
Yu.V.Chubov 1, A.V.Embulaev2, V.K.Lukyanov, 
V.P.Permyakov, E.V.Zemlyanaya 

E7-97-271 

A STUDY OF SEMI-CLASSICAL SCATTERING 

IN A WOODS-SAXON POTENTIAL 

WITHIN THE HIGH-ENERGY APPROXIMATION 

The talk given at the XVI International Workshop on Nuclear Theory, 
June 16-21, 1997, Rila Mountains, Bulgaria 

1Far-East State University, Vladivostok, Russia 
2Saratov State University, Saratov, Russia 



qy6oa IO.B. H .llP, 
IfayqettHe KBa:mKJiaccHqecKoro pacceHttm1 B none noTeHI-lHaJia 
By,llca-CaKCOHa B BhICOK03HepreTHqecKOM npH6mDKeHHH 

E?-97-271 

B paMKax MeTO,lla BhICOK03Hepren1qecKoro npH6nmKeH~ Hccne,llyeTCH aMilJIH
TY.lla ynpyroro MPO-Mepttoro pacceHH~ B none Mepttoro noTettn;Hana By,llca-CaK
cotta. CpaaHHBaJOTCH qHcnettHhie pacqeThI 3ttKOHaJIOB H aMnJIHTY.ll «6nm1rnero» 
H «,llaJihHero» pacc_eHHHii C MO,llenhHhIMH BblpmKeH~MH 3llKOHaJIOB H COOTBeTCTBy
lOIUHMH aMnnHTY.llaMH, nonyqeHHhlMH MeTO,llOM nepeaana. C,lleJiaHhl BhIBO,llhl 
06 o6nacrnx npHMeHHMOCTH MO,lleneii B npe,lleJihHhIX cnyqMx CHJlhHOro nornmn;eHHH 
H pecppaKU:HH, a TaIOKe npH TPMHU:HOHHOM BhI6ope napaMeTpOB B3aHMO,lleHCTB~. 
IloKaJaHO, qTO BO MHOrnx cnyqaHx MO,llenhHhie 3HKOHaJihl Hcnonh3YJOTCH BHe o6naCTH 
HX ,llonycTHMOro npHMeHeHHH. 
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Ba OIDUf. 
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The elastic scattering amplitudes of heavy ions presented in the form of the high
energy approximation are studied using a Woods-Saxon potential. Numerical 
calculations for eikonals and for the «near-» and «far-side» amplitudes are compared 
with those obtained by the saddle point method. Conclusions are made 
on applicability of models when parameters of potentials are selected in accordance 
with the cases of strong absorption, refraction and the optical scattering. It is shown 
that in many cases the models are utilized beyond the scope of their suitability. 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. 
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1 Introduction 

Calculations of the heavy ion elastic scattering at intermediate energies is 
very sensitive to parameters of an interaction potential. The goal of this 
paper is to get an analytical expression for the elastic scattering amplitude 
within the high energy approximation (HEA) [1], [2]; [3] which gives a pos
sibility to search for a mechanism of the process depending on the potential 
included and the dynamical parameters as well. One of the problems of the 
HEA is that it needs calculating quickly oscillating integrals. Usually, one 
can avoid these difficulties by extending this sort of integrals into a com
plex plane. In addition, there exists one more problem since the eikonal 
phases of an integrand are unknown in an analytic form for a Woods -
Saxon potential typical of nuclear physics. To resolve it, in many papers 
approximate expressions have been suggested instead of a Woods - Saxon 
potential (see, e.g., refs. [4], [5]) which allow calculations of the eikonal 
phases in an analytic form. Also, the phases were approximated in explicit 
forms from the beginnings. For example, the Glauber high energy approach 
was successfully applied in [6] to the pA - elastic scattering with the eikonal 
phase calculated by using the residue at only one pole of the Fermi function 
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nearest to the real axis in the first quadrant of a complex plane of impact 
parameters. In all these cases, approximations are made on the real axis, 
but one should remember that after transition to the complex plane the 
behavior of original and approximate functions may be very different. 

In Sec.2, we· extend the approximate expression for a phase integral from 
[6] to the fourth quadrant and we also study its applicability in the case 
of heavy ion scattering. In particular, the saddle point trajectories on tlie 
complex plane are compared when the approximate (from [6]) and the exact 
(from [7]) expressions are used for the nuclear eikonal phases for a Woods 
- Saxon potential. Sec.3 summarizes the resuHs of our calculations for 
scattering in the cases of nuclear refraction, optical model scattering and 
nuclear diffraction. · 

2 .. Scattering ampl~tude and saddle points 

We consider the elastic nuclcus~nucleus scattering at energies E ~ IVI awl 
kR ~ 1 and use the amplitude obtained in [8] for large scattering angles 
0 > IVI/ E, 0 > (1/kR) which covers a wide region of 0 where experimental 
data usually exist: 

m . 
f(0) = - 21rri2 [tc+i(q) - tc-i(q)]. (2.1) 

Herc, q = 2k sin( 0 /2) is momentum transfer and 
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00 

I(r) = 2 J fN( Jp2 + . .\2) d>.., 

0 

0 
p = rcos2' (2.7) 

In [6], the last integral was approximated by a one residue in the first 
quadrant of the complex p- plane. We have generalized this approach and 
obtained the following expression [9]: 

i(p) ~ 2R _ 21riar± 
J(r±)2 _ µ2' 

(Im J(r±)2 - p2 2:: o), (2.8) 

where r± = R ± i1ra are the first poles of the Fermi function in the I and 
IV quadrants, respectively. The explicit formula for ( 2. 7) was obtained in 
[7]: 

Im>..(±)> 0 
p - ' 

+ -
. ~( rP rP ) I(p) = 2R - 21rza L (+l + H , 

p=l Ap Ap 
(2.9) 

where >..~±) = J(rt)2 - p2, r; = R ± i1ra(2p - 1) with p=l,2,3 ... For 

real p we have>..~-)=->..~+)_ 
~s clear that for large q the integrals ( 2. 5) oscillate very quickly. We 
evaluate them by using the saddle point method (SPM). The saddle points 
arc solutions of the equation: 

9(±)(r, 'Y) = ±iq + 1I'(r) = 0, (2.10) 

where the signs " +" and " - " correspond to the so-called near- and farside 
amplitudes, respectively. The standard SPM expression for integrals of the 
type of ( 2. 5) is given by 

](±\rs)= -r.fN(rs) eY(±)(r,)J-21r/g('±)(rs), (2.11) 

where rs= ri±) depends on the transfer momentum q, ands - is the number 
of solution to ( 2. 10). We assume that the main contribution to ( 2. 
5) comes from the saddle points around the poles rf = R ± i1ra. It is 
clear that at large q, saddle points ri±) arc displayed close to the poles 
r; = R ± i1ra(2p - 1), where p=l,2,3 ... 

\Vher1 ~olving cq.( 2. 10) numerically, a very effective continuous analog 
of thP l\'cwton met.hod [10] was used. Also it was investigated that for 
practical cases one can use only 13 terms in the sum ( 2. 9) for tlH' cikoual 
phase I ( 2. 7). If one takes the approximation 
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( 2. 8) for 1, he roots of equation ( 2. 10) for saddle points. 
substituting ( 2. 8) _into ( 2. 6) and ( 2. 10) one obtains 

- ± 
9(±)(r) = ±iqr + 2R_1 + i:~±)' Im>..(±) 2:: 0, 

/ 0 ._ .O:r±p 
9(±)(r) = cos -

2
{ ±zq + z--3 } = 0. 

• )._(±) . 

Here >..(±)=J(r±)2 _:p2 , ij=qcos-1 0/2,and 

21ra( ) ~ o: = -21ra1 = ~ IWol - ii Vol = lal e' ", 
nV, 

. 1 
{30 = 21r - arcsin --;:=====, 

J1 + (Wo/Vo)
2 

r± = R ± i1ra = lr±I exp[i/3~±)], 

( ) . 1ra 1ra ( ) 
{3 + = arcs1n -;==.== ~ - {3 - = 21r - 13(+) 

r . J1r2a2 + R2 R' r r . 

In fact, 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

At large momen_tum transfer the saddle point will be near the poles r±; 
therefore, the solutions of ( 2. 13) may be represented as 

-1 0 r(±) =.P'±l_cos 2, p(±) = r± + 15(±), lo(±ll ~ lr±I. 

Then, one can rewrite ( 2. 13) in the form: 

_ iir±(r± + 15(±)) 
q = =i= )._(±)3 

where 

)._~) = 1>..1 exp[i{3r>i, 

~ =i=ii(r±)2. 
)._(±)3 ' 

IA/ ~ [la";'/'f, 

(2.18) 

(2.19) 

(2.20) 

(±) - !!:. ~ ~ ~ ~ (±) /3;. ~ 3 (2n + 2 ± 2) + 3/30 + 3{3r . (2.21) 

Here,. n=0, 1, 2 are the numbers of roots of ( 2. 19), and they are.selected 

to satisfy the condition Im >..~) 2:: 0. In the I quadrant, one gets 

sin/3?) = sin[i(2n + 1) + ~{30 + ~{3~+)] 2:: 0, (2.22) 

and for solutions in IV, one has 

sin/3i-) = sin [i2n + ~/3o + ;7r - ~(j~+)] 2:: 0. (2.23) 
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Now, sir~cc ltS(±)I ~ lr±I we find: 

and then 

Herc 

,\~±) = J(r± + p)(r± - p) ~ J-2r±8~±), 

8~±l = -~ l.\1
2 

2 ir±i exp[i/31±)). 

( ) 2 2 1 
a+ = -1r(2n + 1) + _a + _a(+) 
f'6 3 3"'"' 31-'r ' 

) 2 . 2 1 
a(- = -1r(2n + 1) + _a - _a(+) 
f'b 3 3~"' 3f'r · 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

It has he<~n shown in [9] that for the nucleus-nucleus collisions when R = 
R 1 + R2 ~ 1ra WP have the following approximate values: 

{ 2 
for !Wal~ IVol, ( ) 37rn + 7r 

f-J/ = . -· (2.28) 
!f(2n+l)+f for !Wal~ IVoJ. 

{ 2 
for !Wal~ IVol, (-) 31rn 

MA = . 
IWol-~ IVol-

(2.29) 
~1r(n + 2) + f for 

Tims, usiug cqs. ( 2. 28), ( 2. 29) and bearing in mind that 0 '.S: (-Ji+) '.S: f 
and ~7r '.S: /-Ji-) '.S: 21r, one can select the root number n among the values 
n=0, 1, 2. 

3 Results and conclusion 

First, we have studied applicability of thP approach [6] in the case of thi, 
heavy ion scattering when the approximate expression (, 2. 8) is us<'d for 
the eikonal phase with a Woods Saxon potential. An at.tractiv<' katun• 
of this approach is that in both the cases of scattering at small and larw· 
angles 0 one can obtain an explicit formula for the_ amplitudes by using th<' 
SPM of calculations. Below, as an example we consider elastic scattNiug 
of two nuclei with atomic numbers 17 and 90 by the complPx ,voods 
Saxon potential with the geometrical parameters R=7.05 fm and a=0.5 fm. 
The parameters V0 and Wo vary. The kinetic energy in thP c.HL s_vstnn is 
E=l435 l\frV. 

In Fig.I. \H' show the results of calculations for 'the cqmpl<'X trnjcctoriPs 
of saddle points. 
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Figure I: The br.ha11ior of the saddle points on the complex r planr: with dijfen:nl JHLl'(J.111.dr-rs 

of the iwc/ca,· potential. Scattering an_gfo interval is from 5° up lo :/5°. Solid liru:s an: r:X1u·/ 

numerical .solutions, stars correspond to approximate calculr1tions, lhr: circled black spols 

pn:.m,t the polr.s. (a) Vo= -50 Mc V, Wo=0; (b) V0 = -50 Mc V, Wi,= -25 Mc V; (c) V.,= -I 
McV, W0 = -,50 McV. . 

Trajectories in Fig. I ( a) correspond to the refractive scattering when the 
absorption parameter lVo=0. The two big black spots represent the poles 
r± = R ± i1ra nearest to the real axis for a Woods Saxon potential in 
th<' intPgrand function. One can sec that in this case the solutions (stars) 
of tll<' approximate saddle point equation ( 2. 19) coincide with numerical 
rnlnilations of the exact equation ( 2. 10) (solid lines). Then, it is seen that 
in the I quadrant there exist two trajectories (n = 0, 2), while in the IV 
quadrant tll<'rc is only one root n = l. When absorption is.included (Wo =/-
0), a distin<'t behavior is seen of numerical and approximate solutions. For 
strong ahs~irption (Fig.l(c)) only one root exists in the I quadrant and one 
root is in tll<' IVth one. This property is a consequence of ( 2. 26), ( 2. 27) 
l><'CaUS<' of /-J0 =0. 

It is obvious that in the scattering amplitude proportional to ( 2. 11) 

th<' <'Xponential term exp(g(ri±)_)] plays a dominant role. Since g(ri±)) = 
±iqr_~±) + ~1/(ri±>), the behavior of the eikonal integral I on the complex 
pla11<' sig11ifirnntly iufiueuces the absolute value and the angular dependence 
of <'ross s<'Ctio11s. Thus, the approximations for eikonal phases made for real 

7 



r can have no meaning when these phases are considered on the complex 
r- plane. As an example, Fig. 2 exhibits the ~alculations for Im I and 
Re I with the help of exact ( 2. 7) and approximate ( 2_. 8) expressions 
shown by the solid and dashed lines,-respectively. The stars are when only 
13 terms in the sum ( 2. 9) are taken into account. It is seen that, in 
practice, in calculating one may use several terms only. And the main 
result is that an approximate formula ( 2. 8) behaves on the complex plane 
in a very different way ( dashed lines) as compared with the exact one ( 2. 7) 
(solid lines). Thus, one should be very careful when expanding approximate 
models of the eikonal integrals into the complex r- plane. 
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Figure 2: The behavior of eikonal integral I dependending on the i,;.,_aginary part of the impact 

parameter p when its real part is equal to R.==7.05 fm. 

To see how .well the approximate amplitudes work, we compare them 
with the corresponding e:xact numerical calculations. Fig.3 shows the cross 
sections obtained by the .SPM ( dashed lines) compared with the full nu
merical calculations (solid lines) for various parameters of a Woods - Saxon 
nucleus-nucleus potential. 

The exact numerical calculations by ( 2. 5) have used the exact eikonal 
phase ( 2. 9). The dashed lines are the SPM calculations with the help 
of ( 2. 11) where also the exact phase ( 2. 9) was used. The stars are 
calculations with the approximate phase f ( 2. 8). It is seen that-evaluations 
made by using f are different from others. Their absolute values ar<> in 
strong dependence 011 the parameters of tl1P real part of a potential. All 
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calculations by the SPM, which use the exact phase ( 2. 9), arc in good 
coincidence with the results of numerical integration up to the angles where 
the slope of curves of cross sections changes. In this region, one has to 
elaborate other methods which include contributions from the saddle point 
trajectories passing near each of the poles r; = R ± i7ra(2p - l ), p = 
1, 2, 3 .... 

dcr/dQ (a) dcr/dQ (b) dcr/dQ (c) 
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Figure 3: Eikonal cross sections in {Jm2 /st) versus the scattering angles. (a) Vo= -50 Mc V, 
W 0 ==0; (b) Vo== -50 Me V, W 0 == -25 Me V; (c) Vo= -1 Mc V, W0 = -50 Me V. . 
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