


1. INTRODUCTION

From a VUU simulation of C, + C, collisions the authors /1/
concluded that for Ej,; > 60 MeV/A after times t = 80 fm/c
"macroscopic" density fluctuations as the precursor of frag-
mentation set in. These increasing fluctuations reflect the
closeness of the system to the region of instability. Really,
in these calculations the potential energy per particle as a
function of time evolves through a saddle point, and this ma-
ximum marks the end of the phase of homogeneous expansion and
the beginning of the clusterization process. Depending on the
excitation energy the density corresponding to this saddle
point is 0.001 <p/pg < 0.60. Additionally, from the fully
thermalized part of the total energy typical temperatures in
the region between 3-5 MeV have been estimated. In a thermo-
dynamical sense the system is then close to the spinodal of
the P-p -phase diagram for which the derivative ;ets zero
(aP/ap) + 0. From the thermodynamical relation’? (8P/8p)51~
-~ f<p(0 p(0) -,)2>(k . strong density fluctuations are ex-
pected in the precritical region and just this is the result
of the 51mu1at10n/ /.

Now naturally the question arises: What kind of information
may be sensible to these fluctuations? Rather to give a gene-
ral answer we draw our attention to possible dynamical con-
sequences of strong density fluctuations, which to our know-
ledge have not been discussed formerly. In order to study den-
sity fluctuations one has to go beyond the one-particle level,
described by the first order density matrix p;(11°) or semi-
classically by the Wigner function f(g; R T). The general
structure of coupled equations for first to third order densi-
ty matrices was derived in ref.”%, Starting from this hierar-
chy recently we have shown’/4/ that the coupling of single-
particle motion to density fluctuations may be included into
the collision integral of generalized VUU equations. As we
will show, the part of the collision integral in the VUU des-
cription, which is responsible to density fluctuations, as
well as the corresponding part of the s.p. potential energy
get prominent in the precritical region and lead to noticeable
dynamical consequences.
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2. ONE-PARTICLE MOTION COUPLED
TO DENSITY FLUCTUATIONS

To describe reactions we apply nonequilibrium statistical
mechanics 75:6:7/ | In this approach, the one-particle Green
function consists of two parts

< > - + o - .
-iG (X1.t1;.X2.t2)=<l/l (Xg ta)Ylxg,t1) >,

> = > -» +
+iG (Xptlixz.tz)=-<l/l(x1nt1)l/’ (xg,tp) >
and depends on two space-time points xl, tlj xz, t 5. Introdu-
cing mlcroscoplc and macroscoplc variables = x1 - Xg, t =
= t1 - tg, R = (x1 + xz)/2 T= (1 + tg)/2, the Fourier trans-
form of the Green function of a hole

< > - > e -5 -
G (p,w;R, T)= [drdtexp(-iot +ipr) G (r,t; R, T)
with
< ' -» -»>
G (E:t; ﬁnT) =G'< (Xlitﬁxg.tg)
is directly connected weth the Wigner function

> o < o
fp;R,T) =-i (@ (p, w; R, T)do/27.
Similarly, for particle evolution

> >
[1-1@:R, 1=17G  (, w; R, T) -do/2n,

and from the Dyson equation for G(1,2) there follows the gene-

ralized Boltzmann equatlon (m; = 2/2m)
i - )
_‘9_+£__§_+6Rez @R,T 3 M-‘%]f(p;m@=

dT m 3R T aR - dR
= -i3% G D1 - 1@ R -137 Brop R TIGR, T) L

which represents the basis of our reaction model. The 1.h.s.

of eq.(1) describes the semiclassical approximation to TDHF
dynamics while the r.h.s: is the colllslqp term. It contains
two parts of the mass operator XX (§,0;R,T) which are analo-
gous to G‘<(p,m R, T).. Furthermore, the retarded mass opera-
tor is defined by ' '

(1)

5@ty Rate) =S 12 = Spp2) + 0G-t) (3 (2) - 3701,

where EHF02) denotes the HF term. After Fourier transforma-
tion then follows the dlsper51on relation’?/

F(p.m RT) do” (2)

RBE(P»wRT)-HF(pRT)+fP{ — -

where the imaginary part of the mass operator may be represen-
ted as. .

I o: BT = -2Ins” (p,m BT =1 GwikT -2 Go; Rm)m

A glance at eq. (1) shows the close connection. between the
width of the single-particle state T and the colllslon 1nteg—
ral.

Next, the mass operator will be evaluated in a T-matrix ap-
proximation. As is well known /2.3/ | just the T-matrix, evalua-
ted in the particle-hole channel, is closely connected with
the stability of the system. Namely, the appearance of a pole
in the upper half of the imaginary plan signals the set-in of
instability. Since our aim is to study the connection between
stability and dynamics, it is natural to apply the p-h channel
T-matrix in the expression for the mass operator

(1) =f.d2d2'iG(2'2) {T(12;1°2°) -T(1‘2; 211 4, ' (4)

where we used the notation l=@&,y, ty), » fdl = rdx1 (dty and
the time integration is along a closed contour in chronologi-
cal and antichronological direction’/8:7/ | After Fourier trans-

formation and time ordering
-»

z - - dw > -»> g
E (pn’@;R’lT)_ r -'"_IG (pltm;RlT)x‘
2 @ )3 277
> >
p-p > P p
x| < [T (0 -0 )] L. :
2
R . (5)
p- 51 [-;1-[1 . ’
_<__._.--—\T<(co-m ) >3
2 2
where
I—; —I—; > : 3'1-3'2‘
<l E .[.T'<(w)|-—2——->

N ‘
denotes the Fourier transform of T < (12:2°1°) for tl— tos

t1,= t,, with respect to the m1croscop1c variables and

-

= (x1+§2+i’1'+§2')/4, T = (tl +t1,)/2 .
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The appearance of the T-matrix in eq.(5) reflects the correla-
tions beyond the one-particle level. Mostly the T-matrix is
evaluated in the particle-particle scattering channel /5. 7/,
We additionally include the ‘particle-hole (p-h) channel to
take care of scattering of particles on density fluctuations,
which correspond to correlated p-h excitations of the TDHF
state. Note that in the Landau theory’83/ and for the screened
Coulomb potential/S/ also the p-h channel T-matrix appears
in the collision term. Like in the stationary case also for
the time dependent T-matrix there exists a spectral decomposi-
tion, which is useful to establish the dependence cn collec-
tive 'frequencies. R

Introducing the relative momentum k
_p”1=61+1—{’l Bé=52_i{'
and performing a ladder sum over p-h bubbles, similar to the
P-P case/5{7/, one ends up with the integral equation

Py -P By~ g+2K
- > . -
A<-1—§-—2-—'|T(co;R,T) | -1-%2——--> =

5> - - -+
ET(Pl:Pg- k:wyR'T) = V(p1 _p2) +

- 5 - -» > (6)
f(pi+k;R, T) -f(p;; R, T) 5, o o o dp
+f V({pi{-po) T(P{,P2,k\0) ,
c(pl.,+k) - c(pr) - : . @n)3 .

e(p)= p2/2m+ ReS¥ (p,e(n),

if the width I <<ReS" . This equation represents the time
dependent and semicldssical generalization of the standard
RPA equation for the T-matrix. Note the difference how this
RPA comes out: Usually, RPA is a small amplitude, linearized
approximation to the TDHF theory. Here, however, we assume
the full large amplitude TDHF motion is the underlying mean
field, and time depending p-h type correlations beyond TDHF
correlations are treated. A path integral formulation for
these excitations‘has been given formerly’g/. ‘

From eq.(6) one may obtain the spectral decomposition in-
troducing the RPA wave equations

4

Y, @ K) = (-1

o, ~[e@+B) - c@lg, @ k) =

dp’ > o, -, -»“’h, S ng ]
=f v(ip-p)- (P + kiR, T) -f(p*;R, T)i,(p", k),
(27)3
and the completeness relation *

> o k5 ) > o
‘E¢V(pv k) ¢V(p’y_k) [f(P+k H Ro T) —f(p; R-o T)] = 6_’_”
Pp
Really, then

hal -» e d ind - '-' . -
T®. Py kiw, R, T) = {e(py+k) ~e(py) ~wlx

> Kk
Xy (p 1 k) XV (pg»k) -

x X - te(py +k) ~epy) - w, } -~ T ()
> 2 ok 3 o
s YV(plrk) YV(Pznk) -»> -D -
-3 vy ~ {e(p o+ k) -e(py) +, 1,

where

TN ¢,0,K) ,

X, (P, k) = f(p + K; R, T) (1 ~£(p;
p+k » T) ¢,(p, k) .

-
R
Ed <+ >
+k; R, T)) f(p; R
Siﬁce RPA eigenfunctions depend on collective frequencies as
", the T—matrixland by eq.(5) also the mass operator obtains
the dependgnce ®,," showing the enhancement of these quantities
for soft, precritical modes. Note that the same dependence on
frequency appears in a fermion-boson coupligg description,

in which each vertex contains the factor w=/6/,

Using the relation’/5/ v

Tty 19 =V Bt —t) T (ty,t0) + 0ty =) T (2, 1) ,

p 1‘p2 p2

we obtain from (7) the equation for the < 2
matrices appearing in formula (5)

> -
[T ()] ‘2 >

-

> 9 9 - > S >
T (p11p21k:m’R:T) =i77if(p1+k) —c(pl)—w} 4

-

-»> > % -
x2 8oy, -w)-X (b, K) X (P, k) x



(8) i one may introduce then an effective Fg-parameter and assume
that the mean field evolution has brought the system close to
the point Fy = -1. Let us remember that in the Landau theory
the parameter F; is connected with the zero range approximation
of the interaction potential )

x[((Bz +§) "6(—[;2) —wyly

» 5 -

and a similar relation for 'T<(p1.Pg.k;ah R,T).

From the structure of equation (6) we conclude that for
k = 0 the contribution to the T-matrix, which is due to p-h
correlations, disappears. As a consequence,  in equation (5)
only the exchange term remains. Furthermore, similar to the
case of the p-p channel T matrix’/5:7/ applying a generalized"
optical theorem one may obtain from formula (5)

Fy =Vg-mpp /(z%n®),
where P is the Fermi momentum and V(p-p”) = % Vp By (cos ) ~V,

is assumed. In a homogeneous, low-temperature approximation

< a > [ dp,; dp° dp; ;
5", (R, T) =L Py 1 .(2")4 < ’ eq.(6) has the solution
2 (2m)8 (2n)3 (2)3 | Vo o '
. . ' T = y X = v o (10)
- - - - -»> S -, X X 1 V. K .
x 8@ + Py —-p" -p{)Ole(p) + e(py) ~e(p”) —elp{)} x 9) 1+Fg {1 - 2_1“';{"'1" F '
B-S ) N . 51..5 . ' and the frequencies of collective density fluctuations are.gi-
x <t | TE® = €@k, T) | —5—>1" x ven by .
- - - e - - 2 _1_ 2 2
x(1-1(py; R, T)) - £(p’, R, T) - f(0, R, T), S R PR

‘Expanding the denominator in eq.(9) around this solution, we

. > s e 4
and a similar expression for 2 (p, e(p):R,T).
get -

Let us denote now that the width of the single-particle

state, given by the_relation (3), sets the rate at which equi- 2o :
librium is reached’ " . Corresponding, r=h/I' has the meaning Vovgk 1 o1
of the relaxation time. Furthermore, for the delute system : T=-- e oo s T TTITTTh }
close to the spinodal regime we have f(p;fg,T) << 1 and from ‘ ¢ ¢ ¢
eq.(1) therefore £ <<X” and hence I ~i%”. From this consi- which has just the structure of equation (75 and
deration, together with eq.(8), we conclude that close to the
critical point we expect a strong decrease in relaxation time ' V. v2K R _
to equilibrium, and from equation (2) also an increase in the 'P>=i-—E—F 5w - )
shift of the self-consistent potential. Formerly/lo/, we have 3w ¢’
analyzed the similar problem of coupling the single-particle ¢ )
motion to an oscillator and found the same behaviour of the Let us return now to eq.(9). For an isotropic T-matrix this
relaxation time near the point of instability. o expression has been evaluated in’/8/. Introducing like in this
paper the angle ¢ between the momentum vectors p and p’ we get
from eq.(10) '

3. APPLICATION TO THE LANDAU THEORY ; ' -y

' . . : ; T(q >, 0, 6(—») -.6(-*,)) _ __—__0_

Let us illustrate this result applying the Landau theory i P»D P 5P elb P = 14+ F, .

for the description of instability of nuclear matter 711/, %\ —-x? ‘
Thorou%h variational calculations for cold and hot nuclear Ly with 3
matter’!® have shown that for densities p< 0.1 fm™3 the sound \i/ " ”

i . _ o ‘- le(p) ~e(p)]l —sing
vel'oc1ty s \/(.t.}_p_),l,._l_E gets imaginary. From S(p)_VF\/(1+F0)/3 43 - I—;'DVF
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and for Fo -»-1 the transition probability . w.~|T|? in eq.(9)
is strongly forward peaked into the region ¢ -~ 0, leading
after ¢-integration to the appearance of a (1 + Fy)™® factor
in the collision integral as compared with the isotropical
" case.

In this way, the model predicts strong increase of col-
lisions near the point of instability due to density fluctua-
tions. .
4, SUMMARY

- Generally, the increase of the mass operator caused by the
coupling of the single-particle motion to soft precritical
density fluctuations may be understood as a manifestation of
a dynamical anharmonicity effect. In the case of nuclear spect-
roscopy, it is well-known that the corresponding coupling ef-
fect to soft quadrupole modes, e.g., leads to considerable
shifts of s.p. energies’/13/. Like in the spectroscopical si-
tuation for a quantitatively improved description one has to
include higher order graphs to take care of nonlinear mode-mo-
de coupling effects. Additionally we remark, that if the width
is comparable with particle energies the dynamics may not be
decribed with the Boltzmann equation, as has been underlined
formerly/?/. The qualitative prediction of increased equilib-
ration near the critical point as well as the increasing role
of meanfield effects may be very well of exper1menta1 signifi-
cance for the dynamics of heavy ion collisions.

The author thanks V.D.Toneev, B.Kémpfer and R.G.Nazmitdinov
for valuable discussions.
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I[lpenxpHUTHUHLIE NPUPOCT HHTerpana
CTOJIKHOBEHUHA

HHTerpan CTOJIKHOBEHHH B KBAaHTOBOH KHHeTHKe omnpenessieT
csi MHMMOH 4acTbhl MaccoBoro omneparopa. Illonb3ysch 3TUM CO~
OTHOWeHHEM Mbl IOKaxeM, UTO CBfA3b OJHOWYACTHUYHOTO [ABWXEHHUS
C NpenKpPUTHYHHIMH GQNMYKTYalHUsMH IUVIOTHOCTH BbI3bIBA€T CHILHBIA
NpHPOCT HHTerpalila CTOJKHOBEHHMH BOIHM3UM TOUKH $©a30BOH He-~
YCTOHUYHUBOCTH V '

PaBoTa BeimonHeHa B JlaGopaTopuH TeopeTHUecKOH GHU3HUKH
OMsINn . '

Mpenpurt OO0LeAHMHEHHOrO0 HHCTUTYTA ANEPHBIX HccnenoBaHuid. [y6ua 1990
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Miinchow L. ' 7 E7-90-326
Precritical Increase of Particle
Collision Rates

In quantum kinetics the collision integral follows
from the imaginary part of the mass operator. Using this
connection we demonstrate that the coupling of single
particle motion to precritical density fluctuations cau-
ses a strong increase of the collision integral near the
point of phase instability.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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