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H3yyeHne KBa3MKJIaCCHIECKOTO PaccessHHs B MOJe MOTeHIHana
Bynca—CakcoHa B BHICOKORHEPIeTHUECKOM MPUOTIKEeHHH

B pamkax MeToa BHICOKO®HEPTETHYECKOTO MPHOMHXEHHI HCCIIEAYeTCsS aMILTH-
TyOa yIpyroro supo-siepHOro paccesHUs B IONe aiepHOro noteHuana Bynca-Cak-
coHa. CpaBHHMBAIOTCS YUCJIEHHBIC PacyeTbhl 2MKOHATOB W aMIUTUTYN «OIMHXHEro»
H «JAIbHEr0» PACCESHUH C MOJENBHBIMH BHIPAXEHHIMH 9HKOHATIOB U COOTBETCTBY-
IOIMMH  aMIVIUTYIaMH, TMONy4eHHbBIMH METOAOM repeBaia. CaenaHsl BbIBOIBI
06 061acTsX MPUMEHHUMOCTH MOJIeNel B peleIbHBIX CITydasX CHIBHOTO MOMOLIEHHS
H pedpaxuuy, a Takxe NPU TPATULHOHHOM BHLIOOpE MapaMeTpoB B3auMopeHCTBUS.
ITokasaHo, YTO BO MHOTHX C/IydastX MOJe/IbHBIE 9HKOHAITBI HCIONB3YIOTCA BHE 0071aCTH
HX JOMYCTHMOTO IPUMEHEHHUS.

Pa6ota srinonseHa B Jlaboparopuu reoperuueckoit usuxu uM.H.H.Boromo6o-
Ba OMSN.
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A Study of Semi-Classical Scattering in a Woods—-Saxon Potential
within the High-Energy Approximation

The elastic scattering amplitudes of heavy ions presented in the form of the high-
energy approximation are studied using a Woods—-Saxon potential. Numerical
calculations for eikonals and for the «near-» and «far-side» amplitudes are compared
with those obtained by the saddle point method. Conclusions are made
on applicability of models when parameters of potentials are selected in accordance
with the cases of strong absorption, refraction and the optical scattering. It is shown
that in many cases the models are utilized beyond the scope of their suitability.
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*1 Introduction

Calculations of the heavy ion elastic scattering at intermediate energies is
very sensitive to parameters of an interaction potential. The goal of this
paper is to get an analytical expression for the elastic scattering amplitude
within the high energy approximation (HEA) {1}, {2}, {3] which gives a pos-
sibility to search for a mechanism of the process depending on the potential
included and the dynamical parameters as well. One of the problems of the
HEA is that it needs calculating quickly oscillating integrals. Usually, one
can avoid these difficulties by extending this sort of integrals into a com-
plex plane. In addition, there exists one more problem since the eikonal
phases of an integrand are unknown in an analytic form for a Woods —
Saxon Potentia.l typical of nuclear physics. To resolve it, in many papers
approximate expressions have been suggested instead of a Woods — Saxon
potential (see, e.g., refs. [4], [5]) which allow calculations of the eikonal
phases in an analytic form. Also, the phases were approximated in explicit
forms from the beginnings. For example, the Glauber high energy approach
was successfully applied in [6] to the pA - elastic scattering with the eikonal
phase calculated by using the residue at only one pole of the Fermi function

-

nearest to the real axis in the first quadrant of a complex plane of impact
parameters. In all these cases, approximations are made on the rcal axis,
but one should remember that after transition to the complex plane the
behavxor of original and approximate functions may be very different.

In Sec.2, we extend the approximate expression for a phase mtcgrdl from
[6] to the fourth quadrant and we also study its applicability in the casc
of heavy ion scattering. In particular, the saddle point trajectories on the
complex planc are compared when the approximate (from [6]) and the exact |
(from [7]) expressions are used for the nuclear eikonal phascs for a Woods
- Saxon potential. Sec.3 summarizes the results of our calculations for
scattering in the cases of nuclear refractlon, optlcal model scattering (ul(l'

nuclear diffraction.

2 . Scattering ampl_itude and saddle points

We consider the clastic nucleus-nucleus scattering at encrgies £ > [V| and
kR > 1 and usc the amplitude obtained in [8] for large scattering angles
0 > |V|/E, 6 > (1/kR) which covers a wide rogxon of § where experimental
data usually ex1st ‘ o

£(0) = - zuﬂ (@) - t(@)]- | (2.1)
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Here, q = 2ksin(#/2) is momenturn transfer and
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Inserting a Woods Saxon potential
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In [6], the last integral was approximated by a one residue in the first
quadrant of the complex p- plane. We have generalized this approach and
obtained the following expression [9]:

. 2miart :
fpy~or-———  (m JEFP-220), (28)
(rE) — p? |
where 7* = R & ima are the first poles of the Fermi function in the I and

IV quadrants, respectively. The explicit formula for ( 2. 7) was obtamed in

[7):

, -
1(p) = 2R - 2miay " (25 %) mA® >0, (29

p=1 )‘P : AP
where /\g,i) = \/(r¥)? - p?, ¥ = R+ira(2p—1) with p=123... For

real p we have /\1(,,_) = —/\§,+). :
It is clear that for large g the integrals ( 2. 5) oscillate very quickly. We
evaluate them by using the saddle pomt method (SPM). The saddle points

arc solutions of the equation:

gzi)(r, 7) = tig+~I'(r) = 0, (2.10)

where the signs ” +” and ” —” correspond to the so-called near- and farside

amplitudes, respectively. The standard SPM expression for integrals of the
type of ( 2. 5) is given by

J(i)(rs) = —r,fn(rs) eI@®(r) W= 27r/g (r ) (2.11)’

where ry = r{®) depends on the transfer momentum g, and s - is the number
of solution to ( 2. 10). We assume that the main contribution to ( 2.

5) comes from the saddle points around the poles rf = R + ima. It is:

clear that at large ¢, saddle points r( )
_ p = R+ ima(2p — 1), where p=1,23...

When solving eq.( 2. 10) numerically, a very effective continuous analog
of the Newton method [10] was used. Also it was investigated that for
practical cases one can use only 13 terms in the sum ( 2. 9) for the cikonal
phase I ( 2. 7). If one takes the approximation

are displayed close to the poles

(2. 8) for I, he roots of equation ( 2. 10) for saddle points. In fact,
substituting ( 2. 8) into ( 2. 6) and ( 2. 10) one obtams

Im ,\(i> >0, (2.12)

g(i)(r) +igr + 2Ry + i /\(i),
g(i)(r =cos ¢ {:i:zq+z (¢)3} = (2.13)
Here A& = /(r¥)? —p?, §=qcos 10/2 and
2 ny
a=—2ray= 7"1(|W0| —ilVel) = la] &, (2.14).
. 1
B, = 27 — arcsin =, (2.15)
’ 1+ (Wo/Vo) .
R +ima = Iril explif; ()], (2.16)
) = 2m — B, (2.17)
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At large momentum transfer the saddle point w1ll be near the poles r
therefore, the solutions of ( 2. 13) may be represented as

) ;‘p(i)’cosn .Z_, pE =¥ 4 83, |5(i)| < |l (2.18)

Then, one can rewrite (2. 13) in the form:

rE (et 4 6)  a(rE)?
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Here, n=0, 1, 2 are the numbers of roots of (2 19) and they are selected
to satlsfy the condltlon Im A > 0. In the I quadrant, one gets

sin 8 = sin [—3—(2n +1)+ 5/3,, §g£+)] >0, (2.22)
and for solutions in IV, one has

R 1, 4 2,
sinB{7) = sin [%2TL + ;O;ﬂa +37 - 5[35“] >0. (2.23)



Now, since [§@)] < |r*] we find:

=V(rE+p)(r*

)~/ —2res), (2.24)

and then
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Here :

9 2 1 .
() = Zx(2n +1) + 26 + =B, (2.26)

3 3 3
) _2 25 _Law 2.27
i = gm(2n+ 1)+ 30 - 36 (2.27)

It has been shown in [9] that for the nucleus-nucleus collisions when R =
R+ Ry > ma we have the following approximate values:

-JIM

) jrn+ 7w for  |Wo| > |V,

By = : ‘ (2.28)
2n + 1) + -g— for |Wy| < [Vh.

4o = {

for  |Wo| > |Vbl,
m(n+2)+ 5 for [Wol < |V
Thus, using cqs. ( 2. 28), ( 2. 29) and bearing in mind that 0 < ;3/(\+) <3
and %W < /i(A_) < 2m, one can select the root number n among the values
n=0, 1, 2. ‘

(2.29)
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3 Results and conclusion

First, we have studied applicability of the approach [6] in the case of the
heavy ion scattering when the approximate expression (2. 8) is used for
the cikonal phase with a Woods - Saxon potential. Au attractive feature
of this approach is that in both the cases of scattering at small and large
angles 6 one can obtain an explicit formula for the amplitudes by using the
SPM of calculations. Below, as an example we consider clastic scattering
of two nuclei with atomic numbers 17 and 90 by the complex Woods
Saxou potential with the geometrical parameters R=7.05 fin and «=0.5 fu.
The parameters V; and Wy vary. The kinetic energy in the ¢, svstem is
E=1435 MeceV.

In Fig.1. we show the results of calculations for the complex trajectories
of saddle points.
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Figurc 1: The behavior of the saddle points on the complez r planc will differend parametcrs
of the nuclecar polential. Scallcring angle interval is from 5° up to 35°. Solid lincs are czact
numerical solulions, stars correspond to approzimalc calculations, the circled black spols
present the poles. (a) Vo= -50 McV, Wo=0; (b) Vo= -50 McV, Wy= -25 McV; (¢) Vo= -1
McV, Wy=-50 McV. ‘ ’

Trajectories in Fig.1(a) correspond to the refractive scattering when the
absorption paramecter Wy=0. The two big black spots represent the poles
r¥ = R + ina ncarcst to the real axis for a Woods - Saxon potential in
the integrand function. One can see that in this casc the solutions (stars)
of the approximate saddle poiut equation ( 2. 19) coincide with numerical
calculations of the exact equation ( 2. 10) (solid lines). Then, it is scen that

- in the T quadrant there exist two trajectories (n = 0,2), while in the IV

guadrant there is only one root n = 1. When absorption is.included (W #
0), a distinet behavior is seen of numerical and approximate solutions. For
strong absorption (Fig.1(c)) only one root exists in the I quadrant and onc
root is in the IVth one. This property is a consequence of { 2. 26), ( 2. 27)
because of 13,=0.

It is obvious that in the sc att(‘rmg amplitude proporhonal to (2. 11)
the expouncential term (‘xp[g ] plays a dominant role. Since g(rg )) =
:{:1q1,£i) + vI(r ,(s-i)), the behavior of the cikonal integral 7 on the complex
plane significantly influences the absolute value and the angular.dependence
of cross sections. Thus, the approximations for eikonal phases made for real



r can have no meaning when these phases are considered on the complex
r- planc. As an example, Fig. 2 exhibits the calculations for Im [ and
Re I with the help of exact ( 2. 7) and approximate ( 2. 8) expressions
shown by the solid and dashed lines, respectively. The stars are when only
13 terms in the sum ( 2. 9) are taken into account. It is seen that, in
practice, in calculating one may use several terms only. And the main
result is that an approximate formula ( 2. 8) behaves on the complex plane
in a very different way (dashed lines) as compared with the exact one ( 2. 7)
(solid lines). Thus, one should be very careful when expanding approximate
models of the eikonal integrals into the complex r- plane.
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Figure 2: The behavior of ezkonal integral I dependending on the zmagmary parl of the tmpact
parameter p when its real part is equal to R=17. 05 fm.

To see how ‘well the approximate amplitudes work, we compare them -

with the corresponding exact numerical calculations. Fig.3 shows the cross
" sections obtained by the SPM (dashed lines) compared with the full nu-
merical calculations (solid lines) for various parameters of a Woods - Saxon
nucleus-nucleus potential. . ‘
The exact numerical calculations by ( 2. 5) have used the exact eikonal
phase ( 2. 9). The dashed lines are the SPM calculations with the help
of (2. 11) where also the exact phase ( 2. 9) was used. The stars are

calculations with the approximate phase I (2. 8). It isscen that evaluations -

made by using I are different from others. Their absolute values are in
strong dependence on the parameters of the real part of a potential. All

calculations by the SPM, which use the exact phase ( 2. 9), arc in good
coincidence with the results of numerical integration up to the angles wlere '
the slope of curves of cross sections changes. In this region, onc has to
claborate other methods which include contributions from the saddle point
trajectorics passing near each of the poles r¥ = R+ ima(2p - 1), p =
1,2,3.... ‘
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Figure 3: Eikonal cross sections in (fm?/st) versus the scatiering angles. (a) Vo= -50 MeV,
Wo=0; (b) Vo= -50 MeV, Wo= -25 McV; (c) Vo= -1 McV, Wo= -50 MeV. '
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