

Объединенный
 ИНСТИTYT
 ядерных
 исследований
 дубна

E7-85-575

M.Biedermann*, P.Mädler

A TWO-STAGE MODEL
 FOR FAST PARTICLE EMISSION
 IN HEAVY-ION COLLISIONS

Submitted to "Zeitschrift für Physik A"

[^0]Двухстадийная модель испускания быстрых частиц в столкновениях тяжелых ионов

Используя траекторную модель Берча, мы комбинируем два физически разлнчных подхода к описанию испускания быстрых частиц. В ранней стадии мы рассчитываем испускание частиц в духе механизма фермиевских струй. В последующей стадии, после обраэования шейки, предполагается испускание из быстро расщиряющейся горячей зоны относительно больщого начального размера, которая сильно анизотропна в импульсном пространстве. Рассчитаны дважды-диффереициальиые сечения для испускания предравновесных нейтронов. Не вводя свободных параметров, мы получаем замечательное совпадеиие с экспериментом.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.
Препринт Объединенного института ядериых исследовании. Дубна 1985

Biedermann M., Mädler P.
E7-85-575
A Two-Stage Model for Fast Particle Emission
in Heavy-Ion Collisions
Using Bertsch's TDHF-motivated trajectory model we combine two physically distinct approaches to describe fast particle emission. In the early stage we calculate particle emission in the spirit of the Fermi-jet mechanism. In the later stage, after neck formation, particles are assumed to be emitted from a rapidly expanding hot zone of appreciably large initial dimension, which is strongly anisotropic in momentum space. We calculate absolute double-differential cross sections for preequilibrium neutron emission and obtain a remarkable agreement with experimental data without introducing free parameters.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.
Preprint of the Joint Institute for Nuclear Research. Dubna 1985

1. Introduction and Motivation

In recent years extensive experimental investigations have been devoted to the emiesion of nonevaporative fast particles from heavy-ion reactions at incident onergies well above the Coulomb bsrrier (cf., e.g. $/ 1 /$ and references cited therein). A variety of theoretical models based on very different physical aseumptions heve been developed and more or less successfully applied to snalyze (most If inclusive) experimental data. If restricting consideration to fast nucleon emiseion only, these models can be classified according to their assumptions on the role of two-body nucleon-nucleon collisions.
 citly assumed to dominate the reaction, 1.8. to produce a short mean free path (MFP) and a short relaxation time leading to the formation of a static, locally excited region that gtatiatical emitte particles. In precompound (exciton) models $/ 5-9 /$, the equilibration process which is governed by two-body collisions is explicitly followed in time with a certain probability for emission from each of the intermediate states. Direct knockout models ${ }^{/ 10 /}$ assume a single two--body collision to be the source of nonequilibrium nucleons. In the models of prompt emitted perticles (FEP) ${ }^{\mid 11-15 /}$ the role of the collisions is implicitely assumed to be the source of the mean field in which the nucleons move quasifreely. The treatment of particle anis. sion in the framework of diesipative diabatic dynamice $/ 16$, in the mean-field model of ${ }^{/ 17 /}$ as well as in the fully aelf-consistent t ime-dependent Hartree-Fock approximation (TDHF) $/ 18,19 /$ in certain reapects can be considered as quantum mechanical analogues of the classical PEP-model.

Any of the mean-field models yields angular distributions of the fast particles which are stronger peaked about the beam direction than one observes in experiment (cr. ${ }^{/ 17,20}$). Moreover, for symmetric systems they would predict a pronounced foward-backward peaking of the c.m. angular diatributions due to the large tranaparency inherent in these models. This prediction is in disagreement
with recent experimental data on light symmetric (or nearly symmetric) 日yateme like ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C},{ }^{16} \mathrm{O}+{ }^{12} \mathrm{C}$ which exhibit nearly isotropic angular diatributiona at energies from $85 \mathrm{MeV} / \mathrm{A}$ down to at least. $25 \mathrm{MeV} / \mathrm{A} / 21-23 /$. On the other hand, moving-source modela" that effectively (if understood literally) are close to the oppoeite extrem (hot epot, or fireball picture), work well in a wide range of incident energies and projectile-target combinations $/ 1,20 /$. If extreme forward angles are excluded, the fitted values of source temperatures are smoothly increasing functions with energy, whereas the source velocities are close to half the beam velocity above the Coulomb'barrier. Somewhat enhanced cross sections at very forward angles indicate the presence of direct (or prompt) emission at the very early atage of the colilaion and can approximately be described by PEP-models or a more involved direct reaction theory.

It 1s intriguing that even more exclusive experiments on fast particle emiagion can be quantitatively understood by taking into account translational as well as rotational motion of a atatiatically emitting source and - for light aystems - recoll effects $/ 23,24$ /.

To a large extent the statiatical character of the above experimental findings is, of course, connected with an experimental averaging over a huge number of microscopic channels. This seems to allow one to use theoretical concepts containing statistical elements from the outset instead of trying to develope an appropriate microscopic scattering theory and to averege over the final resulta in order to compare with experiments. The problem is to clear up the interplay between mean-field dynamice and residual interactions without ad hoc aseumptions. Corresponding information can be extracted from very recent numericai solutions of the vlasov-Uehling-Uhlenbeck (vJU) equation in three spatial dimenaions $/ 25-28 /$ as well as from a series of one-dimensional studies of alab collisions in TDHP including a colliaion term (ETDHF) /29-32/;
i) Fart of the nucleons escape without having had a colliaion (FEP, and slipped-through projectile- or target-like fragments in the case of light systems). Its number exponentially decreases with increasing target diameter. An upper limit of the MPP of 2.6 fm at $85 \mathrm{MeV} / \mathrm{A}$ has been deduced $/ 28 /$.
ii) most of the particles are emitted from a mid-rapidity system (formed with mostly multiple-scattered nucleona) that shows almost isotropic emisaion pattern /2B/.
iii) Unfortunately, the formation of that source has not been studied in detail in $/ 25-28 /$. However, a mean colliaion number per nucleon of about twenty in the first roughly $10^{-22} \mathrm{~g}$ in such a
amall bystem like ${ }^{16} 0+{ }^{12} \mathrm{C}$ at $25 \mathrm{MeV} / \mathrm{A}$ has been quoted $/ 27 /$. Hence, the mean collision time appears to be much smaller than $10^{-2} ?_{\mathrm{g}}$. Por the same aystem it has been eatablished that particles are emitted from the overlap region as well as from the other parts of the nuclei ${ }^{27 /}$. This means that the emitting "source" should have an effective spatial extent not smaller than the dimension of such a light syatem.
iv) Additional information on the early stage of the collision can be extracted from $/ 29 /$: Shortly after contact a slight compression occurs in the overlap zone. The density "front" remaine relatively stable in shape and moves with about sound velocity ${ }^{/ 33 /}$ towards the outer ends of the slabs. The compressed region is thermalized, and in a good lowest-order approximation one can speak about a temperature front which coincides with the density front (cf. Fig. 6 of $/ 29 /$ up to $t=2 \cdot 10^{-22}$). Although this rapidly expanding "hot zone" (HZ) is characterized by a temperature field, it is far from overall statistical equildbrium since the internal parallel pressure (along the collision axia) substantially exceeds the pressure in transverse directions. When the HZ has extended over the whole volume both pressure components cóme close together. One could argue that these properties are simply caused by the relaxation-time approximation for the collision term used in $/ 29$. Homever, in a recent paper $/ 32 /$ this point has been investigated and a reasonable agreement with a more involved treatment of the collisions ${ }^{34 /}$ could be estab11shed.
In the present paper we propose a phenomenological model for the description of fast nucleon emission which combines two basically distinct mechaniems. The underlying physical picture is motivated by the above statements. At the early stage of the reaction, when the nuclei have only a amall apatial overlap and the nucleonic momentum distribution is still close to two overlapping Permi-spheres, we calculate particle emisaion in the framerork of a certain modification of the classical PEP-model. At the later stage, after neck formation and diaappearance of the single-particle potential barrier between the nucle1, we consider emission from a rapidly expanding, hot, and highly anisotropic zone of appreciably large initial dimension that does not contradict with MPP arguments. The basic differences of our Hz-picture from that of 1357 are:

1) We account for a coordinate- and time-dependent mean-velocity field in the local Fermi distribution function of the Hz . As
a consequence, for asymmetric systems, we get forward-peaked angular distributions in the c.m. aystem (instead of backward--peaked as in $/ 35 /$) which are nearly isotropic in a system moving with half the beam velocity above the Coulomb barrier. For symmetric systems we get nearly isotropic angular distributions, even at incident energies as small as $10 \mathrm{MeV} / \mathrm{A}$.
1i) We fix the initial radius of the Hz from MPP-arguments, and from recent results of proton-proton correlation measurements at amall relative angles. The value we shall use throughout this paper (3.6 fm) is even larger than the sharp-sur${ }_{12} 2^{c}$ radius of the compound nucleus ${ }^{24}{ }^{4} \mathrm{Mg}$ formed, e.g. in a ${ }^{12} \mathrm{c}+{ }^{12} \mathrm{C}$ collision (3.32 fm).
iii) In the sense of a lowest-order approximation to the ETDHP-results described above we postulate a temperature front moving with sound velocity outwards and, to some extent, neglect heat diffuaion between the Hz and the could zone (CZ). In this picture the relaxation time τ for the colliding system is given by the time which the front needs to reach the outer end of the larger interaction partner.
iv) At least at the first (FEP) stage we treat the friction force and particle emission in a consistent way starting from the nucleon flux between the lons.
The paper is organized as follows: In Sects. 2,3, and 4 we describe the trajectory model, the Fep-model, and the HZ-model, respectively. Sect. 5 deala with a comparison with exporimental data and a diacussion of incident-energy and profectile-mass-number dependences of fast neutron emisainn.

In a subsequent paper $/ 36 /$ we test our model againgt recent correlational measurements.

2. Dynamics of the Colliation

The relative motion of the colliding ions is followed within a classical collision model $/ 37 /$ which reflects the bulk dynamics of realistic TDHP calculations.

The geometry of the model is that of three touching circles representing the two nuclei and a joining neck (Fig. 1). Only two of the three collective variables $r, r_{\text {neck }}$, and c are independent due to a simple geometrical relation between them and the nuclear sharp-surface radif $R_{1}=1.15 \cdot A_{1}^{1 / 3}$. The neck evolution is given by

$$
\begin{equation*}
\dot{c}=\alpha / c \tag{1}
\end{equation*}
$$

Pig. 1. Geometry of the Bertsch model

In the approach phase, and

$$
\begin{equation*}
\dot{r}_{\text {neck }}=-\beta \dot{r}_{L} \tag{2}
\end{equation*}
$$

In the rebound phase of the collision. Here \dot{r}_{L} denotes the longitudinal component of the relative velocity of the two mass centers. The clessical equation of motion for the relative coordinate \vec{r} contains Coulomb, bulk, and surface forces. Some deviation of the Coulomb force from that of two point charges is taken into account in the rebound phase (two spheres plus a joining cylinder). The surface force is written as

$$
\begin{equation*}
\vec{F}_{s}=2 \pi \sigma \frac{\vec{r}_{r}}{r} r_{n e c k} \tag{3}
\end{equation*}
$$

with 5 being the surface tension. Before neck formation, instead of \vec{F}_{s}, the Bass force is included. The bulk force is determined by the window formula

$$
\begin{equation*}
\dot{n}=\frac{3}{16} \rho_{0} v_{F} \pi r_{\text {neck }}^{2} \tag{4}
\end{equation*}
$$

deacribing the one-sided particle flux through the window area in the Permi gas model ($\rho_{0}=0.16 \mathrm{fm}^{-3}, V_{F}=0.28 \mathrm{c}$). Before neck formation the static parametrization of $/ 38 /$ for the tunneling flux is used inatead of (4). Memory effects are approximately included by retarding the time argument of the radial velocity entering the bulk force. In accordance with TDHP calculations neck formation is assumed to occur $9 \mathrm{fm} / \mathrm{c}$ after the potential radii ($1.25 \mathrm{~A}_{1}^{1 / 3}$) touch. We adopt the standard parameter set of $/ 37 /: \alpha=0.04 \mathrm{fm} / \mathrm{c}, \beta=1 / 3,5=$ $1 \mathrm{MeV} \mathrm{fm}^{-2}$. Details of the model and extensive comparisons with experimental data as well as With TDHP resulta can be found in/37,39/.

In the present paper we use a silghtly modified verainn $/ 39 /$ of the model. While in the original veraion $/ 37$ / the particle flux between
the fons has a discontinuity at the instant at which the neck opens (due to different expressions used for \dot{n} before and after), we formally enforce continuity by using the maximum value of the tunnel flux, reached before switching over to (4), until (4) yields a larger value. In any case this modification concerns only a very small time interval. It prevents, however, the friction force from being attractive for some instanta during the approach phase which would happen for asymmetric aystems and higher incident energies.

For a given incident energy and impact parameter, we start the numerical iteration of the equations of motion at an initial distance $r(t=0)=1.25\left(A_{1}^{1 / 3}+A_{2}^{1 / 3}\right)+4 \mathrm{fm}$ assuming a pure Coulomb trajectory for $t<0$. We neglect any influence of particle emission on the trajectory. In $/ 15 /$ this has been checked to be a good approximation.

Pinally we quote some trajectory results concerning the reactions investigated in this paper: For the system ${ }^{20_{\mathrm{Ne}}}+{ }^{181}{ }_{\mathrm{Ta}}, \mathrm{E}_{\mathrm{lab}}=$ $=180 \mathrm{MeV}$ we obtain fusion for initial angular momenta up to 72 h , a deep inelastic behaviour from 73 h to 87 h , while for $L \geqslant 88$ h no neck appears (quasielastic collisions). For the ${ }^{20} \mathrm{Ne}+{ }^{165_{\text {Ho sybtem }}}$ we find a critical angular momentum for fusion of 85 h compared to a value of 95 h determined experimentally $/ 20 \%$. Since from the measured cross sections for evaporation residues (ER) it follows that above $L \approx 60 \hbar$ fisaion occurs after fusion for all bombarding energies considered in $/ 20 /$, we shall use this value as the upper limit in the L-integration when comparing our model predictions with the data on fast neutrons in coincidence with ER.

3. The PEP-Model

Since PEP-models have been extensively described in the literature /11-15/ we concentrate on the specific features of our version only. The cross section for PEP emisaion is given by $/ 11 /$

$$
\begin{equation*}
\sigma=2 \pi \int b d b \int d t \int d \vec{A} \int d \vec{v}_{a} f\left(\vec{v}_{a}\right) \vec{j}_{A}\left(\vec{v}_{b}\right) \mathrm{e}^{-d / \lambda} . \tag{5}
\end{equation*}
$$

Integration over time t, impact parameter b, window area A, and velocity \vec{v}_{a} of the nucleons in the donor nucleus are involved. The velocity of a nucleon with \vec{v}_{a} in the donor is $\vec{v}_{b}=\vec{v}_{a}+\vec{r}_{\text {a }}$ in the recipient. The velocity distribution function f is taken to be a zero--temperature Permi distribution. The exponential factor in (5) describes absorbtion with d being the distance traversed by the prospective PFP inside the recipient, and λ being the nucleon MPP. We calculate λ from the imaginary part of the optical nucleon-nucleus
potential like in $/ 11,14,15 /$. Also the usual escape conditions are applied.

Opposite to other PEP-models we calculate the local one-sided plux
$\vec{j}_{A}\left(\vec{v}_{b}\right)$ through a given surface element $d \vec{A}$ in a way, more consistent with the evaluation of the friction force. We achieve this by requiring its normalization to the total flux \dot{n} (tunnel flux or eq.(4) before and after neck formation, respectively) at each instant:

$$
\begin{equation*}
\int d \vec{A} \int d \vec{v}_{a} f\left(\vec{v}_{a}\right) \vec{j}_{A}\left(\vec{v}_{b}\right)=\dot{n} \tag{6}
\end{equation*}
$$

Except the time-dependent normalization constant defined by (6), the velocity spectrum of \vec{j}_{A} is given by the product $\vec{v}_{b} P$ where P stands for the tunnelling probability of a nucleon through the sing-le-particle barrier between the nuclei.

After neck formation, when the barrier is assumed to vanich, we put $P \equiv 1$. The window area over which integration in (5), (6) has to be performed simply coincides with the neck area $\pi r_{n e c k}^{2}$ in this case. Although we allow the nucleons to emanate from any point of the window, we do not consider sidewards emission directly through the neck (circle of radius c in Fig. 1) as it has been done in /15/. Due to the small transverae spatial extent of the neck, it seems to us that with this respect the assumption of an unperturbed Fermi distribution is questionable (even at the early stage of the collision). Moreover, such particles are not seen in self-consistent mean-field theories.

Before neck formation we use an approximate analytical expression for P obtained in the following way: We assume the barrier to be the sum of two Woods-Saxon potentials centered at relative distance r and characterized by the half-density radii $\bar{R}_{i}=R_{i}-b^{2} / R_{\text {; }}$ ($R_{\text {; }}$ - sharp-surface radii), the diffuseness parameter $b=0.7 \mathrm{fm}$, and a depth of $V_{0}=-45 \mathrm{MeV}$. Then, for nucleons tunnelling along the axia foining the centers of the nuclei, we have to calculate the probability $P(v, s)$ with $s=r-\bar{R}_{1}-\bar{R}_{2}$ and v being the velocity of the incoming nucleon relative to the barrier. Using the Hill-Wheeler formula for a parabolic fit to the assumed barrier we get

$$
\begin{equation*}
P(v, s)=\frac{1}{\left[1+\exp \left\{2 \pi\left(\bar{V}_{0}-\frac{m}{2} v^{2}\right) / \omega\right\}\right]} \tag{7}
\end{equation*}
$$

with

$$
\bar{V}_{0}=\left|V_{0}\right| \tanh (5 / 4 b),
$$

$$
\omega=\sqrt{\left.\frac{2}{m} / V_{0} \right\rvert\, \tanh (s / 4 b)} /[2 b \cosh (s / 4 b)]
$$

In (7), for nucleons which do not move along the symmetry axis, we use the actual distance $\tilde{s}>S$ which they traverse between the spheres of radii \bar{R}_{i} but do not account for the corresponding effective increase in the diffuseness. Furthermore, we put $V=\left|\vec{v}_{a}+\frac{1}{2} \dot{\vec{r}}\right|$ since the barrier moves with approximately half the relative velocity $\dot{\vec{r}}$ towards the donor nucleus. Hence,

$$
\begin{equation*}
\vec{j}_{A}\left(\vec{v}_{b}\right) \sim \vec{v}_{b} P\left(\left|\vec{v}_{a}+\frac{1}{2} \dot{\vec{r}}\right|, \tilde{s}_{A}\right) \tag{8}
\end{equation*}
$$

where the index A indicates that for a given s the distance \tilde{s} depends on the surface element $d \vec{A}$ from which the particle emanates. Of course, \tilde{s}_{A} also depends on the direction of $\vec{v}_{a}+\frac{1}{2} \dot{\vec{r}}$. The surface area for integration in (5), (6) is assumed to be dicular to the axis foining the mass centers and tangenti perpensharp surface of the donor nucleus. As in /11/ we assume that it Inearly increase from zero at $t=0$ to the are it just opens. Note that this value is nonzero $/ 37,39 \%$. Due to the normalization (6) our results are not sensitive to other possible definitions of the window area at the early stage.

In all calceulations presented below we account for both pro-jectile- and target-like PEP.

The (time-dependent) tranaformation of the differential probability of emitted particles in the instantaneous rest system of the recipient to the laboratory (c.m.) syatem is performed by using the approximate expression for the Jacobian which has been derived in
for the velocities being bracketed by discrete bine.
Since we deal in this paper only with neutron emission, the cross section for projectile-and target-like PEP are reduced by the neutron-to-mass-number ratio N/A of the corresponding donor nucleus. We neglect isospin corrections/14/ for the corresponding Fermi velocities v_{F} and use $v_{F}=0.28 \mathrm{c}$.

We conclude this section with some illustrative discussions. Fig. 2 shows the single-particle potential barrier between two colliding nuclei along the symetry axis as a function of s. For any S the top of the barrier has been shifted to $\mathrm{X}=0$. For the
$2 \mathrm{Ne}_{\mathrm{Ne}}+165_{\mathrm{Ho}}$. me relations aremet: $5=5.31 \mathrm{fm}-$ aituation at $t=0 ; S=1.31 \mathrm{fm}-$ the potential radil touch; $s=0.47 \mathrm{fm}$ - the sharp-surface radil

Fig. 2. Single-particle potential Pig. 3. Angle-integrated c.m. barrier between the colliding nuclei. For detalla, gee text.

Plrat, we discuss trajectory results for ${ }^{20} \mathrm{Me}+{ }^{165} \mathrm{Ho}, \mathrm{E}_{\text {lab }}=$ $220 \mathrm{MeV}, \mathrm{L}=0 \mathrm{~h}$ with this respect. At $t=41 \mathrm{fm} / \mathrm{o}$ (neck opens) the onergy loss due to friction is 41.5 MoV . Prom this energy, 69% (97%) have been dissipated during a time interval Δt as small as $9 \mathrm{fm} / \mathrm{c}$ ($20 \mathrm{fm} / \mathrm{c}$). A nucleon moring at this time from one nucleus to the other (otherwise it does not contribute to friction) with velocity $v\left(V \Uparrow V_{\text {max }} \approx V_{F}+\dot{r}\left(t_{0}-\frac{1}{2} \Delta t\right) \approx 0.39 c, \dot{r} \approx 0.11 \mathrm{c}\right)$ passes a distance of $\Delta x \leqslant 3.5 \mathrm{fm}(7.8 \mathrm{fm})$ in the neck region. Hence, classically speaking, at $t=t_{0}$ nucleons which have contributed to energy disalpation are inside a spatial region of diameter $7+8 \mathrm{fm}$ surrounding the neck - even if there are no two-body collisions. Since the nucleon MPP eatimated in a realistic geometry for colliding ions at incident energies from 10 to about $50 \mathrm{MeV} / \mathrm{A}$ is as amall as $4+5 \mathrm{fm}$ /40/, It la likely that those nucleone exhibit on the average $1+2$ collisions up to time t_{0}. This does not contradict the VN-result (cf. Sect. 1) of the mean colilision time being much less than $10^{-22} \mathrm{~s}$ ($\approx 30 \mathrm{fm} / \mathrm{c}$). Note further that the time intervala Δt are comparable to the characteristic time \tilde{t} for the diffuse edges of the nuclei to pass through each other: $\tilde{t} \approx 2 b / \dot{r} \approx 15 \mathrm{fm} / \mathrm{c}$. Hence, in the early stage ($t_{0}-\Delta t \leqslant t \leqslant t_{0}$) two-body colliaions occur mainly. in the region of the overlapping surfaces, where Paull blocking is effectively reduced due to the smaller local Fermi moments $/ 40$. Moreover, it may be important to note that effecta not considered in $/ 40 /$ could yield an additional effective decrease of the MPP: The influence of the random Permi motion $/ 41$ / (less pronounced in $\mathbb{N}-A$ scattering), the "prior" Paull effect ${ }^{\text {/4// (not present at all in N-A scat- }}$ tering), and other effects not connected with the ghort-range part of the nucleon-nucleon interaction $/ 42 /$.

Since it has been found in $/ 43,44 /$ that $1+2$ collisions are supficient to bring a nucleonic system close to equilibrium, the above estimates do not contradict the assumption that at $t=t_{\text {o }}$ we find a nearly thermalized spatial zone of radius $3+4 \mathrm{fm}$. At higher incident energies, 日imilar results ere obtained (emoller $\Delta t, \tilde{t}$, but larger $V_{\text {max }}$, hence, nearly unchanged Δx).

Second, we briefly recall some recent results concerning effective source radil extracted from proton-proton correlation measuremente at emall relative angles, and incident energy of $25 \mathrm{MeV} / \mathrm{A}$ $145,46 \%$. While the observed correlations for ${ }^{16} \mathrm{O}+{ }^{12} \mathrm{C},{ }^{27} \mathrm{Al}$ can be described by a statistical calculation which incorporates the thermal emission of particle-unstable ${ }^{2} \mathrm{He}$ nuclei from the compound nucleus $/ 47 /$, this process is suppressed in the ${ }^{16} 0+197_{\text {Au reaction by the }}$

Coulomb barrier and the lower temperature $46,47 /$. In the latter case an effective source radius of $r_{0} \approx 4 \mathrm{fm}$ has been extracted $/ 45,46 /$. The observed correlation function which rapidly increases with the sum energy of the protons $/ 46 /$ possibly indicatea an increase of the source radius in time since the fastest particles are expected to be emitted in the early stage. The corresponding correlations for the ${ }^{12} \mathrm{C}$ target are nearly independent of the proton sum energy. In the ${ }^{27}$ Al case the situation is similar, however, a slight increase of the correlation function at largest sum energies may indicate a link of the results for the lightest and heaviest targets considered. The value $r_{0} \approx 4 \mathrm{fm}$ is larger than the radius of the compound nucleus for the lightest of those systems and, consequently, the resulta on $\mathrm{p}-\mathrm{p}$ correlations agree with the corresponding VUU-results (cf. Sect. 1). The extracted r_{0} value has to be understood as an upper limit by two reasons: Λ zero life time of the source has been assumen, and the measured correlations represent a time-average over the expanding source. We conclude that an infitial radius of the $H Z$ somemat smaller than 4 fm would not contradict the experimental findinga and agrees with the above estimates. Finally, we quote an argument based on estimates of the relaxation time τ for the colliding aystem. The simplest (but not the worst) estimate is $\tau=2 R / V_{F}(R$ - radius of the heavier reaction partner). On the other hand, in our model, it turns out to be the time needed by the temperature front to reach the outer surface of the heavier nucleus, 1.e. $\tau=\left[2 R-R_{\mathrm{HZ}}\left(t_{0}\right)\right] / V_{s}$, $V_{s}=0.2 c$ being the sound velocity. Combining both estimates we get

$$
\begin{equation*}
R_{H Z}\left(t_{0}\right)=2 R\left(1-v_{s} / v_{F}\right) \tag{9}
\end{equation*}
$$

Which yields 3.6 fm for ${ }^{165}$ Ho and 3.7 fm for ${ }^{181} \mathrm{Ta}$. Without taking (9) too seriously, we shall use

$$
\begin{equation*}
R_{H Z}\left(t_{0}\right)=3.6 \mathrm{fm}_{\mathrm{m}} \tag{10}
\end{equation*}
$$

throughout in this paper. We have checked that the final results (double-differential cross sections) do not drastically change if enlargening or lowering that value by 0.5 fm . Then, the largest deviations - up to a factor of 2 - appear for the highest energies of the particles emitted in forward directions. For lighter targets we would prefer to apply the model (if at all) with (10) instead of (9), since this would agree with the vuJ-results concerning light aystems discussed in Sect. 1, while (9) would field too small initial Hz radif (1.5 fm for ${ }^{12} \mathrm{C}, 2 \mathrm{fm}$ for ${ }^{27} \mathrm{Al}$). The latter probably reflects the fact that the picture of a sharp temperature front is lesa applicable in the case of light nuclei.

We determine the initial excitation energies of the $H Z$ and the ${ }_{\sim}^{c}{ }_{\vec{f}}{ }^{2}$ zone (CZ) from the work that has been done by the friction force \vec{F}_{f} along the trajectory up to $t=t_{0}$, and the "preheating" of the whole system $E_{\text {fre }}^{\text {N }}\left(t_{0}\right)$ due to those prospected PEP's which have been reabsorbed in the nuclet:

$$
\begin{align*}
& E_{H Z}^{*}\left(t_{0}\right)=-\int_{+\infty}^{\vec{r}\left(t_{0}\right)} \vec{F}_{f}(\vec{r}) d \vec{r}-\left[1-V_{H Z}\left(t_{0}\right) / V\left(t_{0}\right)\right] E_{p r e}^{*}\left(t_{0}\right) \tag{11}\\
& E_{C Z}^{*}\left(t_{0}\right)=E_{p r e}^{*}\left(t_{0}\right) V_{C Z}\left(t_{0}\right) / V\left(t_{0}\right) \tag{12}
\end{align*}
$$

with $V_{c z}+V_{H z}=V$ being the total volume of the gystem. The corresponding temperatures $T_{H Z}\left(t_{0}\right), T_{C Z}\left(t_{0}\right)$ are deined from (11), (12) using level denaity parameters $a_{c z}\left(t_{0}\right)=A_{c z}\left(t_{0}\right) / 8$, and $a_{H Z}\left(t_{0}\right)=\pi^{2} A_{H Z}\left(t_{0}\right) / 4 \epsilon_{F} \quad$ With a constant density $\rho_{0}=$ $0.16 \mathrm{fm}^{-3}$, and calculating the partial volumes according to the geometry of the system (see Figs. 7,9 below). Some remarks are in order: First, we neglect the density dependence of the Permi energy ε_{F} as well as of the particle number $A_{H z}$ since we have no dynamical equation for the time-dependence of the HZ-density $\rho_{H z}$. On the other hand $\rho_{H E}$ enters into the final reaulte on particle emission essentlally only through the $\rho_{H z}$-dependence of $T_{H Z}$. It can easily be shown that for given $V_{H z}$ and $E_{H z}^{*}$ in the Fermi gas model $T_{\mathrm{Hz}} \sim \rho_{\mathrm{HZ}}^{-7 / 6}, 1 . e$. the density dependence of the temperature can be neglected for $10-30 \%$ initial compression which is seen, e.g. in TDHF calculations for incident energies of a fen tens of $\mathrm{KeV} / \mathrm{A}$. Second, there is some ambiguity in the homogeneous deposition of
$E_{\text {pre }}^{\mu}$ at $t=t_{0}$: On the one hand, we have argued above that even the fastest nucleons cannot leave the $H z-r e g i o n ~ u p ~ t o ~ t i m e ~ t o ~(s c a t-~$ tered or unacattered). On the other hand, PEP'e are calculated at the early stage as if they would have been emitted or absorbed du-
 In none of the PEP-models, including ours, the time delay between passing through the window and being emitted has been taken into account. Actually, the particles leaving the prospected Hz-region unscattered are emitted at $t \geqslant t_{0}$. Note, however, that the second term in (11) amounts only to a few percent of the first one and that Tcz, $E^{*} c z$ have no influence at all on the reaulta on particle
emission. Also the omission of PEP's in the energy balance (11), (12) can be checked to be a good approximation, since in any of the cases considered below their multiplicity is amaller than 0.25 in the first stage.

4.2. Temperature evolution of the HZ

We gimplify the time evolution of the temperature field obtained in 1D-ETDHP calculationa/29/ by assuming a sharp temperature front expanding radially with sound velocity $v_{s}=0.2 c$. Compared to those results this seems to be a good lowest-order approximation which probably can be explained by the high nonlinearity of the ETDHF equations present also in any self-consistent theory. Note that, e.g., the relative stability of the compression front (until it reaches the outer surfaces) observed also in realistic TDHF calculations should be of aimilar origin. This is a nontrivial fact owing to the MPP usually said to be large. In any nonlinear theory the MPP is_{B}, however, not a well-defined quantity.

Without solving an equation for heat diffusion between the $\mathrm{H} Z$ and the $C Z$, we partially account for it in a simplified way: The Cz is further heated up by particles being emitted from the HZ-surface inside the nuclei and subsequently absorbed in the CZ (described like the "preheating" in the PEP-stage). Furthermore, if the HZ-radius has increased by $d R_{H z}$, we subtract $\left(E_{c z}^{*} / V_{c z}\right) d V_{c z}$ from $E_{c z}^{*}$ and add it to $E_{H Z}^{*}$. Here $d V_{C z}=d V_{H z}$ stands for the corresponding decrease (increase) of the $C Z$ ($H z$) volume.

The main mechanism governing the temperature evolution of the HZ are, however, the further increase of the Hz-volume (cooling) and the further accumulation of energy due to friction (like'in (11)). We also take into account the additional cooling due to neutron emission by lowering the actual excitation energy of the HZ by the particle energy above ε_{F} multiplied by the corresponding difperential multiplicity. In the cases considered below this depletion has, however, been found to play a negligible role.

In Fig. 4 the time evolution of the excitation energies of both zones is ahown for central collisions of the ${ }^{20_{N e}}+{ }^{165}$ Ho system at two incident energies (220 , and 402 MeV). Before neck formation ($t<t_{0}=41 \mathrm{fm} / \mathrm{c}$, and $27 \mathrm{fm} / \mathrm{c}$, respectively) only the preheating excitation energy $E_{\text {pre }}^{*}(t)$ is shown which we deposite at $t=t_{0}$ according to (11),(12). Due to the rapid decrease of $V_{c z}, E_{c z}^{*}$ rapidly decreases. The Hz-excitation energy increases further for $t>t_{0}$ up to the turning point followed by a slight decrease. The latter is

Fig. 4. Time evolution of the "preheatingn-, FIg. 5. HZ-temperature HZ -, and CZ-excitation energies for evolution for central ${ }^{2} \mathrm{Ne}+{ }^{165} \mathrm{Ho}$ reactions at 402 MeV the came system as in (full lines) and 220 MeV (dashed Ilnea) bom
barding energy. Crosses and the end points
of the lines mark the turning point, t_{0},
and $\tilde{\tau}$, respectively.
mainly connected with the time-retarded friction force which is still repulaive for a certain time interval after the turning point, and to a less extent with depletion due to emission.

Pig. 5 illustrates the corresponding Hz-temperature evolutions. The shoulder arround $\left(t-t_{0}\right)=20 \mathrm{Pm} / \mathrm{c}$ is a result of the interplay between expanaion and energy accumulation: After the front having reached the center of the Ho nucleus the rate of change of the HZ-volume is amaller than at the early stage (cf. Fig. 7) while gtill a substantial diseipation takes place. Note that the initial temperatures (which mainly determine the highenergy tails of the spectra) are close to the values extracted from a moving source fit for the same reactions in $/ 20 /(4.5 \pm 0.3 \mathrm{MeV}$ and $8.6 \pm 0.3 \mathrm{MeV}$, respectively).

FIg. 6. Time-dependence of $T_{H Z}$ for different initial angular momenta for the ${ }^{20}{ }_{\mathrm{Fe}}+{ }^{181}{ }^{\text {Ta reaction. The lowest cur- }}$ ve represents the time evolution of $T_{C Z}$ for a central collision.

Prom Pig. 6 we get some information on the impact parameter dependence of T_{HZ}. We observe that the initial temperature
$T_{H Z}\left(t_{0}\right)$ decreases with L, and that
the decrease in time is stronger in more peripheral reactions. Hence, our model predicts an effective (time-averaged) temperature for the
preequilibrium stage which is larger in central collisions than in more peripheral ones. Note that t_{0} also depends on L, i.e. for more peripheral collisions the neck opens at a later instant. The slight increase of $T_{C Z}$ (shown only for $L=0 \hbar$ since the L-dependence is rather weak) is due to further particle absorption in the GZ. Hence, $E_{C z}^{*}$ decreases somewhat slower than the CZ-volume.
4.3. The mean-velocity field

The velocity distribution of the nucleons in the colliding system is not simply a superposition of the intrinsic Fermi motion that is characterized by two temperatures T_{HZ}, and T_{CZ} with the motion of the mass centers of the nuclei as described by the classical trajectory. At any instant $t<\tau$ the mean nucleon velocity $\bar{v}(z, t)$ along the instantaneous z-axis joining the mass centers changes smoothly from projectile- to target-like velocities. To illustrate this
 $=220 \mathrm{MeV}$ system at $t=t_{0}+10 \mathrm{fm} / \mathrm{c}$. For gimplicity, we shall consider a cylindrical neck of radius $r_{n e c k}(t)$ determined from the trajectory calculation in the following. In the lower part of Fig. $7 \mathrm{c} . \mathrm{m}$. velocities $\left\langle V_{i}\right\rangle$ at $t=-\infty$, $t_{0} \quad$ of both nuclei are indicated (horizontal thin lines). The expected behaviour of $\bar{V}(Z) a s$ schematically shown in Fig. 7 should exhibit the following features: The two parts of the still uneffected by the collision $C Z$ should be characterized by $\bar{V}(Z)$-values close to the initial velocities of the nuclei above the Coulomb barrier.

P1g. 7. The geometry of the ${ }^{20}{ }^{20}{ }_{\mathrm{He}+{ }^{165}}{ }^{165} \mathrm{Ho}$,
$t=t_{0}+10 \mathrm{fm} / \mathrm{c}$ (upper part). The $10-$ wer part shows the expected "realistic" (heavy dashed line) as well as the as-
sumed (heavy full inn)
z dependence of the mean-velocity field. For details, see text.

In the (compressed) Hz-region, however, it should monotonically vary between those values exhibiting a "quasistationary point" in the neck region moving with $\bar{v}(z)=\dot{r} / 2$. Note that due to momentum conservation the mean velocities in the outer regions are larger in absolute value than the velocities of the mass centers $\left\langle v_{i}\right\rangle$ defined by the trajectory.

Since we consider particle emission only from the Hz, only some prescription for $\bar{v}(z, t)$ in that region is needed. For our firgt
applications we postulate:
i) $\bar{v}(z, t)=\dot{r}(t) / 2$ in the neck region.
ii) Except that region, $\bar{v}(z, t)$ Inearly changes between the mass-center velocities $\left\langle V_{i}\right\rangle$.
1i1) $\bar{v}(z, t)$ becomes equal to $\left\langle v_{i}\right\rangle$ at the z-coordinate of the intersection between the nuclear sphere and a sphere of radius $R_{H Z}(t)$, if this point lies in the inner hemisphere of the corresponding nucleus.
iv) In the opposite case it becomes equal to $\left\langle V_{i}\right\rangle$ at the z-coordinate of the mass center of the corresponding nucleus.
The mean-velocity field in the $H Z$ which would result from this prescription is also shown in Fig. 7. In the given case iii) concerns the Ho- and iv) the Ne-nucleus. The advantage of our simple dynamical definition of $\vec{V}(z, t)$ is that we have only used "fix points" which are well-defined in the model. Of course, one could try to introduce more involved parametrizations.

Next we prove to what extent our prescription may work. With this aim we have performed a series of $1 D-T D H F$ calculations (for details, see $/ 48 /$) for slab colliginns and compared the time evolution of the calculated velocity field

$$
\begin{equation*}
\left.v(z, t)=\frac{1}{\rho(z, t)} \frac{\hbar}{m} \sum_{n} a_{n}\right] m\left[\phi_{n}^{*}(z, t) \frac{\partial \phi_{n}(z, t)}{\partial z}\right] \tag{13}
\end{equation*}
$$

with our approximation. Here ϕ_{n}, a_{n} and $\rho(z, t)$ denote the single-particle wave functions, the occupation numbers ($a_{n}<1$ in the slab geometry), and the single-particle denaity, respectively. An illustrative example is shom in Fig. 8. Firgt we observe that the dengity front (DF) (defined arbitrarily as $\rho\left(z_{0 F}, t\right)=\left[\rho_{0}+\rho(z=0, t)\right] / 2$ moves with $V \approx 0.25 \mathrm{c}$ which ia about the velocity of thermodynamic sound in the slab geometry $/ 33 /$ and which should be replaced by $0.2 c$ in three dimensions. Second, starting from the situation at $t=24$ $\mathrm{fm} / \mathrm{c}\left(z_{D F} \approx 4 \mathrm{fm} \cong R_{H z}\left(t_{0}\right)\right.$) our prescription yields a good agreement with the actual values of $v(z, t)$. Here case i) does not apply since the neck region is not defined in the slab geometry. Since some over- and underestimations met at different t can partielly compensate each other in the time integral for any observable quantity, we conclude that our parameter-free prescription for $\vec{V}(z, t)$ is a reasonable lowest-order approximation for the time interval $t_{0} \leqslant t \leqslant \tau$ of interest.

We describe the local velocity distribution of the nucleons at

any point $\vec{R}=\left(z, \vec{R}_{\perp}\right)$ of the Hz by a generalized Fermi distribution/44/:

$$
\begin{align*}
n_{H z}(\vec{v}, t, z)= & {\left[1+\exp \left\{\left(\frac{m}{2}\left[v^{2}+\vec{v}^{2}(z, t)\right]-\varepsilon_{F}\right.\right.\right.} \\
& \left.\left.-m v \bar{v}(z, t) \cos \theta) / T_{H z}(t)\right\}\right]^{-1} \tag{14}
\end{align*}
$$

where \vec{v} denotes the velocity of the nucleon considered and θ the angle botween the directions of \vec{v} and the mean velocity
$\bar{v}(z, t) \cdot \vec{e}_{z}(t) \quad\left(\vec{e}_{z}\right.$ - unit vector along the instantaneous axis joining the centers of the nuclei).
4.4. Particle emiasion from the HZ

The crose section for neutron emisaion is celculated as:

$$
\begin{equation*}
\sigma_{H Z}=2 \pi \int b d b \int d t \int_{H z} d \vec{A} \int d \vec{v} \vec{v} \rho_{n} f_{H z}(\vec{v}, z, t) e^{-d / \lambda} \tag{15}
\end{equation*}
$$

hand scale) and mean-velocity field (thin dashed lines, right-hand scae) evolution in a $A_{1}=A_{2}=2.0 \mathrm{fm}^{-2}$ (E/A) $\mathrm{Lab}=16 \mathrm{MeV}$ elab collision. Due to symmetry only half of the syatem is shown. The thin ine at $t=14 \mathrm{fm} / \mathrm{c}$ represents the unperturbed denaity of a static slab. The calculated mass center (M) and denaity front (DF) positions are indicated by vertical arrows. The thin horizontal 11nes denote the calculated velocities of the mass center - V_{M}. The heavy dashed ines represent the mean-velocity distribution in the compressed region according to the parameter-free prescription quoted in the text.
$f_{H z}(\vec{V}, z, t)=\frac{3}{4 \pi V_{F}{ }^{3}} n_{H z}(\vec{V}, t, z)$,

$$
\rho_{n}=\frac{\left(N_{1}+N_{2}\right)}{\left(A_{1}+A_{2}\right)} \rho_{0} .
$$

Fig. 9. The same situation as in Fig.? Arrows mark the directions of emitted neutrons (see text). The c.m. velocities of projectile, target, and neck are proportional to the lengths at the bottom of the figure.

Fige, 10. Double-differential c.m. neut$20 \mathrm{Ne}+165$ ron multiplicities for the $\mathrm{Ho}, \mathrm{E}_{\mathrm{lab}}=220 \mathrm{MeV}, L=0 \mathrm{~h}$ sys tem for 11 and 25 MeV neutron energies are digcussed in the text. The anrleaveraged resulta are also shom (dashed innes).
reflection" of particles (cf. trajectory 3 in Fig. 9). A broader peak near $\theta_{\text {c.m. }}=40^{\circ}(C)$ corresponds to emission from the inner hemisphere of the Ne-nucleus. The sharp peak near $\theta_{c_{0, m}}=$ $=80^{\circ}$ (D) is due to emisaion from the neck. Here, the combination of the cyindrical geometry (instead of that of Pig. 1) and (18) produces a large spurious effect. The broad shoulder arround $\theta_{c_{0} m_{4}}=130^{\circ}$ (C') is the counterpart of. C, i.e. stems from backward emission of the Ho-nucleus. The structures denoted by B^{\prime}, A^{*} have the same origin like B, A, respectively. However, since the c.m. velocity of the Ne-nucleus is large, the backward focussing is not seen at all at 25 MeV due to transformation effects. In addition, at most backward angles (18) introduces an artificially large shadow effect (E), as can be seen from Fig. 9.

We emphasize that the differential multipliclties in the angular region C are much larger than in C^{\prime}, although the backward-emitting surface of the Ho-nucleus is larger than the forward-emitting surface of the Ne-nucleus. This is basically connected with the introduction of $\bar{V}(z, t)$ in (14): In the instantaneous rest system of the Ho-nuclevs the mean velocity near the nock region (approaching
the Ho-nueleus with velocity $\dot{r}(t) / 2$) and the velocity of the emitted particles have opposite directions, bence $\operatorname{con} \theta<0$ in (14) and backward emission is suppressed (C^{\prime}). The situation for forward emission from the Ne-nucleus (C) is similar in this respect. However, due to the substantial transformation effect for that nucleus, much smaller neutron onergies (relative to the emitting surface) contribute to a given energy in the c.m. system. According to (14) the suppression effect is, consequently, less pronounced. Furthermore, since those neutrons escape with a higher probability, the peak denoted by C lies much above C^{\prime} at 25 MoV (omiseion at the early stage - largest transformation effect) and alightly above $C^{\prime \prime}$ in the 11 MeV case (emisaion at later instants - less pronounced transformation effect due to the decreaged Ne-velocity).

To get rid of these spurious structures we averege the calcuIated angular distributions over a certain angle interval $\Delta \theta$ (in the present calculations we use $\Delta \theta=60^{\circ}$) to obtain a monotonic behaviour that is expected if using (15) without the approximation (18), and the geometry of Fig. 1. To a certain extent this procedure may also simulate quantum mechanical diatortion effects which should soften the classical-trajectory and classical-refraction descriptions used in our approach.

5. Comparison with Experimental Data

We now combine our PEP-model ($t<t_{0}$) with the HZ-model ($t_{0} \leqslant$ $t<\hat{\imath}$) and compare the corresponding numerical resulte with recent experimental data..

Fig. 11. Double-differential neutron multiplicities in coincidence With BR 's from the ${ }^{20} \mathrm{Ne}+{ }^{165} \mathrm{Ho}$ reaction at 220 and 402 MoV bombarding energies. The experimental points are from $/ 20 /$. The thin full lines represent only the HZ-contributions. Adding the PEP-contributions for teto yields the thin deshed innes The heavy full lines result if adding the evaporation part (the re ouve been used) the hesvi deghed lines denote the total contributions if a fi ite the Per nite temperature
stage (see text).

Fig. 11. concexns neutron emission from the ${ }^{20} \mathrm{Ne}+{ }^{165} \mathrm{Ho}$ reaction at 11 , and $20 \mathrm{MeV} / \mathrm{A}$ incident energy in coincidence with ER's. At both energies we get
a good agreement with the data without fitting any parameter. Formally, at highest neutron energies and most forward angles the agreement can be further improved by using a.finite-temperature distribution at the PEP-stage. In the present case we have performed such a calculation for $\mathrm{E}_{\text {lab }}=402 \mathrm{MEV}$ using $T_{L}^{P \in P}=T_{L}^{H z}\left(t_{0}\right) / 2$, i.e. temperatures in the range $3+4 \mathrm{MeV}$. It is, however, hard to justify such large values since the temperature due to absorption is less than 1 MeV for $t<t_{0}$. Rather the kink in the forward-angle spectra is related to our approximation of a sudden change of the emission mechanism at $t=t$ 。. In reality, there should be a smooth transition, i.e. arround $t=t_{0}$ both emission of unscattered (PEP) or scattered particles should occur, while at instants much before and after the mechanism could be close to our extreme pictures.

It may be of interest to note that in our approach the relative weight of the Hz-contribution increases with bombarding energy, whereas both HZ- and PEP-contributions increase in absolute values. In the case illustrated in Fig. 11 the Hz-to-FEP multiplicity ration are 6.1 at $11 \mathrm{HeV} / \mathrm{A}$ and 10.7 at $20 \mathrm{MeV} / \mathrm{A}$. The absolute values are, bowever, about twice larger than the values extracted in $/ 20 /$ from moving-source fits. We get $M_{n}=0.85$ (2.84) total preequilibrium multiplicities compared to the fitted values $M_{n}=0.4$ (1.5) at 11 (20) $\mathrm{MeV} / \mathrm{A}$. We relate this discrepancy to some overestimation of low--energy neutron emission since the use of Fermi gas level densities is no more justified for instants close to τ (when T_{HZ} has substantially decreased).

Due to the lack of a two-body Priction in our trajectory calculations we presently cannot apply our model to incident energies much higher than $20 \mathrm{MaV} / \mathrm{A}$. On the other hand, it is of interest to investigate our model predictions at comparably low energies since our arguments concerning the HZ seem to be more doubtful in this case. In Fig. 12 we compare our calculations with inclusive double-differential neutron cross sections for the reaction ${ }^{20} \mathrm{Ne}+{ }^{181} \mathrm{Te}$ at 9 $\mathrm{MeV} / \mathrm{A}$ bombarding energy ($4.2 \mathrm{MeV} / \mathrm{A}$ above the Coulomb barrier in the c.m. aystem). The agreement is still surprisingly good.

Fig. 13 illustrates the projectile-mass-number dependence of our model predictions at a fixed bombarding energy above the corresponding Coulomb barrier. We have chosen a comparably low energy since four data points are available in this case in the region of the most drastic increase of the calculated cross sections. The qualitative trends are the same at higher energies. We state that our results (FEP + HZ) agree reasonably with the data points. The slight underestimation for ${ }^{12} \mathrm{C},{ }^{20}$ Ne projectiles (for the latter cf. also Fig. 12)

is partially connected with some contamination of the experimental results from evaporational neutrons. The present two-stage model-predicts a atronger increase of the fast neutron cross section with the mass number of the projectile than the full PEP calculations which are also shown in Pig. 13. Also the absolute values are much larger except for very light projectiles.

Fig. 12. Double-differential cross sections for inclusive neutron emission from the ${ }^{20} \mathrm{Tle}+{ }^{181} \mathrm{Ta}$, $\mathrm{E}_{\text {lab }}=180 \mathrm{MeV}$ reaction $/ 49 /$. The curves have the same meaning as in Fig. 11.

Due to certain difficulties arising even in our modification/39/ of the Bertsch model for extremely asymmetric systems, we could not extend the calculations down to ${ }^{4} \mathrm{He}$-projectiles. Note that the relative weight of HZ-emission is also an increasing function of the projectile mass (77.5% for ${ }^{12} \mathrm{C}, 90.5 \%$ for ${ }^{181} \mathrm{Ta}$).

We conclude that in our approach PEP-emission is favoured in very asymmetric systoms and at comparably low incident energies while in the opposite cases the HZ-emission dominates.

energy (cf. Fig. 11).
Finally, we speculate about higher bombarding energies. If it is increased, the contact time during which our model dynamically describes something like a mid-rapidity, high-temperature (T_{h})
source certainly decreases. For more and more. impact parameters (starting from nore peripheral collisions) it may become amaller than $\tilde{\tau}$. Then, at gcission, the smaller projectile is fully equilibrated while the target is not (the front has not yet reached the outer surface) but the temperatures in the HZ region of the target and in the projectile (T_{P}) are the same and still quite large. Subsequently, the target equilibrates isolated from the projectile and consequently its final temperature T_{T} is the gmallest: $T_{T}<T_{p}<T_{h}$. This is exactly the situation obtained in $150 /$ with respect to inclusive proton emission for the ${ }^{12} \mathrm{C}+{ }^{58} \mathrm{Ni}$ reaction. In $/ 50 /$ values of $T_{T} / T_{P} / T_{h}$ of $4.2 / 5.5 / 7.7 \mathrm{MeV}$ and $6.7 / 10.2 / 19.2 \mathrm{MeV}$ have been fitted at 25 and $84 \mathrm{MeV} / \mathrm{A}$, respectively.

6. Conclusions

Starting. from recent results of the VUU and ETDHF approaches and some experimental indications of the existence of a apatially localized, rapidly expanding HZ, we have proposed a parameter-free phenomenological two-stage model for fast nucleon emission combining PEP-amission at the early stage and emission from a highly anisotropic HZ at the later stage of the equilibration process. The agreement with data on neutron emission in coincidence with ER's as well as with inclusive neutron data is remarkably good - even at lower incident energies where our assumptions concerning the Hz-stage are less. founded.

We believe that our HZ-model can be viewed as a dynamical description of the mid-rapidity high-temperature source seen in VOUcalculations and used as a standard parametrization to analyze fast--particle data since at $t \geqslant t_{0}$

1) the HZ involves $\bar{v}(z, t)$-values ranging from projectile to target-like velocities above the Coulomb barrier (hence, the "effective" source velocity appears to be intermediate),
1i) the HZ-temperatures are close to the values obtained from moving-source fits, and
iii) the "effective" particle number in the HZ is roughly twice the mass number of the projectile (cf. Figa. 7,9).
Qualitative extrapolations to higher bombarding energies lead to a bierarchy of temperatures and velocities as obtained in a recent three-source parametrization.

We emphasize that in our model the excitation energy is initially nearly equally shared by projectile and target as it has been observed in experiment/51/. In the subsequent evolution the system smoothly approaches a deposition of the excitation energy proportio-
nal to the mass numbers of the colliding nuclei.
Our-assumptions on the time-evolution of the HZ are at best lowest-order epproximations and should be further improved, especially if corresponding VUU- (or realistic ETDHF-) calculations would exhibit substantially different temperature- and velocity fields. Por a further proof of the present model, more detailed information from those approaches about the early atage of the collision is highly requested. Furthemore, a two-body friction term should be included in the trajectory calculations, although, at not too high energies, it may turn out to be not essential in the time interval of interest ($t<\tau$).

Part of the results contained in the present work has been obtained in /52/. A brief description of the basic ideas as well as some preliminary results have been published in $/ 53 /$.

Acknowledgement: The authors are very grateful to R.Reif for his permanent interest in the present work, many critical remariss and stimulating discussions.

References

1. Gelbke C.K. Proc. Workshop on Coincident Particle Emisaion Prom Continuum States, Bad Honnef, June 1984, Machner H., Jahn P. (eds.), p. 2030, World Scientific 1984; Hilscher P. et al.: ibid., p. 268.
2. Weiner R., Westström M. Nucl. Fhys., 1977, A286, p. 282.
3. Gottschalk P.A., Westatröm M. Nucl. Phys., 1979, A314, p. 232.
4. Garpman S.I.A., Sperber D., Zielinska-Pfabe M. Phys.Iett., 1980, 90B, p. 53.
5. Blann M. Phys.Rev., 1981, C23, p. 205.
6. Blann M. Phys.Rev., 1985, C31, p. 1245.
7. Yoshida S. Z.Phya., 1982, A308, p. 133.
8. Nifte K. Z. Phys., 1984, A316, p. 309.
9. Machner H. et al. Phys.Rev., 1985, C31, p. 443.
10. Awes T.C. et al. Phys.Rev., 1982, C25, p. 236.
11. Bondorf J.P. et al. Nucl. Phys., 1980, A333, p. 285.
12. Sebille F., Remand B. Z. Phys., 1983, A310, p. 99.
13. Tricoire H. Z. Fhys., 1983, A312, p. 221.
14. Davies K.T.R. et al. Ann. Phys. (N.Y.), 1984, 196, p. 68.
15. Leray S. et al. Z. Paye., 1985, A320, p. 383.
16. Cassing W. Nucl. Fhye., 1985, A438, P. 253.
17. Umar A.S. et al. Phys.Rev., 1984, C30, p. 1934.
18. Devi K.R.S. et al. Phys.Rev., 1981, G24, p. 2521.
19. Dhar A.K. et al. Phys.Rev., 1982, C25, p. 1432.
20. Holub F. et al. Phys.Rev., 1983, C28, p. 252.
21. Jakobsson B. et al. Phyo.Lett., 1981, 102B, p. 121.
22. Oskarsson A. Lund University Report 8303, 1983.
23. Teang M. B. et al. Phys. Iett., 1984, 148B, p. 265.
24. Tsang M. B. et al. Phys.Rev.Lett., 1984, 52, p. 1967.
25. Kruse H. et al. Phyg.Rev., 1985, C31, p. 1770.
26. Aichelin J., Stöcker H. Proc. Int. Workshop on Gross Properties of Nuclei and Nuclear Excitations, Hirachegg, Austria, January 1985, Feldmeier H. (ed.), p. 210.
27. Aichelin J., Bertach G. Phys.Rev., 1985, C31, p. 1730.
28. Aichelin J., Stocker $\mathrm{H}_{\text {. }}$ to be published.
29. Köhler H.S. Phyaica Scripta, 1982, 26, p. 51.
30. Köhler H.S. Nucl. Phys., 1984, A417, p. 541.
31. Köhler H.S. Nucl. Phys., 1985, A438, p. 564.
32. Köhler H.S. Nucl. Phys., 1985, A440, p. 165.
33. Bonche P., Koonin S., Negele J.W. Phys.Rev., 1976, G13, p. 1226.
34. Danielewicz P. Ann. Phys. (N.Y.), 1984, 152, p. 239; p. 305.
35. Karvinen A.O.T., De J.N., Jakobsson B. Nucl. Phys., 1981, A367, p. 122.
36. Biedermann M., Medler P. In preparation.
37. Bertach G.F. Preprint MSUCL-385, 1982.
38. Ko C.M., Bertech G.F., Cha P. Phys.Lett., 1978, 77B, p. 174.
39. Biedermann M., Mäder P., Reif R. JINR Comunication E7-84-415, 1984.
40. Sinha B. Phys.Rev.Lett., 1983, 50, p. 91.
41. Toki H., Stöcker H. Phys.Lett., 1985, 152B, p. 326.
42. Carruthers P. Preprint LA-UR-85-280, 1985.
43. Chiang H.C., Hüfner J. Nucl. Phys., 1980, A349, p. 466.
44. Mädler P., Reif R. Nucl. Phys., 1982, A373, p. 27.
45. Chitwood C.B. et al. Phys.Rev.Lett., 1985, 54, p. 302.
46. Iynch W. G. et al. Phys.Rev.Iett., 1983, 51, p. 1850; 1984, 52, p. 2302.
47. Bernatein M.A. et al. Phye. Mevalett., 1985, 54, p. 402.
48. Mäler P. Z. Phys., 1984, A318, p. 87.
49. Kozulin E.M. et al. Preprint JINR PT-85-31, 1985.
50. Glasow R. et al. p. 299 of ref./1/.
51. Vandenbosch R. et al. Phys.Rev. Lett., 1984, 52, p. 1964.
52. Biedermann M. Diploma thesis, Technical University Dresden, 1984.
53. Bledermann M_{0}, Mädler $P_{\bullet}:$ p. 218 of ref. $/ 26 /$.

> Received by Publishing Department on July 26,1985 .

[^0]: *Technische Universität Dresden, Sektion Physik, 8027 Dresden, DDR

