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In the theory of Fermi liquids the density correlation func­
tion F(x1-X2) =.<p(x1)p(X2)-p 2> and respectively, the form 
factor 

play an essential role /t,21 • 

Especially, the strong density fluctuations which occur as 
the precursor of a liquid~gas phase tranition may be expressed 
by the relation p/(f!, (aP /ap)/3 = .(F{;) d;131 which establishes 
a connection between macroscopical thermodynamical properties 
like the pressu_re P and density ·p on the one hand, and intrin­
sic characteristics of the correlated system, on the other 
hand. Furthermore, a direct measurement of the density corre­
lation function in liquids is possible by utilizing the rela­
tion between the cross-section for light or particle scatte­
ring and the form factor 121 • 

We want to note here that in heavy ion reactions, by using 
a VUU analysis, it is possible to extract the nuclear density 
correlation function. 

In this case such a procedure may.alsp ~e useful if the 
system is close to the spinodal region (aP/ap) ➔ 0, where in­
stability sets in (for a recent discussion se~, e.g., 141 ). 

A standard description of HI reactions at intermediate ener­
gies starts f~om the VUU equation, which in a quantum statis­
tical model151 may by represented as 
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ruP = 2m • 

The l.h.s,•describes the quasiclassical ti~e-dependent mean 
field evolution for the Wigner function f(p; R, T), while the 
r.h.s. contains the usu~l gain minus loss structure. In this 
expression the mass operator is used, where by defininition 
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-.i I.< (11 ') = .<t(l ') j(l) >, 

i I> (1 , 1 ') = <Hl ) j(l ') > 

➔ 

j(l) =Hx1 ,t 1) = 
.. ➔ ➔ + ➔ ➔ 

= ( dx2 V (x 1 - X2) tµ (x2, t1 ) t/, (x 2, t 1) r/, (1) 

(1) 

and the index "irred" means that one eliminates those diagrams 
for which a cut between the end points passes only through 
a single particle line~ Furthermore, the mean field term in 
the VUU equation is-expressed by the relation 

+ . > .< 
I (1,2) = I 8 F(l,2) +8(t 1-t2 ) (I _(1,2) -I (1,2)), 

where· IaF(l,2) is· the HF potential. Finally let us write the 
general relations 151 for the width of the single particle 
state 

r (1,2) = -2· ImI+ (1,2) = i(I> (1, 2) - I.< (1,2)), 

+ ➔ ➔ ➔ ... 
Re! (p,c'.tl;R,T) = I.HF(p;R,T) 

➔ ➔ 

r d(L) ' r(p; R, T) 
+ -211 w -w' 

(2) 

These formulae are very useful to establish the connection 
between the Green function description and the density corre­
lation function, as we shall see. 

Starting from the definition of the mass operator (1), per­
forming a Fourier transformation and time ordering and neglec­
ting three-body correlations, we obtain 

>< ( ➔ ) ~ ➔ , -~ ➔ ➔ ➔ 2 3 
I· p,w = f 0· (p',w )F· (p'-p, w'-(L))(V(p'-p)) dp'/(2

17
) 

d(L) '/(211) . 

with the Green functions calculated from the definitions 

. < . + > . + 
-iG (1,2) =.<rf, (2)1/,(1)>, iG (1,2) =.<r/,(l)t/, (2)>, 

and the density correlation functions 
> < 

F (1, 1) = .<p(l) p(2) - p 2>, p· (1, 2) = .<p(2) ·p(1) -·p 2 > . 

(3) 

Applying in the last equation a completeness relation we have 

F>(q,(t)).=1/V I l<Ol·p(q)ln>l 2 211o(w -(t) ) 

n · no ' 
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IF< (q, w) = 1/V ! I <OI p(q) In> 12 
211o((L) + <o no). 

n 
(4) 

From ~hese relations together with eq.(3) it follows that I~ 
describes the scattering on p-h excitations (RPA-type modes) 
of the time-dependent TDHF-state IO> • , · 

The general expression (3) is simp~ified if the system is 
close to the spinodal region and if thermodynamical equilib­
rium is assumed. Near the point of instability a low-lying 
collective m_ode gets soft and therefore we ➔ 0. Since the cor­
responding transition probability in eq. (4)" is <Olp! n> _ w;½ , 
together with eq.(3) we get 
~ ➔ ➔➔ 3 ~ 

~- (p, w) = f dp' /(211) (V(p' - p)) 2F(p' - p) G (p', (L)), 

with the Fourier transform of the static density correlation 
function . ➔ ... ➔ 

➔ ➔ ➔ +iq(;1-x2) 
F(q) = fF(x 1-x 2, p)e 

•➔ ➔ 

d(x 1 - X 2) • 

Integrating over w, taking account of the relation 151 

> ➔ < ➔ 
( dw / (211) (iG (p, w) . - iG (p, w )) = 1 

together with the definition (2) we finally obtain the very 
instructive relation 

➔ ➔ 2 ➔ 3 
(-f /(211)dw = f F(q) {V(q)) dq/(211) • (5) 

Formally this expression is a general result, if the con­
tour is chosen to include all energies= ±w . The formula 
(5) has been quoted earlier 151 without proof:

0
and an equiva­

lent condition expressed by the collision term has recently 
been derived 161 • -

Let us take in the thermodynamical limit, following 131 , 
the approximation for the static denity correlation function 
derived from the RPA 

➔ 2 2 
F{q) =p/((T-Tc)/T+Tc/Taq ), a=rv/6, 

where rv is a range parameter of the force. By the Fourier 
transformation it then follows that 

F(r) =·pT(aTc ,411r)-
1 

expl-[(T-Tc)/(aTc)-1 ] 112 r I, 

3 

(6) 



which is just the Ornstein-Zernicke density correlation func­
tion near the critical. point T =Tc.Applying this formula 
to the relation p/(fJ(ap/ap)fJ) = (F(;)dr, one verifies, that 
for T ➔ Tc this expression diverges thus signifying the onset 
of the liquid-gas phase transition. A related divergent beha­
viour occurs also in the mass operator, and therefore, in the 
collision integral and in the mean field. Really, from 
eqs.s (5) and (6) we get 

ff /(211)dw - F(q = 0) • f(V(q))
2 

dq /(211) 
3 

- f F(;) fu-(V(q)) 2 dq/(211) 3 , 

demonstrating the strong increase of this quantity near the 
critical point. This result is similar to the well-known cri­
tical opa1escence phenomenon. We have recently obtained the 
same behaviour in a Landau-type theory directly calculating 
the particle-fluctuation contribution to the mass operator 771 
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M!oHXOB Il. 
OnpeAeneHHe HAepaott KoppenH~HOHHOH 
cpyHK~HH nnoTHOCTH B peaK~HflX C TfliKenbJMH 
HoHaMH 

E7-90-327 

PeaK~HH C TfliKenbIMH HOHaMH npH npoMeiKYTOtJHb!X 3HeprHHX 
tJaCTO OilHCbIBaIOTCfl ypaaHeHHeM Bnacoaa - Ynea6eKa - YnttHra. 
11onb3YHCb MeTOAaMH KBaHTOBOII KHHeTHKH,Mbl Bb!BenH none3Hoe 
COOTHomeHHe Me)KAy HHTerpupoaaHHOH no tJaCTOTaM OAHOtJa­
CTHtJHOH illHpHHOH H CTaTHtJeCKOH KoppenHW{OHHOH cpyHK~Hefi. 
B6nH3H TOtJKH HeycTOHtJHBOCTH H3 3TOro COOTHomeHHfl cneAyeT 
npHpOCT HHTerpana CTOnKHOBeHHfl H yaenntJeHHe CKOpOCTH pe­
naKca~H. 

Pa6oTa BbinonHeHa B Ila6opaTOpHH TeopeTHtJeCKOH q>H3HKH 
omm. 
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Correlation Function in Heavy Ion 
Reactions 
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Heavy ion reactions at intermediate energies are most 
ly described by the VUU equation. Using methods of quan­
tum kinetics we derive a useful relation between the 
frequency integrated width of s.p. states and the static 
correlation function. Near the point of instability from 
this ·relation follows the increase of the collision in­
tegral and enhanced equilibration. 

The investigation has been performed at the Laborator 
of_ Theoreticc:tl Physics, JINR. 
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