90-348

A55

E7-90-348

A.N.Andreyev, D.D.Bogdanov, V.I.Chepigin, A.P.Kabachenko, O.N.Malyshev¹, S.Sharo², G.M.Ter-Akopian, A.V.Yeremin

THE NEW NUCLIDE 230Pu

Submitted to "Zeitschrift für Physik A"

¹Institute for Nuclear Research, Academy of Sciences of the USSR, 117312 Moscow, USSR ²Present address:GSI, P.O.Box 110552, 6100 Darmstadt 11, FRG

Experiment

The experiments were performed with a 26 Mg beam from the U-400 cyclotron of the Laboratory of Nuclear Reactions, JINR, Dubna. The beam energy was 135 MeV on the target and the average beam 1011 intensity was about 1.5* particles per second. An isotopically enriched (95 %) ²⁰⁸Pb target (0.7±0.1) mg/cm² thick a 1.6 mg/cm² aluminium backing was mounted on a evaporated onto rotating target wheel. The evaporation residues recoiling from the target were separated in-flight from projectiles and from the different transfer reactions by the kinematic products of After passing large-area separator VASSILISSA [1]. two time-of-flight detectors and a thin mylar absorber of 150-200 $\mu \alpha / cm^2$ they were implanted into an array of seven independent surface-barrier detectors where their subsequent α -decays were measured. The total active area of the detector array was equal to 35 cm^2 .

The efficiency of our setup for evaporation residues from the (xn)-channel reaction is equal to (1.8 ± 0.2) %, while for those from the (α, xn) -channel it is reduced by a factor of about 6-10 [2]. The energy resolution of the detector array cooled to 265° K is 35 keV FWHM for α -particles in the energy region of 6-9 MeV. The calibration error is estimated to be ±15 keV in that region , and ±50 keV in the region between 17 and 18 MeV, corresponding to pile-up pulses. Double events with time spacing in excess of 5 μ s were fully resolved by an electronic setup and those coming at time intervals shorter than 1 μ s were fully summarized.

Osseally under Rectety (SHADERLY HICCORDORAUER SHE IMOTEKA

Results

The isotope identification was performed using the method of α - α correlation analysis. The α -decay at the alpha mother energy $E_{\alpha}(M)=(7570\pm15)$ keV was found to be correlated with α -decays of $E_{\alpha}(D1)=(7980\pm15)$ keV, $T_{1/2}=(2.6\pm0.6)$ ms, which fit to the known decay properties of ²²²Th. Thus the isotope ²²⁶U is identified to be the source of this correlation. Also, the identification of this isotope was supported by α - α correlation at the alpha-mother energy $E_{\alpha}(M)=(7570\pm15)$ keV with alpha daughter energies $E_{\alpha}(D)=17400\pm50$ keV resulting from complete pile-up of signals of α -decay chains ²²⁶U-(²¹⁸Ra-²¹⁴Rn) ($E_{\alpha}(D2)=8390$ keV, $T_{1/2}(D2)=14$ μ s; $E_{\alpha}(D3)=9040$ keV, $T_{1/2}(D3)=0.27$ μ s;). The measured decay energy for ²²⁶U is perfectly in line with our published one [2].

The $\alpha_m - \alpha_d$ correlation plot for the alpha mother energy E(M)=6.7-7.3 MeV and alpha-daughter energy E(D)=7.0-18.0 MeV for a time window of 100-400 ms is shown in fig.1.

The new isotope ²³⁰Pu was identified according to the $\alpha - \alpha$ correlation to decays of its daughter nuclei ²²⁶U,²²²Th and (²¹⁸Ra+²¹⁴Rn), see fig.1: $E_{\alpha}(P)=7050\pm15 \text{ keV} - E_{\alpha}(D1)=7570\pm15 \text{ keV} : \frac{230}{Pu}-\frac{226}{U} - 13 \text{ events};$ $E_{\alpha}(P)=7050\pm15 \text{ keV} - E_{\alpha}(D2)=7980\pm15 \text{ keV} : \frac{230}{Pu}-\frac{222}{Th} - 7 \text{ events};$ $E_{\alpha}(P)=7050\pm15 \text{ keV} - E_{\alpha}(D3+D4)=17400\pm40 \text{ keV} : \frac{230}{Pu}-(\frac{218}{Ra+}214Rn) - 4 \text{ events};$

The half-life measured for all these correlations, $T_{1/2}=200\pm50$ ms is in agreement with the half-life for ^{226}U [2]. The measured value $Q_{\alpha}=7170\pm15$ keV for 230 Pu is well compatible with the calculated one [3]. According to the latter paper, for 230 Pu with such α -decay energy the half-life value is expected to be $T_{1/2}\approx200$ sec. Because this value is much longer than the average time interval between recoil events in detectors we could not measure the half-life for 230 Pu.

Assuming the α -branch to be about 100%, which is in agreement with calculations [3], the production cross-section for 230 Pu was determined to be σ =100 nb at a beam energy of E(26 Mg)=135±1 MeV on the target.

References

Yeremin A.V. et al., Nucl.Instr. & Meth., A274 (1989), p.528.
Andreyev A.N. et al., Yad.Fis., v.50, (1989), p.619.

Preprint JINR P7-88-830, Dubna, 1988.

3. Kolesnikov N.N., Demin A.G., Preprint JINR P6-9421, Dubna, 1975.

Received by Publishing Department on May 23, 1990.

2

3

Андреев А.Н. и др. Новый изотоп²³⁰ Ри

В продуктах реакции полного слияния ²⁰⁸ Pb + ²⁶ Mg при энергии бомбардирующих ионов 135 МэВ идентифицирован новый нуклид ²³⁰ Pu. Измерена энергия его *а*-распада: $E_a =$ = 7050 ± 15 кэВ. Уточнен период полураспада для изотопа ²²⁶ U: $T_{1/2} = 200 \pm 50$ мсек. Эксперименты выполнены с использованием кинематического сепаратора ВАСИЛИСА.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1990

Andreyev A.N. et al. The New Nuclide ^{2 3 0} Pu

In the heavy-ion complete fusion reaction 208 Pb + 26 Mg at a beam energy of 135 MeV the new nuclide 230 Pu was produced. The measured α -decay energy was found to be $E_{\alpha} = 7050 \pm 15$ keV. The new isotope was identified after in-flight separation with the kinematic separator VASSILISSA, followed by its implantation into a silicon surface-barrier detector and the observation of the genetic relationships of subsequent α -decays. The half-life of 226 U was measured more accurately.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1990

E7-90-348

E7-90-348