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In the theory of Fermi liquids the density correlation func
tion F(x1-X2) =.<p(x1)p(X2)-p 2> and respectively, the form 
factor 

play an essential role /t,21 • 

Especially, the strong density fluctuations which occur as 
the precursor of a liquid~gas phase tranition may be expressed 
by the relation p/(f!, (aP /ap)/3 = .(F{;) d;131 which establishes 
a connection between macroscopical thermodynamical properties 
like the pressu_re P and density ·p on the one hand, and intrin
sic characteristics of the correlated system, on the other 
hand. Furthermore, a direct measurement of the density corre
lation function in liquids is possible by utilizing the rela
tion between the cross-section for light or particle scatte
ring and the form factor 121 • 

We want to note here that in heavy ion reactions, by using 
a VUU analysis, it is possible to extract the nuclear density 
correlation function. 

In this case such a procedure may.alsp ~e useful if the 
system is close to the spinodal region (aP/ap) ➔ 0, where in
stability sets in (for a recent discussion se~, e.g., 141 ). 

A standard description of HI reactions at intermediate ener
gies starts f~om the VUU equation, which in a quantum statis
tical model151 may by represented as 
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= - i.:. (p, rup; R, T) (1 = f(p; R, T)) - i I (p, ru;; R, T) f(p; R, T), 

p2 
ruP = 2m • 

The l.h.s,•describes the quasiclassical ti~e-dependent mean 
field evolution for the Wigner function f(p; R, T), while the 
r.h.s. contains the usu~l gain minus loss structure. In this 
expression the mass operator is used, where by defininition 
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-.i I.< (11 ') = .<t(l ') j(l) >, 

i I> (1 , 1 ') = <Hl ) j(l ') > 

➔ 

j(l) =Hx1 ,t 1) = 
.. ➔ ➔ + ➔ ➔ 

= ( dx2 V (x 1 - X2) tµ (x2, t1 ) t/, (x 2, t 1) r/, (1) 

(1) 

and the index "irred" means that one eliminates those diagrams 
for which a cut between the end points passes only through 
a single particle line~ Furthermore, the mean field term in 
the VUU equation is-expressed by the relation 

+ . > .< 
I (1,2) = I 8 F(l,2) +8(t 1-t2 ) (I _(1,2) -I (1,2)), 

where· IaF(l,2) is· the HF potential. Finally let us write the 
general relations 151 for the width of the single particle 
state 

r (1,2) = -2· ImI+ (1,2) = i(I> (1, 2) - I.< (1,2)), 

+ ➔ ➔ ➔ ... 
Re! (p,c'.tl;R,T) = I.HF(p;R,T) 

➔ ➔ 

r d(L) ' r(p; R, T) 
+ -211 w -w' 

(2) 

These formulae are very useful to establish the connection 
between the Green function description and the density corre
lation function, as we shall see. 

Starting from the definition of the mass operator (1), per
forming a Fourier transformation and time ordering and neglec
ting three-body correlations, we obtain 

>< ( ➔ ) ~ ➔ , -~ ➔ ➔ ➔ 2 3 
I· p,w = f 0· (p',w )F· (p'-p, w'-(L))(V(p'-p)) dp'/(2

17
) 

d(L) '/(211) . 

with the Green functions calculated from the definitions 

. < . + > . + 
-iG (1,2) =.<rf, (2)1/,(1)>, iG (1,2) =.<r/,(l)t/, (2)>, 

and the density correlation functions 
> < 

F (1, 1) = .<p(l) p(2) - p 2>, p· (1, 2) = .<p(2) ·p(1) -·p 2 > . 

(3) 

Applying in the last equation a completeness relation we have 

F>(q,(t)).=1/V I l<Ol·p(q)ln>l 2 211o(w -(t) ) 

n · no ' 
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IF< (q, w) = 1/V ! I <OI p(q) In> 12 
211o((L) + <o no). 

n 
(4) 

From ~hese relations together with eq.(3) it follows that I~ 
describes the scattering on p-h excitations (RPA-type modes) 
of the time-dependent TDHF-state IO> • , · 

The general expression (3) is simp~ified if the system is 
close to the spinodal region and if thermodynamical equilib
rium is assumed. Near the point of instability a low-lying 
collective m_ode gets soft and therefore we ➔ 0. Since the cor
responding transition probability in eq. (4)" is <Olp! n> _ w;½ , 
together with eq.(3) we get 
~ ➔ ➔➔ 3 ~ 

~- (p, w) = f dp' /(211) (V(p' - p)) 2F(p' - p) G (p', (L)), 

with the Fourier transform of the static density correlation 
function . ➔ ... ➔ 

➔ ➔ ➔ +iq(;1-x2) 
F(q) = fF(x 1-x 2, p)e 

•➔ ➔ 

d(x 1 - X 2) • 

Integrating over w, taking account of the relation 151 

> ➔ < ➔ 
( dw / (211) (iG (p, w) . - iG (p, w )) = 1 

together with the definition (2) we finally obtain the very 
instructive relation 

➔ ➔ 2 ➔ 3 
(-f /(211)dw = f F(q) {V(q)) dq/(211) • (5) 

Formally this expression is a general result, if the con
tour is chosen to include all energies= ±w . The formula 
(5) has been quoted earlier 151 without proof:

0
and an equiva

lent condition expressed by the collision term has recently 
been derived 161 • -

Let us take in the thermodynamical limit, following 131 , 
the approximation for the static denity correlation function 
derived from the RPA 

➔ 2 2 
F{q) =p/((T-Tc)/T+Tc/Taq ), a=rv/6, 

where rv is a range parameter of the force. By the Fourier 
transformation it then follows that 

F(r) =·pT(aTc ,411r)-
1 

expl-[(T-Tc)/(aTc)-1 ] 112 r I, 

3 

(6) 



which is just the Ornstein-Zernicke density correlation func
tion near the critical. point T =Tc.Applying this formula 
to the relation p/(fJ(ap/ap)fJ) = (F(;)dr, one verifies, that 
for T ➔ Tc this expression diverges thus signifying the onset 
of the liquid-gas phase transition. A related divergent beha
viour occurs also in the mass operator, and therefore, in the 
collision integral and in the mean field. Really, from 
eqs.s (5) and (6) we get 

ff /(211)dw - F(q = 0) • f(V(q))
2 

dq /(211) 
3 

- f F(;) fu-(V(q)) 2 dq/(211) 3 , 

demonstrating the strong increase of this quantity near the 
critical point. This result is similar to the well-known cri
tical opa1escence phenomenon. We have recently obtained the 
same behaviour in a Landau-type theory directly calculating 
the particle-fluctuation contribution to the mass operator 771 
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M!oHXOB Il. 
OnpeAeneHHe HAepaott KoppenH~HOHHOH 
cpyHK~HH nnoTHOCTH B peaK~HflX C TfliKenbJMH 
HoHaMH 

E7-90-327 

PeaK~HH C TfliKenbIMH HOHaMH npH npoMeiKYTOtJHb!X 3HeprHHX 
tJaCTO OilHCbIBaIOTCfl ypaaHeHHeM Bnacoaa - Ynea6eKa - YnttHra. 
11onb3YHCb MeTOAaMH KBaHTOBOII KHHeTHKH,Mbl Bb!BenH none3Hoe 
COOTHomeHHe Me)KAy HHTerpupoaaHHOH no tJaCTOTaM OAHOtJa
CTHtJHOH illHpHHOH H CTaTHtJeCKOH KoppenHW{OHHOH cpyHK~Hefi. 
B6nH3H TOtJKH HeycTOHtJHBOCTH H3 3TOro COOTHomeHHfl cneAyeT 
npHpOCT HHTerpana CTOnKHOBeHHfl H yaenntJeHHe CKOpOCTH pe
naKca~H. 

Pa6oTa BbinonHeHa B Ila6opaTOpHH TeopeTHtJeCKOH q>H3HKH 
omm. 
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Determination of the Nuclear Density 
Correlation Function in Heavy Ion 
Reactions 

E7-9O-327 

Heavy ion reactions at intermediate energies are most 
ly described by the VUU equation. Using methods of quan
tum kinetics we derive a useful relation between the 
frequency integrated width of s.p. states and the static 
correlation function. Near the point of instability from 
this ·relation follows the increase of the collision in
tegral and enhanced equilibration. 

The investigation has been performed at the Laborator 
of_ Theoreticc:tl Physics, JINR. 
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