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1 . INTRODUCTION 

From a VUU simulation of Ca+ Ca collisions the authors /1/ 

concluded that for Eiab > .60 MeV/A after times t = 80 fm/c 
"macroscopic" density fluctuations as the precursor of frag­
mentation set in. These increasing fluctuations reflect the 
closeness of the system to the region of instability. Really, 
in these calculations the potential energy per particle as a 
function of time evolves through a saddle point, and this ma­
ximum marks the end of the phase of homogeneous expansion and 
the beginning of the clusterization process. Depending on the 
excitation energy the density corresponding to this saddle 
point is 0.001 <p/po < 0.60. Additionally, from the fully 
thermalized part of the total energy typical temperatures in 
the region between 3-5 MeV have been estimated. In a thermo­
dynamical sense the system is then close to the spinodal of 
the P-p phase diagram for which the derivative ?ets. ze;ro 
(aP/ap) ➔ 0. From the thermodynamical relation12 (aP/ap)T1 -
- f .<p(1) p(O) ;...p 2 > dr strong density fluctuations are ex-
pected in the precritical region and just this is the result 
of the simulation 111 • . 

Now naturally the question arises: What kind of information 
may be sensible to these fluctuations? Rather to give a gene­
ral answer we draw our attention to possible dynamical con­
sequences of strong density fluctuations, which to our ~now­
ledge have not been discussed formerly. In order to study den­
sity fluctuations one has to go beyond the one-particle level, 
described by the first order density matJiX p 1(11') or semi­
classically by .the Wigner function f(p; R, T) . The general 
structure of coupled equations for first to third order densi­
ty matrices was derived in ref. 131 • Starting from this hierar­
chy recently we have shown 141 that the coupling of single­
particle motion to density fluctuations may be included into 
the collision integral of generalized VUU equations. As we 
will show, the part of the collision integral in the VUU des­
cription, which is responsible to density fluctuations, as 
well as the corresponding part of the s.p. potential energy 
get prominent in the precritical region and lead to noticeablP. 
dynamical consequences. 
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2. ONE-PARTICLE MOTION COUPLED 
TO DENSITY FLUCTUATIONS 

To describe reactions we apply Qonequilibrium statistical 
mechanics 15 , 6, 71 • In this approach, the one-particle Green 
function consists of two parts 

.< ➔ ➔ + ➔ ➔ . 

-iG (x 1 ,t 1 ;x 2,t2) =-<i/1 (x 2,t 2)!/J(x1,t1)>, 

.> ➔ ➔ ➔ + ➔ 
+10 (x 1,t 1 ; x2 ,t 2) =.<!/J(x 1 ,t 1) !/1 (x2 ,t 2 ) > 

➔ 

and depends on two space-time points x 1, t 1 j 
cing microscopic and macroscopic variables r 

➔ ➔ ➔ 

= t 1 - t 2 , R = (x 1 + x 2 )"/2, T = (t 1 + t 2) /2 , 

➔ ' 
x 2 , t 2 • Introdu-

➔ ➔ 
=X1-x 2 , t= 
the Fourier trans-

form of the Green function of a hole 

.< ➔ ➔ ➔ ➔➔ ➔ ➔ 

G (p, w; R, T) = J drdt exp(-iwt + ipr) 0 (r, t; R, T) 

with 

.< .➔ ➔ .< ➔ ➔ 
G (r,t; R,T) =G (x 1;t 1;x 2,t2) 

is directly connected weth the Wigner function 

➔ ➔ < ➔ ➔ 
f(p;R,T) =-i fO (p, ru; R, T)dw/211. 

Similarly, for partic'ie evolution 

➔ ➔ > ➔ ➔ 
[1-f(p;R,T)]=ifG (p,ru; R,T)•dw/211, 

and fro~ the Dyson equation for 0(1,2) there follows the gene­
ralized Boltzmann equation ((i) ➔ = p 2/2m) 

' ➔ •. + ➔➔ .p . + ➔➔ . 

[ ~ + .!:. _ a➔ + a Re~ (P ;R, T) _a➔ ·+ a Re ~:.j(p;R,T) ~l f(p; R, T) 

aT m aR a P a R aR ap 
. .< ➔ ➔ ➔ .:t . > ➔ .:t ➔ ~ ( 1 ) 

= -1}: (p,w➔p ;R,T) [l -f(p;K,T)1 -iI. (p,(i)➔ ;K,T) f(p;K, T), . p 

which represents the basis of our reaction model. The l.h.s. 
of eq.(1) describes the semiclassical approximation to TDHF 
dynamics while the r.h.s; is the collision term. It contains 
two parts of the inass operator l: ~ (p, (i); R; T) which are analo­
gous to Q~ (p, (r); R, T)., Furthermore, the retarded mass opera­
tor is defined by 

+ ➔ ➔ + > .< 
l: (x 1t1 ; x2t2) = I (12) = I. HF(l2) + 0(t1- t2 ) [:S (12) - :S (12)], 

2 

l 
!, 

•J 

where l:Hl.(12) denotes the HF term . .{\fter Fourier transforma­
tion then follows the dispersion relation 171 

' ➔ ➔ 

Re ~+ :.. m f T(p,<u';R,T) d<u' ( 2 ) 
k (p,(i); R, T) = I.HF(p;R, T) + J , -2, 

(i) -(0 77 

where the imaginary part of the mass operator may be represen­
ted as. 

➔ - ➔ . + ➔ ➔ .< ➔ .:t ➔ ➔ 
[(p,(i); R,T) =-2ImI. (p,w;R,T) =1(! (p,ru;K,T)-:t (p,w;R,T))(3) 

A glance at eq.(1) shows the close connection between the 
width of the single-particle state·[ and the collision integ-
ral. 

Next, the mass operator will be evaluated in a T-matrix ap­
proximation. As is well known 12,5!, just the T-matrix, evalua­
ted in the particle-hole channel, is closely connected with 
the stability of the system. Namely, the appearance of a pole 
in the upper half of the imaginary plan signals the set-in of 
instability. Since our aim is to study the connection between 
stability and dynamics, it is natural to apply the p-h channel 
T-matrix in the expression for the mass operator 

};(11') = Jd2d2'iG(2'2) IT(12; 1'2')-T(l2; 2'1') }, (4) 

where we usE:d the notation 1 = (x1, t 1),, fdl= fdx\•fdt1 and 
the time integration is along a closed contour in chronologi­
cal and antichronological direction 16, 7/. After Fourier tranp­
formation and time ordering 

➔ 

~ ➔ ➔ dp1 dw ~ ➔ ➔ 
I. (p ,,w; R, T) = - f-- -

2
-iG. (p 1, (L); R, T) x 

(277) 3 77 
➔ ➔ ➔ ➔ 

P-P1 >< . P-P1 
xi.< 

2 
IT· ((L)-w 1)1 

2 
> -

➔ ➔' ➔ ➔ 
(5) 

P-P1 . >< P1-P 
- .<---IT· (w -(i) ) I -->I 

2 1 2 

where 
➔ ➔ ➔, ➔, 

.<P1-P2 IT~((L))I P1-P2 > 
2 · 2 

> 
denotes the Fourier transform of T .< (12;2'1') for t 1 = t 2 , 
t 1,= t~, with respect to the microscopic variables and 

➔ ➔ ➔ ➔ ➔ ., 
R = (x 1 +X2 +x 1,+x2 ) /4, T = (t 1 +t 1,)/2. 
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The appearance of the T-matrix i_n eq. (5) reflects the correla­
tions beyond the one-particle level. Mostly the T-matrix is 
evaluated in the particle-particle scattering channel 15, 71 • 
We additionally include the ·particle-hole (p-h) channel to 
take care of scattering of particles on density fluctuations, 
which correspond to correlated p-h excitations of the TDHF 
state. Note that in the Landau theory 181 and for the screened 
Coulomb potential151 also the p-h channel T-matrix appears 
in the collision term. Like in the stationary·case also for 
the time dependent T-matrix there exists a spectral decomposi­
tion,. which is useful to es_tablish the dependence en collec­
tive ,.frequencies. 

➔ 

Introducing the relative momentum k · 

➔, ➔ ➔ 

P1=P1+k, 
➔, ➔ ➔ 

P2 =P 2-k 

and performing a ladder sum over p-h bubbles, similar to the 
p-p case 15, 71 , one ends up with the integral equation 

➔ ..;, ➔ ➔ ➔ 

P1-P2 . ➔ • P1-P 2 +2k 
<---IT(w;R,T) I ....;c..--;;.._ __ > = 

2 2 

➔ ➔ ➔ ➔ ➔ 

=T(p1 ,p 2 ,k;w,R,T) = V(p 1 -P2) + 

+ r 
➔ ➔ ➔ ➔ ➔ 

f(p 1 + k; R, T) -f(pf; R, T) 

£ (pi , + k ) - ( (p 1' ) - w 

l(p)= p 2/2m+ Rei+(p,£(p)), 

. ➔ 

➔ ... ➔ ➔ ... dp 
V(P1-P2) T(P1, P2 ,k ,w )--

3
-, 

(211) 

(6) 

if the width r .<< Re I+ . This equation represents the time 
dependent and semiclassical generalization of the standard 
RPA equation for the T-matrix. Note the difference how this 
RPA comes out: Usually, RPA is a small amplitude, linearized 
approximation to the TDHF theory. Here, however, we assume 
the full large amplitude TDHF motion is the underlying mean 
field, and time depending p-h type correlations beyond TDHF 
correlations are treated. A path integral formulation for 
these excitation~·has been given formerly 191 • · 

From eq.(6) one may obtain the spectral decomposition in­
troducing the RPA.wave equations 

4 

~ 

·l 
C!-

➔ ➔ ➔ ➔ ➔ 

lw,, -[dp+k)-l(p)ll¢v(p,k) = 

➔ 

dp , ➔ ➔ , ➔ , ➔ ➔ ., ➔ , ➔ ➔, ➔ 
J--v(p-p)-lf(p +k;R,T)-f(p ;R,T)l¢v(P,k), 

(211 )3 

and the completeness relation 

➔➔ * ➔➔ ➔➔➔ ➔➔ 
! ¢v(P, k) ¢v(P', k) [f(p + k ; R, T) -f(p; R, T)] = o➔➔, 
v .. PP 

Really, then 

➔➔➔ ➔ ➔ ➔ ➔ 

T(p1,P2,k;w, R,T) = 1£(p 1+k) :..£(p1)-n,I x 

➔ ➔ * ➔ ➔ 

Xv(P 1,k) Xv(P2,k) ➔ ... ... 

x ! ------ ll(P2 + k) - £(p2) - WV I - · 
V W -W 

V 

-! 
V 

➔ * ➔ ➔ • ➔ 

yvc;l'k) Yv(P2,k) 1£(; 2+ k) -£(P2) + wv I, 
W + WV 

where 

➔ ➔• ➔ ➔ ➔ ➔ ➔ ➔ ➔ 

Xv (p, k) = f(p + k; R, T) (1 - f(p; R, T)) ¢i,(P, k) , 
➔➔ ➔➔➔ ➔➔ ➔➔ 

Yv (p, k) = (1-f(p+ k; R, T)) f(p; R, T) ¢v (p, k). 

• (7) 

Si~ce RPA eigenfunctions depend on collective frequencies as 
w~

2
, the T-matrix and by eq.(5) also the mass operator obtains 

the dependence w~1 showing the enhancement of these quantities 
for soft, precritical modes. Note _that the same dependence on 
frequency appears in a fermion-boson couplin?E description, 
in which each vertex contains the factor w-½ 61 . 

Using the relation /5/ v 

T(tl't,a') =V+ IJ(t 1-t2)T>(t 1 ,t 2) + 0(t2 -t1)T.<(tl't 2), 

P 1 -P2 ~ P 1 -P2 
we obtain from ( 7) the equation for the < 

2 
• I T (w) I · 

2 
> 

matrices appearing in formula (5) 

> ➔➔➔ ➔ ➔ ➔ ➔ 
T (p1 ,p2 ,k;ru,R,T) =i11ldp

1 
+k)-£(P

1
)-wl x 

➔ ➔ * ➔ ➔ 
x ! o (w v - w) • X (p , k) X (p , k ) x 

V V 1 V 2 
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➔ ➔ ➔ 

x[ dp
2 

+k) - €(p2 ) - w 11 ], (8) 

< ➔ ➔ ➔ ➔ 
and a similar relation for T (p 1 , p2 , k; w, R, T). 

From 'the structure of equation (6) we conclude that for 
k = 0 the contribution to the T-matrix, which is due to p-h 
correlations, disappears. As a consequence, in equation (5) 
only the exchange term re1J1ains. Furthermore, similar to the 
case of the p-p channel T matrix 15,71 applying a generalized 
optical theorem one ~ay ob-tain from formula (5) 

➔ ➔, ➔, 

< ➔ ➔ i dp 1 dp dp 1 4 
~ (p, €(p); R, T) = - f --- -- --- •(2rr) x 

2 (2rr) 3 (2rr) 3 (2rr )3 

➔ ➔ ➔ ➔ ➔ ➔ ➔ 

xo(p+P1-P'-p1)B(e(p)+ €(P1)-€(p')-€(p1)l X 
(9) 

➔ ➔ ➔ ➔ 

P - P1 ➔ ➔ ➔ Pl - P 2 
x<-

2
--!T(dp)-f(p');R,T)I 

2 
>Ix 

➔ ➔ ➔ ➔ ➔ ➔ 

x(l-f(p 1 ;R,T)) .f(p', R,T) ,f(p'1 ,R,T), 

> ➔ ➔ ➔ 
and a similar expression for ~ (p, f(p); R, T). 

Let us denote now that the width of the single-particle 
state, given by the 1elation (3), sets the rate at which equi­
librium is-reached 17 

. Corresponding, r=h/f has the meaning 
of the relaxation time. Furthermore~ for thedelute system 
close to the spinodal regime we have f(p; R, T) « 1 and from 
eq. (1) therefore ~< <<~::> and hence r - i~>. From this consi­
deration, together with eq.(8), we conclude that close to the 
critical point we expect a strong decrease in relaxation time 
to equilibrium, and from equation (2) also an increase in the 
shift of the self-consistent potential. Formerly 1101 , we have 
analyzed the similar problem of coupling the single-particle 
motion to an oscillator and found the same behaviour of the 
relaxation time near the point of instability. · 

3. APPLICATION TO THE LANDAU THEORY 

l 

Let us illustrate this result applying the Landau theory ~i 
for the description of instability of nuclear matter 1111 • ; , 
Thorou;h variational calculations for cold and hot nuclear : 
matter 121 have shown that for densities p< 0.1 fm-3 the sound v 
velocity s = y( 1~)T. -~ gets imaginary. From s(p) = v v (l+F )/3 f 

rJp m F 0 

6 

one may introduce then an effective F0 -parameter and assume 
that the mean field evolution has brought the system close to 
the point F0 = -1.· Let us remember that in the Landau theory 
the parameter F0 is connected with the zero range approximation 
of the interaction potential 

Fo =Vo. mpF / (rr2h 3) ' 

,.. 
where p F is the Fermi momentum and \' (p· -p ') = f Vr_ Pe (cos pp') _ v

0 

is assumed. In 
eq.(6) has the 

a homogeneous, low-temperature approximation 
solution 

Vo 
T = ----------, 

1 + F O l 1 - .!.. In 2£..:LL I 
2 X - 1 

(z) 

X=---
V 0 k F 

(10) 

and the frequencies of collective density fluctuations are gi­
ven by 

2 1 ( 2 2 w = -: 1 + F0 ) vF k • 
C 3 

,Expanding the denominator in eq.(9) around this solution, we 
get 

T = - 1 
u>-W +io 

C 

1 

w + w -io 
C 

which has just the structure of equation (7) and 

2 2 
> Vo vFk 

T = i ---- o (ui - w c ) • 
3wc 

Let us return now to eq.(9). For an isotropic T-matrix this 
expression has been evaluated in 181 • Introdu'cing like in this 
paper the angle ¢ between the momentum vectors p and p' we get 
from eq. (10) 

➔ ➔ ➔ ➔ ➔ . ..,. 
T(p, p', p', p; €(p) -e(p')) 

with 

[E{p) - f(;')] =sin¢ 

X = (I p - p' I ) V F 

Vo 

.1 + Fo -x 2 

3 
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and for Fo ➔ -1 the transition probability . W.~ l'II 2 in eq. (9) 
is strongly forward peaked into the region ¢ _ 0 , leading 
after ¢-integration to the appearance of' a (1 + F0 )-2 factor 
in the collision integral as compared with the isotropical 
case. In this way, the model predicts strong increase of col­
lisions near the point of instability due to density fluctua-
tions. • 

4. SUMMARY 

Generally, the increase of the mass operator caused by the 
coupling of the single-particle motion to soft precritical 
density fluctuations may be understood as a manifestation of 
a dynamical anharmonicity effect. In the case of nuclear spect­
roscopy, it is well-known that the corresponding coupling ef­
fect to soft quadrupole modes, e.g., leads to considerable 
shifts of s.p. energies 113/. Like in the spectroscopical si­
tuation for a quantitatively improved description one has to 
include higher order graphs to take care of nonlinear mode-mo­
de coupling effects. Additionally we remark, that if the width 
is comparable with particle energies the dynamics may not be 
decribed with the Boltzmann equation, as has been underlined 
formerly 171 • The qualitative prediction of increased equilib­
ration near the critical point as well as the increasing role 
of meanfield effects may be very well of experimental signifi­
cance for the dynamics of heavy ion collisions. 

The author thanks V.D.Toneev, B.Kampfer and R.G.Nazmitdinov 
for valuable discussions. 
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M!oHXOB JI. 
Ilpe,ri;KpHTH'l!HbIH npHpOCT. HHTerpa.rra 

CTOnKHOBeHHR 

El-90-326 

I1HTerpa.rr CTOnKHOBeHHH B KBaHTOBOH KHHeTuKe onpe,z:i;enReT­

CR MHHMOH qaCTbW MaCCOBoro onepaTopa. Ilonb3YRCb 3THM co­

OTHOIIfeHHeM Mb! AOKa)KeM, qTo CBR3b o,z:i;uoqaCTHqHoro ABH)KeHHR 

C npe,ri;KpHTHqHblMH qmyKTYa~HRMH nnoTHOCTH Bhl3bIBaeT CHnbHbIH 

npHpOCT HHTerpana CTOnKHOBeHHH B6nH3H TOqKH cpa30BOH He­

yCTOHl.lHBOCTH. 

Pa6ota Bbmonueua B Jla6opaTOPHH TeopeTHl.leCKOH q)H3HKH • 

ornm. 

TTpenpHRT 061,eW{HeHHOro HHC1lfTyTa R,!~epHhIX HCC11e,llOB8HH_H. ,Ily6Hll 1990 

Miinchow L. El-90-326 
Precritical Increase of Particle 
Collision Rates 

In quantum kinetics the collision integral follows 
from -the imaginary part of the mass operator. Using this 
connection we demonstrate that the coupling of single 
particle motion to precritical density fluctuations cau­
ses a strong increase of the collision integral near the 
point of phase instability. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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