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·Int'roducti(m 
. ' 

For the last years the problem of ~ liquid-gas phase transition ill. 
the hot nuclear matter has been. widely. discussed [1-6]. ·There a~e .. 
two methods to create veryhot nuclei. The first 6ne is collision of 
nudei with comparable masses at the energies up to several hundreds 
MeV per nucle~n. This way of heating is f~llowed by compression and 
rotation of the system; The second way is the reaction induced by 
relativistic light: ions· in which excited' ta;get spectators are created. 
In this case the dynamics effects connected with the compression and 
rotation.of the system are negligible a:rid the targetspectatorcan be 
treated as pure thermally excited. Now it is well established. that the 
main ·decay rtiode. of very hot nuclei is a copious emissi~n · Of inter- . 
mediate mass frag~ents {IMF, 3 ::; Z ::; 20). According to number 
of models thi~ process is ·defip.itely: influenced by 'the nuclear liquid­
gas phase transition· and the 'multifragmentaiion'sludy is th'e way. to 
eliminate that' very intriguing prc)blem. ·· 
. In recent paper [7] the experimental'data on 'Au + Au collisions 

at 600 MeV /nucleon havebeenpresented as a possible signature bf 
the liquid-gas phase transition in nuclear matter. The multifrag­
mentation of the proje~tile spectator was studied wlth the ALADIN­
spectrometer which supplied exclusive data on the process. The tem­
perature of the fragmenting system was obtained by mea.Suring the 
yield ratios for He and Li isotopes. The. mean excit~tion energy of, 
the decaying system was determined by ,a total energy balance af­
ter evalua~ion of, the masses and energies of 'all the particles involved 

. in the pro~ess. These 'data are sh<;>wn in Figure 1; together with the 
points measured ea~lier for ·heavy ion coliisions at lower energies. For 
the energies below' 3 ·MeV /nucleon the temperature is growing with 
the ·energy according to the exp~ctatiori.. for ·a Fermi-liquid. After 
that a plateau at ~he tei:nper~ture of 5 'MeV is observed ranging from 
3 MeV /nucleon up~ to 10 MeV/~U:cleon. At higher energies the .tern-

. perature is going up linearly with 'the energy as for 'the gas of classical 
particles. Such behaviour.is consid~red to be evidence for a first-order 



' " phase transition with significant latent heat and the critical temper-
ature Te. = 5 MeV. This value is remarkably smaller than the one 
predicted by various models for the nuclear liquid-gas phase transi-
'tion (15-18 M~y).· . . . .. · .. . 

One should remember that the surface tension va~ishes at the criti­
cal temperature. Belo~ the critical point the surface tension gradually 
reduces when the nuclear temperature approaches the critical one: So 
one should expect the dramatic reduction of the .fission barrier. at nu­
clear temperature (2-3) MeV if Te = 5 MeV. The temperature effeCts 
in the fission barriers for that .range of T · were already considered 
in ref. [8-11] but for the "normal" critical temperature around (15-
18) MeV. . .. .. . . . . . 

In this p·aper we consider theT-dependence of th~ liquid-dropfis­
sion barrier with the critical temperature as a parameter. It is found 
that the calculated fission probabilities ofthe medium-heavy nuclei at 
the excitation energies around 100 MeV are significantly larger than 
the measured ones, if Te is ass~med to .be around 5 MeV. . 

Temperature dependenc~ of fission barrier 

In terms of the usual liquid-drop notation [12] the fission barrier 
as a function oftemperature can be calculated.by theJelation 

Bj(T) Es(Ts)- E~(T) + Ee(Ts)-:- E~.(T) = 

E~(T)[(Bs- 1) + 2x(T)(Be- 1)], (1) 

where B 8 is the surface (free) energy at the saddle point Es(Ts) in 
units of surface energy.E;(T) of the spherical drop, Be is the Coulomb 
energy Ee(Ts) at the saddle deformation in units of Coulomb energy . 
E~(T) of the spherical nucleus. For .the surface energy and fissility 
panimeter x(T) orie can write [8]: 

_E;(T) = E;(O)a(T)fa(O)· [n(O)fn(T)] 2/3 
(2) 

(T) _ E~(T) _ (O) n(T) • ·!1Q}_ 
X - 2E~(T) ---;- X · n(O) u(T) ' 
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where a(T) and n(T) are. the surface tension ap.d the mean nuclear 
density for a given temperature T. As a fiist'approximation; 2we ne­
glect ,the difference between. the t~mperature at the saddle T~ and 
T. In that case the ~alu~s · B s · a.n.·d "Be ~re. det~rrllined by the· defor­
mation at the sad~lle point, which deperids' on the fissility parameter 
x(T). They are tabulated by Nix [12] for the full range of the fissility 
parameter. 

For a(T) the approximation from ref. [13] is used: . 
;_., 

a(T) . ;(o)[~~ ~~a 5/4. 

. ·.. .. . . . . e 
Theexpression's for E;(o) and x(O) are taken from [11]: 

(3) 

.· Eo(O) = 17.94')' · A213 MeV x(O) = Z
2

/A 
s. . .. w.8~ 

1' = 1- 1.7826[(N- Z)jA]2. . 
(4) 

In paper [9] the thermalproperties 9f nuclei are inves~igated us­
ing the. Hartree-Fock approximatl.~n with the Skyrme force.· The 
equation· of the statewas obtained which gives the critical temp~r­
ature . Te = 18 MeV .. For. that ca~e· ·the tempera:tur·e dependence of 
the mean nuclear density~ is found as ri(T) -· n(O)(l :- ~T2) with . 

. ·, . ., .· . I , . . 

a= 1.26 · 10-3 M:eV"-:-2. If infact Te has another value' the parameter 
ais also .changed. :We assume a "'Te.:.2 asih' the'case:~fa(T) for 
T~Tc:. 

U~ing the results of [9] we get 
.f 

~. -. 

~(T.) '"7 n(O)(l -:- OAT2 fT'/). (5) 
. Figure 2 presents·the relative values ofa(T), n(T) and x(Tf as. a 

function ofT fTc_. One should expect drastic change in nuclear fissil­
ity even half .way. to the critical point. Figur~ 3 ·shows the c~ICulated 

. liquid-drop fission harries for 1880s as a function of te~perature. It 
practically vanishes for T > 0.4Tc. Thi~ nucl~us ha:s been Ciw~~il as 
it presents a good example for the ·compar~son of the calculated and 
experimental data. 
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Estimation of fission probability. 

The first-chance fission prooability r, j(r 1 + r ~) is calculated by 
· the relation of Moretto [14]: 

r, _ 1rn2 Ts.'Ps(E- Bj) 
r n .- 4macN Tk PR(E- Bn) ' 

(6) 

where Ps is th level density.at the s~ddle point, PR and TR are the level 
density and the temperature of the residual nucleus (after neutron 
·elnission), m and acN are the neutron mass and the capture cross­
section. For the level density the expression from the Fermi-gas model 

is used 

p(E*) = '{: al/4(~*)5/4 exp(2~). 
The level density parameter for fission a 1 is usually taken slightly 

larger than fo~ n~utron evaponition a~. In this paper we believe a 1 · 
an = it having inmirid significant diminishing of the fission barrier. 
. 'Figure 4 presents the'results of calculations of the fission probabil-
_itie~·for 1 ~80s a~suming Tc = 5 MeV and Tc · 10 MeV a; a function 
of the excitation energy. We restritted' ourselves to the 'temperature 
rang~ (2:_2.5) MeV as the calculations were made under the assump­
tion that Ts = T. The experimental points for fission in 4He + 184W 
collisions are taken from ref. [15]. 

The curve going through the points is a result of theoretical fit. 
mad~ in [15] with a fission barrier B1 = 24.2 MeV, corrected for the 
shelleffects. These experimental data definitely exclude Tc- 5 MeV. 
-Even Tc · 10 MeV should be also exCluded though the assumption 
Ts .. . T is"not as good as in the case of Tc = 5 ·MeV, but it is com-
pen~ated.for,by the fact that the actual value of· a/ is larger than an 

( acc~rding to ref.. (15] a 1 = 1.08 an for 1880s): 
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Temperature as a function.of the excitation energy per 
nucleon. The ~experimeptal data ar:e from [7]. The line is 
calculated for Ao .= WO in, .ref. [16] w!th Copenhagen's 
statistical model of m:ultif~agmentation·. · 
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Relative values of the surface tension, mean ,nuclear den-
sity and fissility parameters as a function of temperature 
in the units of critical one. 
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Fig. 3: Temperature dependence of the liquid drop fission barrier 
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Conclusion 

The experimental data on fission probabilities for medium-heavy 
nuclei contradict the idea that the critical temperature f~r the liquid­
gas phase transition (when 'the surface-tension vanishes) is lower than 
10 MeV. The caloric curve obtained by the ALADIN group can be 
conventionally explained in th~ framework of th~ Copenhagen· statis­
tical model of multifragmentation. The line in Fig. 1 is ~alculated 
in [16] for a nucleus with Ao = 100, assuming Tc = 16 MeV. The 
plateau-like b-ehaviour is associated with the on~et of the ~ultifr~g..: 
mentation. At the crack temperature T* = 5 - 6 MeV there exists a 
transition from the compound nucleus to the multidrop ensemble. In 
[16] it is called t.h~ cracking-phase transition, when energy is needed ~ 
for increasing the surface of the system, while. at higher excitation 
ene~gy it is deposited into translation motion of the fragments. (An-. 
other proper term for that is the "liquid~fog" transition.) The second 

plateau, predicted bythe model at T = 11 .ryie V, ~orresponds to the . 
transition to the gas phase consisting oflight nuclei with A :::; 4. But 
in fact. this transition is ma.Sked by the intense ~econdary evaporation 
from the excited fragments even at the significantlylower tempera­
tures. 

Author is thankful to V.Rodionov for the help, ·to the members 
of FASA group and Dr's J. Richert and J. Bartel for 't,he ·discussion. 
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