


In tEe pPeory ofﬁfermi liquids the density correlation func-
;Eioz Px, - xp) =4<p(X1)p(£2)—p2> and respectively, the form
actor : . . : . '
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play an essential role /1.2/,

Especially, the strong density fluctuations which occur as
the precursor of a liquid-gas phase tranition may be expressed
by the relation p/(B(aP/ap)B fFKr)dr/‘/whlch establishes
a connection between macroscopical thermodynamical properties::
like  the pressure P and density pp on the one hand, and intrin-
sic characteristics of the correlated system, on the other
hand. Furthermore, a direct measurement of the density corre-
lation function in liquids is possible by utilizing the rela-
tion between the cross-section for light or particle scatte-
ring and the form factor’% . '

We want to note here that in heavy ion reactions, by using
a VUU analysis, it is possible to extract the nuclear den51ty
correlation function.

In this case such a procedure may.also be useful if the
system is close to the spinodal region (dP/dp), - 0, where in-
stability sets in (for a recent discussion seég e. g.,/4/)

A standard description of HI reactions at intermediate ener-
gies starts from the VUU equation, which in a quantum statis-
tical model’5/ may by represented as
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The 1.h.s.:-describes the quasiclassical tige-dependent mean
field evolution for the Wigner function f(p; R, T), while the
r.h.s. contains the usual gain minus loss structure. In this

expression the mass operator is used, where by defininition
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and the index "irred" means that one eliminates those diagrams
for which a cut between the end points passes only through

a single particle line. Furthermore, the mean field term in
the VUU equation is. expressed by the relation
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where Zyr(1,2) is the HF potential. Flnally let us write the
general relatlons/5/ for the width of the single particle
state
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These formulae are very useful to establlsh the connection
between the Green function description and the density corre-
lation functlon, as we shall see.

Starting from the definition of the mass operator (1), per-
forming a Fourier transformation and time orderlng and neglec-
ting three-body correlations, we obtain
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with the Green functions calculated from the definitions
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and the density correlation functions

F(1,1) =<p() 9@ -3,
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P, 2) = <p@p1) ~p 5.

Applylng in the last equation a completeness relatlon we have
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From these relations together with eq.(3) it follows that 2%
describes the scattering on p-h excitations (RPA-type modes)
of the time-dependent TDHF-state los .

The general expression (3) is simplified if the system is
close to the spinodal region and if thermodynamical equilib-
rium is assumed. Near the point of instability a low-lying
collective mode gets soft and therefore o, - 0. Since the cor-
responding transition probability in eq. (4) is <0{pIn>~ w;”é,
together with eq.(3) we get
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with the Fourier transform of the static density correlation
function R
+ig(x y~x2) Ca -

F(3)=fF(;1—1?2. ple d(x;-x,).

Integrating over o, taking account of the relation’%/
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together with the definition (2) we finallyvobtéinvthe very
instructive relation
hed > 9 3 .
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Fermally this expression is a generel result, if ‘the con-
tour is chosen to include all energies = to, - The formula
(5) has been quoted earlier /5 without proof, and an equiva-
lent condition expressed by the COlllSlOﬂ term has recently
been derived :
Let us take in the thermodynamical limit, follow1ng
the approximation for the static denity correlation functlon
derived from the RPA
F@ =p/(T -T,)/T+T/Tad®), a=r}/s, (6)
where I, is a range parameter of the force. By the Fourier
transformation it then follows that
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which is just the Ornstein-Zernicke density correlation func-
tion near the critical point T = T.. Applying this formula

to the relation p/(B(ap/ap)B) [F()dr, one verifies, that
for T » T, this expression diverges thus signifying the onset
of the 11qu1d gas phase transition. A related divergent beha-
viour occurs also in the mass operator, and therefore, in the
collision integral and in the mean field. Really, from

eqs.s (5) and (6) we get
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demonstrating the strong increase of this quantity near the
critical point. This result is similar to the well-known cri-
tical opalescence phenomenon. We have recently obtained the
same behaviour in a Landau-type theory directly calculating
the particle-fluctuation contribution to the mass operator
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‘1 GYHKUHHM [UIOTHOCTH B DeakuMaX C TSAKENbsMH

Miouxos JI. ) E7-90-327
OnpepneneHHe sagepHoHl KoppenALHOHHOH ’

HOHaMH ' ] .

Peakuuu c TﬂxéﬁblMH HUOHAMH IMPH NPOMEXYTOYHHIX 3HEPTrHAX
YyacTO ONHMCHIBAWNTCHA ypaBHeHMeM Bmacosa - Ynen6eka - YnuHra.
Monb3ysach MeTOOAMH KBAaHTOBOI1 KHHETHKH,Mbl BHIBEIH [oJie3HOoe
COOTHOIlEHHe Mex[Ay HMHTerpHPOBAHHO MO wacToTaM ofHoua-—
CTHYHOI MUPHHOH M CTATHUECKOH KOoppelIalHOHHON dyHKuHerH ,
B6au3n TOUKHM HEeYCTOHYHBOCTH M3 3TOI'O COOTHOmMEHHUA cliefgyer
NpUPOCT HHTErpalia CTOJIKHOBEHHA H YyBeJIHu€HHEe CKOpOoCTH pe-
JakcauuH. ' :

Pa6ora BbinojiHeHa B Jla6opaTOpHH TeopeTHuecKOil (GH3IUKHU
OHAH .,
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Determination of the Nuclear Density
Correlation Function in Heavy Ion

Reactions

Heavy ion reactions at intermediate energies are most-
ly described by the VUU equation, Using methods of quan-
tun kinetics we derive a useful relation between the
frequency integrated width of s.p. states and the static
correlation function. Near the point of instability from
this relation follows the increase of the c011131on in-
tegral and enhanced equilibration.

The investigation has been performed at the Laboratory
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