. 

The fission fragment mass distributions would be gaussian-like shapes 
for nuclei with Z 2/A > (Z2/A)BG· In close vicinity of the BG point, 
shape broadening of the mass distribution should take place. Strictly 
speaking, for nuclei with Z 2 /A = (Z2 /A)sG the mass distributions 
should be flat in the wide range of mass near AcN /2, and for lighter nu­
clei the fission fragment mass distribution should have an U-like shape 
[3, 37, 41]. Such transformation of the shape of the mass distributions is 
actually observed experimentally. It is interesting to see how the theory 
can describe this transformation of the mass distribution as a function 
of the parameter Z 2 

/ A of the compound nucleus. 
It is shown in Fig.3 and Fig.4 that qualitatively we correctly re­

produced this transition from a gaussian-like distribution (for Z 2 /A > 
(Z2 /A)sG) to U-like distributions (for Z 2 /A < (Z2 /A)sG), but the posi­
tion of the BG point in our calculation lies at Z 2 /A~ 25. However, for 
a more accurate determination of the BG point it is necessary to carry 
out calculations for a larger number of nuclei. 

In Fig.5 and Fig.6 the calculated values of the variances of the fission­
fragment mass distributions are compared with experimental data as a 
function of the parameter Z2 

/ A and of the teniperature of the compound 
nucleus. 

The variances 0-51- as a function of the parameter Z 2 
/ A together with 

the experimental data are presented in Fig.5. In this figure it is shown 
that we have fairly good quantitative agreement with data for the inter­
val 25 < Z 2 / A < 35. It should be noted that calculated values of 0-51- for 
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versus the parameter Z 2 /A. The 
squares and the solid line are the re­
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these nuclei are significantly larger than the values of O"jf predicted by 
statistical model [8] ( about factor 2). When the descent from ridge to 
scission takes place extremely slowly, the fissioning system can "forget" 
its state at prior times. If the descent occurs during a finite time (with 
finite velocity) the fissioning system preserves "memory" of the large 
values of 0-51- (because of the smaller stiffness of the potential energy re­
spective mass asymmetry deformations at earlier times). Moreover, the 
faster the descent of the nucleus from the ridge to scission, the larger 
the "remembered" values of the variance of the mass-asymmetry coor­
dinate will be. Such an interpretation of the "memory" of the fissioning 
system of its prehistory was discussed in detail at a quantitative level in 
[8]. Therefore the calculated values of o-lt will be dependent strongly on 
the velocity of the descent from the ridge to scission and finally on the 
magnitude of the nuclear viscosity. Wada and Abe [44] have arrived at 
a similar conclusion about the consequences of the dynamical evolution 
from the saddle to scission, especially for heavy fissioning systems. 

As it is seen from Fig.5 our calculations do not reproduce the ob­
served experimental growth of variance for nuclei with Z 2 / A > 35. From 
the discussion above it is possible to make the assumption that the dis­
sipation used by us in the calculation with k 1 = 1 , which corresponds 
to highly overdamped collective motion is too large for a description of 
the fission-fragment mass distributions of hot compound nuclei. Also 
our calculations do not reproduce the growth of variances O"jf for light 
fissioning nuclei with Z 2 

/ A < 25. For these nuclei it is necessary to con-
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sider their dynamical evolution not from the ridge but from the ground 
state. The results of the calculation of the fission fragment mass dis­
tributions and their variances preformed within the finite range LDM 
show that they qualitatively similar to those obtained within the sharp 
surface LDM for heavy nuclei. But there are significant quantitative 
differences in the variances of the mass distributions for light nuclei. 

It can be seen from Fig.6 that the saddle point temperature de­
pendence a1(T) in reaction 165 H o(40 Ar, J) at six projectile energies 
(E1ab = 180,192,200,230,243,280 
M eV) calculated in the present work without allowance for quantum 
fluctuations is practically a straight line. The slope of the calculated 
dependence of a1(T) is significantly smaller than the slope of the ex­
perimental one. The explanation of this large difference is the following. 
The theoretical dependencies of a1(T) are calculated for zero angular 
momentum of the compound nucleus, whereas the experimental depen­
dencies of a1(T) correspond to all possible values of the angular mo­
mentum realized in the reaction in question. It is known [38] that a 
substantial increase of the angular momentum of the compound nucleus 
leads to a broadening of the fission fragment mass distributions. The 
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extension of our theoretical scheme for rotating compound nuclei will 
improve the agreement between the experimental data and theoretical 
resulti;. 

4 Summary and outloo~ 

We have applied the two-dimensional stochastic approach to fission dy­
namics based on Langevin equations to study the main features of the 
fission fragment mass distribution of excited fissioning nuclei. 

Using two versions of the LDM and the one-body mechanism of nu­
clear viscosity we have performed Langevin Monte-Carlo calculations of 
the fission fragment mass distribution for fissioning systems in the wide 
range of parameter Z 2 

/ A and of excitation energy E*. The calculated 
mass distributions Y(M) and their variances are found to be in satisfac­
tory qualitative agreement with experimental data and with results of 
previous calculations [8] performed with using multidimensional FPE. 

Of course, the model used in our calculations needs further refine­
ments. First, it is clearly necessary to replace the initial conditions given 
by Eq.(9) with more natural initial conditions at the ground state. It is 
especially important for the light fissioning nuclei for which the ridge is 
close to the scission region. Second, it is necessary to incorporate into the 
Langevin scheme the evaporation of the light particles ( so-called prescis­
sion particles) and to study the competition between particle emission 
and fission dynamically [6, 7, 16]. Third, in the LE, for hot nuclei the 
free energy must replace the potential energy [5]. In the calculations 
of the free energy of the fissioning system one has to take into account 
the dependence of the level density parameter on deformation. Lastly, 
it is desirable to develop the three-dimensional Langevin approach with 
inclusion of the additional collective coordinate ( constriction parame­
ter) for the simultaneous calculation of the mass-energy distribution of 
fission fragments. Studies in these directions are now in the progress. 
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