

обьедииенныя инетитут лаериых псследовании аубна

$2437 / 84$

E7-84-85

P.Mädler

ARE PROMPTLY EMITTED PARTICLES REALLY SEEN IN TDHF?

Submitted to "Zeitschrift für Physik A"

1. INTRODUCTION AND MOTIVATI ON

One of the most salient features of heavy ion collisions is the emission of very fast light partioles. It is believed that properties of suoh partioles provide a souroe of information about early stages of the oollisions, where thermal equilibrium is not jet establ1shed.

High-energy single nuoleon speotra have been measured in ooinoidenoe with fusion-like $/ 1,2 /$ as well as with deeply inelastic ovents $/ 3 /$. These data have been analysed by different models considering either a looally equilibrated not zone $!$, an equilibration prooess in the franework of slightly extended pre-equilibrium models originally developed for light-partiole induced reactions $/ 5,6 /$, or the so-called Fermi-jets or promptly emitted partioles (PRP) $/ 7,8 /$.

These approaches seem to give similar results with respect to inclusive data, even though they are based on quite different physioal assumptions. The comparison with experimental data/2/ seemingly somewhat favours the modified Harp-Miller-Berne model /5/. However, in this framework angular distributions cannot be oaloulated, and the initial degree of freedom a_{0} is not jet well understood quantitativaly. Furthermore, it is by no means olear whether the disadrantages of the other models (say, the failure of the Fermi-jet model in predioting the high-onergy component at large angles ${ }^{/ 27}$) are a consequence of their underlying physical picture rather than an unsuitable realization of that pioture through a number of ad hoo assumptions concerning georietry, dynamics, etc.

In this conneotion investigations of premequilibrium emission of light partioles reoently performed using the time-dependent HartreeFook (TDHF) approaoh $19,10,11 /$ are of great interest since given the effeotive nuoleon-nucleon interaction the time evolution of the oolliding system is determined by the basic equations $/ 12,13,14 /$. In TDFFF calculations PEP are identified with a low-density oomponent (a few peroent of the central nuclear density \mathcal{P}_{0}) emerging in forward direotion beyond the fragrent wall at a typical time of an order of 1-2 times the transit time $t_{\text {trans }}\left(s e v e r a l 10^{-22}\right.$ s) of a nuoleon
aoross the reoipient nuoleus and esoaping with a velooity up to about twice the incident beam velooity.

Results of realistic TDHF studies reported in $/ 9,10 /$ for the $160+{ }^{93} \mathrm{Nb}$ reaotion semiquantitatively reproduce some main properties of the measured pre-equilibrium partioles. This, for example, concerns multiplicities of fast partioles or the threshold-like onset of their appearance at a oenter-of mass energy per nucleon above the Coulomb barrier $\left(E_{0 . m .}-V_{0}\right) / \mu$ around 5 MeV as well as an increase of fast--partiole emission with inoreasing incident energy. Similar agreement with integral charaoteristios of the data can be aohieved $/ 2 /$ by applying the Fermi-jet model/7/. In this approach it is basically assumed that a nuoleon transferred from the donor nucleus to the reoiplent in the latter moves with a velocity that is simply the sum of its initial Fermi velooity and the velooity of relative motion of the oolliding ions. Thus, TDHF seems to give arguents in favour of a strong coupling between Fermi and relative motion. This, in turn, would mean that the dynemics of the self-consistent mean field, leading, for example, to a rearrangement of the single-particle momentum distribution (oompared to two Fermi spheres shifted by the velooity of relative motion), to some time dependence of the barrier between the ions which the nucleons tunnel through, eto., is negligible if looking for fast partiole emission.

However, recently the TDHF equations have been solved for $\alpha+\alpha$ and ${ }^{16} 0+{ }^{16} 0$ central oollisions $/ 15 /$ at several incident energies by using an expansion of the single-particle wave funotions in terms of statio orthogonal basis runctions constructed from orthogonal polynomials weighted with a two-center function. It was found that the maximum density $\rho_{\max }$ of nuoleonic jets rapidiy deoreases with an inoreasing size of the basis. An upper limit of $\rho_{\max } \approx$
4. $1^{-4} \mathrm{fm}^{-3}$ was found for the largest set of basis function oonsidered. It has been ooncluded that relative and Fermi motion are coupled weakly.

In the present paper we perform a numerioal-stability study of "PEP production in one-dimensional slab oollisions using a finite difference method. In Sect. 2 it is shown that "spurious" PEP appear if numerioal stability is not jet reaohed. Section 3 oontains a systematio study of inoident energy and mass dependence of "real" (i.e., numerioally stable) PEP. Section 4 deals with a systematics of these results. A oomparison with corresponding data from more realistio TDHF studies is made. This allows one to draw the oonolusion that the Fermi-jet mechanism cannot be responsible for most of the energetio
nucleons seen in experiment. A smooth transition to fragmentation is indioated in Sects. 3 and 4.

2. MODEL AND NUMERICAL METHOD

In this work a numerioal investigation of step size and box length effeots upon PEP produotion is performed in the framework of a simple effeotively one-dimensional model for slab collisions/12/ in which the (frozen) Fermi motion in the direotions perpendicular to the soattering axis is taken into aocount. It is known that this slab geometry qualitatively exhibits all essential features of realistio TDHF calculations including fast partiole emission $/ 12,13,14 /$.
Furthermore, the real dymamics of the fast partiole emission should preferentially proceed in one dimension since they are known to appear in near-central collisions and to be emitted in forward direct ions. Therefore, for a study of the numerical stability of PEP as well as for some semi-quantitative conclusions (order-of-magnitude estimates) this model should be a reasonable starting point.

The effective nucleon-nucleon interaction is chosen to be a simplified Skyrme force

$$
\begin{equation*}
V\left(\vec{r}_{1}, \vec{r}_{2}\right)=\left(t_{0}+\frac{t_{3}}{6} p\right) \delta\left(\vec{r}_{1}-\vec{r}_{2}\right) \tag{1}
\end{equation*}
$$

With $t_{0}=-1090 \mathrm{MeV} \mathrm{fm}^{3}$ and $t_{3}=17288 \mathrm{MeV} \mathrm{fm}{ }^{6}$ and ρ being the one-body density

$$
\begin{equation*}
\rho(\vec{r}, t) \equiv \rho(z, t)=\sum_{n=1}^{N} a_{n}\left|\phi_{n}(z, t)\right|^{2} . \tag{2}
\end{equation*}
$$

The occupation numbers a_{n} are smaller than unity (but constant in time) due to the Fermi motion in transverse directions which is deooupled from the motion parallel to the z-axis and described by plane wares. The TDHF equations

$$
\begin{equation*}
\text { ih } \dot{\phi}_{n}(z, t)=\left[-\frac{\hbar^{2} \partial^{2}}{2 m \partial z^{2}}+\frac{3}{4} t_{\rho} \rho(z, t)+\frac{3}{16} t_{3} \rho^{2}(z, t)\right] \phi_{n}(z, t) \tag{3}
\end{equation*}
$$

for N singlemparticle wave functions $\phi_{n}(z, t)$ are solved numericalIy. Initial conditions are oonstructed from stationary solutions of (3) boosted together by plane waves (for details see /12/).

The numerical method used to solve (3) is a finitemeries expansion of the evolution operator with the mean-field Haniltonian h taken at half time step

$$
\begin{align*}
\phi_{n}(t+\Delta t) & \approx \exp \left[-\frac{1}{\hbar} \Delta t \cdot h\left(t+\frac{1}{2} \Delta t\right)\right] \phi_{n}(t) \tag{4}\\
& \approx \sum_{j=0}^{J} \frac{1}{j 1}\left[-\frac{1}{\hbar} \Delta t \cdot h\left(t+\frac{1}{2} \Delta t\right)\right]^{j} \phi_{n}(t)
\end{align*}
$$

whioh is evaluated using a Horner soheme. We found a value of $\mathrm{J}=4$ to be sufficient to obtain stable results in any oalculation desoribed below even for instants long after the emission of PEP. The spatial second derivative appearing in h is approximated by the five-point finite difference expression. The boundary oonditions are that the wave functions ϕ_{n} vanish in the first and last pairs of grid points of the z-coordinate mesh (reflecting edges). Applying the equam tion of oontinuity at time the time step Δt for the following iteration is determined from the requirement that the relative ohange of density at any grid point should not exoeed 1 per sent. So Δt is not a oonstant during the oaloulation. For a grid-point spaoing $\Delta z=0.5$ fim several hundred time steps are typioal for the evolution in a time interval of the order of $t_{\text {trans. }}$. In all oaloulations that we have performed a further deorease of Δt did not jield any significant influence on the time evolution of the system. The step in coordinate spaoe Δz has besn varied from 1 fm to 0.2 fm and the size of the numerioal box I from 64 fm to 128 fm . In most oases numerioal stability oould be reaohed for $\Delta z \lesssim 0.5 \mathrm{fm}$ and $\mathrm{L} \gtrsim 80-120 \mathrm{fm}$ (depending somewhat on the inoident energy and slab thiokness). Norm and energy conservation have been proved to be fulfilled even for the largest step size $z=1$ fm to within 0.1% or less during the whole evolution process.
3. FROM SPURIOUS TO REAL PEP

We start discussion with oollisions of symmetric thiok slabe of slab thickness $A_{1}=A_{2}=2.0 \mathrm{fm}^{-2}$ (oompare with the slab-mass table in $/ 12 /$).

For two different spatial step sizes (1 fm and 0.8 fm) the time evolution of the density profile for an inoident energy of (B / A) o.m. $=4 \mathrm{MeV}$ is shown in Fig. 1 in oomparison with a free translation of a single slab with the same initial velocity oalculated with $\Delta z=1$ fm. It is seen that for $\Delta z=1$ fim fast PBP-like low-density oomponents emerge which are exactly the same for the collision as well as for the free translation at $t \approx 50 \mathrm{fm} / \mathrm{o}$. Thus, we obviously are dealing with an effeot of numerical inaocuraoy as a oonsequence of whioh matter is left behind the moving slab instead of being pushed through the oollision partner. After passing the turning point of the oollision both ourves naturally diverge exoept the density ripples on the right which, as we shall see, are oonneoted with the finite box size (L=64 fm in the given case). If the gridupoint spaoing is only slightly decreased to 0.8 fm , this type of "spurious" PEP immediately disappears,

Fig.1. The time evolution of the nuolear density $\rho(\varepsilon)$ for the symmetrio $A_{1}=A_{2}=2.0 \mathrm{fm}^{-2}$ slab collision at (E / A) c.m. $=4 \mathrm{MeV}$ in a numerioal box of $\mathrm{L}=64 \mathrm{fm}$, for $\Delta z=1 \mathrm{fm}$ (dashed lines) and $\Delta E=0.8 \mathrm{fm}$ (full lines) as well ac for a free translation oalculated with $\Delta z=1 \mathrm{fm}$ (dashed-dotted ines).
and the "real" PBP begin to emerge at $t=80 \mathrm{fm} / \mathrm{c}$ comparable with $t_{\text {trans }}$ Note that this jet of nucleonic matter is not seen at all for the larger value of Δz. With a further decrease of Δz and a larger value of $L=100 \mathrm{fm}$ its shape becomes staile at about $\Delta z=0.4 \mathrm{fm}$ and takes the form shown in fig. 2 (full line). With the same value of Δz but in the smaller box of fig. 1 the real PEP at times $t>80 \mathrm{fm} / \mathrm{c}$ get increasingly deformed (dashed line in fig.2) so that the density profiles seem to indicate a subsequent emission of several quite small in thickness ($1-3 \mathrm{fm}$) nucleonic jets with central densities rapidiy increasing with decreasing box size and increasing with time. The real jet, however, in its further time evolution becomes broader and broader and, correspondingly, decreases in its central density. In any case these diffraction-like deformations of the stable jet shape emerge long before the essential part of the PEP is reflected by the edges of the box. It has been found that they begin to develop at a typical time when the $\rho=10^{-5} \mathrm{fm}^{-3}$ density end of the jet reaohes the edge of the box. This is about $80 \mathrm{fm} / \mathrm{ofor}$ $\mathrm{L}=64 \mathrm{fm}$ in P 1 g .2 and $150 \mathrm{fro} / 0$ for $\mathrm{L}=100 \mathrm{fm}$ (not seen in fig. 2). So, a clean separation of PEP from the target can be reached only for suffioiently large $L(L \geqslant 100 \mathrm{fm}$ in the given oase) and suffioiently small $\Delta x(\approx 0.4$ fm here).

Fig.2. The time evolution of the same system as in 1 ig. 1 using $\Delta z=0.4 \mathrm{fm}$, $L=64$ (dashed lines) and $L=100$ fin (full lines). Only the edge of the fragment in the right half of the box and the low-denaity tail is shown.

In the light of the abore statements we suspect that the multiplicities of PEP in the realistic calculations of $/ 9,10 /$ are to some extent overestimated. In these papers box sizes of $\mathrm{I}=34 \mathrm{fm} / 9 /$ and $\mathrm{L}=44 \mathrm{fm} / 10 /$ have been used. The oorresponding values of Δz, unfortunately, are not explicitly given. On the other hand, we olaim that the rapid deorease of nuoleonic jets with inoreasing number of basis lunctions found in $/ 16 /$ and their multi-humped shapes, resembling those of our fig.l, express nothing else but the presenoe and step by stap elimination of spurious FEP conneoted with the speoifio method of $/ 16$ / Probably, a further enlargement of their basis would lead to stable PEP. However, $1 t$ seems to us that the timeindependent twowoentered basis used in $/ 16$ is possibly very useful if looking for the evolution of the two fragments only but quite unsuitable and slow--oonvergent with respect to fast low-density objects emerging and propagating far from the two oenters.
4. ENRRGY AND MASS DEPENDENCE

We turn now to the disoussion of the inoident energy and slabthiokness dependence of PEP emission.

In fig. 3 the time evolution of the density profile of the $A_{1}=A_{2}=$ $=2.0 \mathrm{fm}^{-2}$ system is shown for an incident energy (E / A) c.m. $=1.5 \mathrm{MeV}$. The influence of the box edges is removed by choosing Im=120 fm.

Fig. 3. The time evolution of $\rho(z)$ for the $(E / A) c . m_{0}=$ $1.5 \mathrm{MeV}, \mathrm{A}_{1}=\mathrm{A}_{2}=2.0 \mathrm{Pm} \mathrm{m}^{-2}$ collision with $\mathrm{L}=120 \mathrm{fm}$, $\Delta \mathrm{z}=0.8 \mathrm{fm}$ (dashed lines) and $\Delta z=0.5 \mathrm{fm}$ (full lines)

Note that in going from the profiles calculated with $\Delta z=0.8$ fm to the numericelly stable shape, reached for $\Delta z=0.5 \mathrm{fm}$, the central density $\rho_{\text {max }}$ of the PEP still somewhat increases. This is a similar situation $\max ^{\max }$ in fig. 1 and opposite to the finding of $/ 16 /$ for increasing the basis. At this small energy the central density of the separated jet amounts only to about $\rho_{\max }=2 \cdot 10^{-4} \mathrm{fm}^{-3}$.

For higher incident energies $\rho_{\text {max }}$ and oorrespondingly the number of nucleons in the jet ΔA inoreases. If in the case of $(B / A)_{c . m}$. $=4 \mathrm{MeV}$ (fig.2) $\rho_{\max } \approx 10^{-3} \mathrm{Im}^{-3}$, for the ($\left.\mathrm{B} / \mathrm{A}\right)_{0 . \mathrm{m}}=8 \mathrm{MeV}$ oollision it amounts to about $4 \cdot 1 \sigma^{-3} \mathrm{fm}^{-3}$. The latter oase is illustrated in
fig.4. It is interesting from several points of view. First it is remarkable that the nucleon jet has a very broad velocity distribution and begins to separate into two components at about $t=120 \mathrm{fm} / \mathrm{c}$. This can be seen from the very flat fall-off of the density in front of the much steeper one around the small density maximum at $z=26 \mathrm{fm}$. Since the further evolution of the faster fet component exhibiting
a mean velooity of 1.5 times the projectile velocity v_{0} is connected with a rapid broadening in space, we could not achieve its clean separation from the larger but slower component (moving with a mean velocity of about v_{0}) in the given large box of $L=130 \mathrm{fm}$ before its shape beoomes inoreasingly deformed. So, we approximately determined its oharaoteristios ($\rho_{\text {max }}$, $\Delta \mathbb{A}$ and mean velocity) by substracting the extrapolated shape of the slower component from the total shape at two instants (120 and 140 fra/o) in both oases finding nearly the same estimates. A qualitativeis similar result of the appearance of a small fast and a larger but slower nuoleonic jet was also obtained in a realistio treatment of a near oentral ${ }^{12}{ }^{C+}{ }^{197}$ Au reaction at ($\left.\mathrm{E} / \mathrm{A}\right)_{\text {Lab }}=30 \mathrm{MeV}$ incident energy $/ 11$!

A second interesting point in the evolution shown in Pigo 4 is that at $t \approx 90 \mathrm{fm} / \mathrm{c}$ a small lump of oentral nuclear density seems to separate. However, at a later instant it is trapped baok by the

Fig.4. The time evolution of $\rho(z)$ for the $(B / A)_{0 . m_{0}}=$ $-8 \mathrm{MeV}, A_{1}=A_{2}=2.0 \mathrm{fm}^{-2}$ col11sion with $\mathrm{L}=130 \mathrm{fm}, \Delta_{z=}=$ - 0.4 fm .

Fig.5. The time ovolution of $\rho(z)$ for the $(E / A)_{0 . m_{0}}=$ $=15 \mathrm{MeV}, \mathrm{A}_{1}=\mathrm{A}_{2}=$ $-2.0 \mathrm{fm}^{-2}$ collision with L=64 fim, $\Delta \mathrm{zw}$ $=0.8 \mathrm{fm}$ (dashed lines) and $\mathrm{L}=100 \mathrm{fm}$, $\Delta z=0.3 \mathrm{fm}$ (full lines).

main fragments flying apart at this time. Therefore, the $(\mathbf{B} / \Lambda)_{\text {c.m. }}=$ $=8 \mathrm{MeV}$ oase for $A_{1}=A_{2}=2.0 \mathrm{fm}^{-2}$ in some sense seems to be transitional between binary prooesses and fragmentation, both accompanied by fast nucleon emission.

To oonfirm this, in fig. 5 the evolution of the oolliding slabs at $(B / A)_{0 . m}=15 M_{e} \nabla$ is shown. It can be seen that besides the quasifree fast jot oomponent beginning to emerge at about $t=60 \mathrm{fm} / \mathrm{o}$, $\rho_{\max }=10^{-3} \mathrm{fm}^{-3}$ (not jet separated in 11g.5) a muoh larger but slower jot moving about T_{0} appears similar as in the provious case. However, this time 1 ts oentral density of already about $0.04 \mathrm{fm}^{-3}$ at $t \approx t_{\text {trans }}$ grows up to nearly $\rho \cdot$. Thus, we are dealing with a fragmentation + PEP emission process. To give an imagination of the step and box size offects at this high incident energy in fig. 5 calculations for $\Delta z=0.8 \mathrm{fm}, \mathrm{I}=64 \mathrm{fm}$ and $\Delta \mathrm{z}=0.3 \mathrm{fm}, \mathrm{I}=100 \mathrm{fm}$ (stable shape) are shown. Both kinds of spurious PEP discussed above as well as the appearance of the real PEP only for a auffioiently high accuracy are clearly seen.

At a still higher incident onergy of $(B / A)_{0 . m_{0}}=25 \mathrm{M}_{\mathrm{e}} \mathrm{V}$ a further calculation for the $A_{1}=A_{2}=2.0 \mathrm{fm}^{-2}$ system has been performed in a very large box of $L=200 \mathrm{fm}$ and a step size of $\Delta z=0.3 \mathrm{fm}$ (fig .6). The
 limp appearing in front of the slabs at about $t=t_{\text {trans }} \approx 30 \mathrm{fm} / 0 \mathrm{sim} 1-$ lar as in the 15 MeV oase. However, at this higher energy, after soparating, it moves with a velooity $\nabla_{1} \approx 1.7 \nabla_{0}, 1.0$. , is nearly as fast as the low-density fast nucieon jet (whioh is not seen in f1g.6). This confirms the result of $/ 12 /$ that after the onset of fragmentation of

Fig.6. The time evolution of $\rho(\mathrm{s})$ for the $(B / A)_{0 . m}=25 \mathrm{M}_{\mathrm{e}} \mathrm{V}, \mathrm{A}_{1}=\mathrm{A}_{2}=$ $=2.0 \mathrm{fm}^{-2}$ oollision with $\mathrm{L}=200 \mathrm{fm}, \Delta y=0.3 \mathrm{fm}$ in a linear soale for the density. Only part of the right half box is shown.
further inorease of inoident energy is needed to get a leading fragment substantially faster than the projectile. The second fragent emorging at about $t=2 \cdot t_{\text {trans }}$ has still a very high velocity of $\nabla_{2}=0.9 \nabla_{0}$. In the oourse of the oollision prooess both slabs are totally fragmented into six fragments each. Conoerning the fast nuolecnic jet we established that it begins to appear at about $t=60 \mathrm{fm} / \mathrm{o}$ in front of the first fragnent. Due to their quite olose mean velocities the jet does not really separate from the fastest fragent but quickly broadens in space. So at $t=120 \mathrm{fm} / 0 \approx 4 \cdot t_{\text {trans }}$ the central jet density is $\rho_{\text {max }}=1.38 \cdot 10^{-3} \mathrm{fm}^{-3}$ at position $2=+52 \mathrm{fm}$, while the minimum density betweon the fragnent and the jet is $\rho_{m i n}=$ $=1.19 \cdot 10^{-3} \mathrm{fm}^{-3}$ at position $\mathrm{z=}+48 \mathrm{fm}$. At this time, in a region up to $\mathrm{z}=+70 \mathrm{fm}$, the jot density 1 s larger than $10^{-4} \mathrm{fm}^{-3}$. Later on the jet is melting away and starting to interaot with the edges of the box.

To get an 1mpression of the mass (slab thiokness) dependence, caloulations have been performed for $\mathcal{L}_{2}=\Lambda_{2}=0.75 \mathrm{fm}^{-2}$ collisions at inodent energies ($\mathrm{E} / \mathrm{A})_{0 . \mathrm{m}}{ }^{=1.5,5,10} \mathrm{MeV}_{\text {. The }}$ oorresponding density profiles at some typioal instants are shown in Fig.7. A oomparison with previous oases at oomparable energies indicates an inorease of the PBP intensity with \mathcal{A}_{i} as oould be expected from phase space considerations. Obviously: for light symmetrioal oollisions the on-

Fig. 7. Density profiles of $A_{1}=A_{2}=0.75 f_{m}^{-2}$ oollisions, at several incident energies, shown at some typical instants.

Fig. 8. Density profiles for the slab oollision simulating the ${ }^{16} 0+{ }^{93} \mathrm{Mb}$ reation at incident energy $\mathrm{F}_{\mathrm{L}}{ }^{2}=2 \mathrm{O}_{4} \mathrm{MeV}$.
set of fragmentation lies lower in energy than for the heavy systems. In the given oase already the 5 MeV oollision leads to a single fast $\left(v_{I} \approx r_{0}\right)$ fragment on each side while the remaining system fu ses. Naturally the number of fragnents is smaller for the light systems than for heavy ones.

As a typical oase for asymmetrio slab oollisions we have ohosen the $A_{1}=0.75 \mathrm{fm}^{-2}, A_{2}=1.55 \mathrm{fm}^{-2},(\mathrm{E} / \mathrm{A})_{\mathrm{I}_{\mathrm{ab}}}=9.5 \mathrm{MeV}$ system. This example to some extent is our one-dimensional analog of the ${ }^{16} 0_{+}{ }^{93} \mathrm{Nb}$ react-
 slab diameter as well as the energy per nuoleon above the Coulomb barrier ($V_{C}=0$ in our oalculations). Fig. 8 . shows the density profiles at contaot time ($t=0$) and at $t=120$ fm/o when on both sides fast nuoleonio jets begin to separate. The ratio of the number of fast nuoleons originating from the projectile to those coming from the target amounts to $\Delta A_{1}: \Delta A_{2}=3.4$.

5. SYSTEMATICS AND CONCLUSIONS

We return now to the disoussion of the oontradiotorily results of $/ 9,10 /$ and $/ 15 /$ concerning the PEP intensity, 1.e., the question to what oxtent a. supposed direot ooupling between Fermi and relative motion $/ 7, B /$ is weakened in a TDHF evolution. For this aim in figs. 9 and 10 the oentral density ρ max of the nuoleonic jet and the number of nuoleons in the jet divided by the mass number of the donor fragment $\triangle \mathbb{N} A$ are plotted agaist the inoident energy per nuoleon above the Coulomb barrier ($E_{0, m_{0}}-V_{C}$)/ μ (for $\nabla_{C}=0$, as in our case, this quantity is equal to $\left(E / A_{p}\right)_{L_{a b}}=(E / A)_{0 . m_{0}}\left(A_{p}+A_{t}\right)^{2} /\left(A_{p} A_{t}\right)$ with p and t standing for projeotile and target, oorrespondingly, and for our symmetrio slab oollisions it is simply $4(E / A)_{c . m}$. . All slab oollisions desoribed above as well as results of more realistic TDHF studies $/ 9,10,11,15 /$ are included.

Besides a general nearly linear inorease of $\rho_{\max }$ and $\triangle A / A$ with inareasing energy an A dependence stronger than $\Delta A \sim A$ can be deduoed from Fig. 10 (oomp., e.g., orosses and stars). Sinoe in a simple Ferm1 gas picture $/ 16 /$, for rass symmetric oollisions at a fixed relative velooity, the relative amount $\Delta A / A$ of nucleons fulfilling the escape oondition should be oonstant for varying A, one oan oonolude that the ooupling between Fermi and relative motion in a TDFF evolution becomes the weaker the smaller the system is. A similar oonolusion can also be drawn from oomparing the $\alpha+\alpha$ with the ${ }^{16}{ }_{0+1}{ }^{16} 0$ results for $\rho_{\max } / I 5 /$ sinoe this quantity behaves similar to $\triangle \mathbb{A} A$.

When looking for the asymmetrio $\mathcal{A}_{1}=0.75 \mathrm{fm}^{-2}, \mathcal{A}_{2}=1.55 \mathrm{fm}^{-2}$ slab oollision it is seen that the amount $\Delta \mathbb{N} / A$ of PEP originating from the light projeotile is substantially higher (by a faotor of about 4) than it would be in the corresponding light symmetrio $\mathcal{A}_{1}=\AA_{2}=0.75 \mathrm{fm}^{-2}$ system at the same inoident energy. This, to some extent, oan be explained by the faot that in the asymmetrio oollision a larger amount of the inoident energy is avallable for relative motion, i.e. due to the energy dependence stated above a larger value of $\Delta A / A$ resuits. By similar arguments it beoomes olear that the PEP from the heavy target are somewhat suppressed oompared to the $\Delta \mathbb{A} A$ value for $A_{1}=A_{2}=1.55 \mathrm{fm}^{-2}$ oollisions at the same incicient energy (not shown here but presumably lying in between the values for the two investigated symmetric systems).

Due to this asymmetry effeot it seems to be evident that the ralue of $\rho_{\text {max }}$ for a ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ oollision in a realistio TDHP oalculation would be substantially smaller than that of the quasifree nuoleonic jet in the ${ }^{12} \mathrm{C}+{ }^{197} \mathrm{Au}$ reaction $/ 11 /$ at the same incident energy per nucleon. Therefore, since the diameter of the $A=0.75 \mathrm{fm}^{-2}$ slab is olose to that of a ${ }^{12} \mathrm{C}$ nucleus, from a comparison with the values of $\rho_{\max }$ for our light symetric system, it follows that in realistio TDHF oaloulations less PEP emerge than in the corresponding one-

Pig.9. The central density $\rho_{\max }$ of the fast nucleonic jet for several collisions plotted against the center-of-mass energy per nucleon above the Coulomb barrier: X - symmetric $A_{1}=$ $=A_{2}=2.0 \mathrm{fm}^{-2}$ slab collision (present work), * ${ }^{2}$ symmetric $A_{1}=A_{2}=0.75 \mathrm{fm}^{-2}$ slab collision (present work), Δ, ∇ - nucleonic jet originating from the $A_{1}=0.75 \mathrm{fm}^{-2}$ projectile, from the $A_{2}=1.55 \mathrm{fm}^{-2}$ target in the asymmetric slab collision shown in Pig.8, - central $\alpha+\alpha$ collisions $/ 15 /$, 口 - central ${ }^{16} 0+{ }^{16} 0$ collisions $/ 15 /, 0-$ near central $(L=12 t){ }^{12} C+{ }^{197}$ Au collision $/ 11 /$ - $-160+93_{\mathrm{Nb}}$ collision ($\mathrm{L}=0$) (the region $11-2 \%$ of the central nuolear density" quoted in /9/ is indicated by two corresponding marks). \downarrow has the meaning "upper limit". In two cases besides the point for the PEP a second one of the same kind (marked ...) ${ }^{1 \text {) }}$ is plotted whioh corresponds to a second jet with velocity $v_{2} 太 v_{0}$. The point in brackets results from fig. 4 by extrapolation (see text to fig.4). The vertical dashed line marks that energy above which substantional amounts of fast particles have been seen in experiment $/ 2 /$.
dimensional evolution. This, in turn, is in agreement with the statement of $115 /$ that their velues of ρ max are only upper limits.

If so, the results of $19,10 /$ for the ${ }^{16} 0+{ }^{93} \mathrm{~Wb}$ reaotion are substantially overestimated, since they prediot even more PEP than in our corresponding onemimensional slab oollision by nearly an order of magnitude (see both figs.9 and 10). Possible reaons for this have been disoussed in Seot.3.

Henoe, our main result of the present investigation is that the Permi to relative motion ooupling in a TDEF svolution is really very weak. To give an impression of the degree of weakening this ooupling in TVFF for the ${ }^{16} 0+{ }^{93}$ Mb system the result of a simple Ferm1 gas estimate assuming ideal strong ooupling (for details see $116 /$) is inoluded in fig.10. This ourve is not normalized as it has been done in $9,10,11 /$.

As indioated in Sect. 4 the transition to fragmentation prooeeds in a quite smooth way. For the $A_{1}=A_{2}=2.0 \mathrm{fm}^{-2}$ slab collision this is illustrated in fig.10. The lower branoh of the line oonneoting the oaloulated points to guide the eye corresponds to the quasi-fres jet (PEP) with $V \approx V_{0}+V_{F}$. Above ($\left.B / A\right)_{0 . m .} \approx 5 \mathrm{MeV}_{\text {a }}$ second low-density nucleonic jet with $V \leqslant V_{0}$ emerge which in its further evolution broadens and deoreases in $\rho_{\text {max }}$ as the quasi-free jet does, sinoe there is no binding at suoh low densities. Our (B / A) o.me $=8 \mathrm{MeV}$
 is typical for suoh a situation and gives a point on the second

Fig. 10. The number of nucleons in the jet divided by the number of nucleons in the donor nucleus $\triangle A / A$ as a function of incident energy. The marks have the same meaning as in fig.9. The additional series of pointa is for central ${ }^{16} 0+{ }^{93}$ Nb collisions and taken from $/ 10 /$. Since no precise values $\triangle A / A$ are given in $/ 15 /$. only a hatched region is shown defined by the energy range considered in $/ 15 /$ and by an upper limit of $A A / A=2.5 \cdot 10^{-4}$ quoted therein. For the ${ }^{12} \mathrm{C}+{ }^{197}$ Au reaction no value of $\Delta \mathbb{A} / \mathrm{A}$ could be deduced from $/ 11 /$. For $\Lambda_{1}=A_{2}=2.0 \mathrm{fm}^{-2}$ slab collisions all jets and fragmente exhibiting velocities $v \geqslant 0.9 \mathrm{v}$ are included. The thick full line is a simple Fermi gas estimate for the $160+93_{\text {wo }}$ system.
branch of the line in Pig.10. At some higher energy this second jet developes into a first fragment of still $\nabla \approx v_{0}$. Above $(\mathbb{B} / \mathrm{A})_{0 . m} .=$ $=15 \mathrm{MeV}$ a second fragment (third branch) with $\mathrm{V}_{2} \approx \mathrm{~V}_{0}$ appears and the first one acquires a velocity close to the mean PBP velocity (oompare our ($\mathrm{E} / \mathrm{A})_{\text {c.m. }}=25 \mathrm{MeV}$ collision). It is interesting to mention that a formal extrapolation to still higher energies comes close to the Fermi gas estimate, 1.e., all fragments would have velooities olose to or larger than ∇_{0}.

Sinoe residual two-body interactions, not inoluded in standard TDHF, are expected to have an increasing influence on the dynamics of the oollision process, our results concerning fragmentation surely are of minor physical relevance.

On the basis of our result that a TDEF evolution should exhibit substantially less PEP than predicted $1 \mathrm{n}^{\prime} 9,10 /$ in semi-quantitative agreement with experimental data, we conclude that the Fermi-jet mechanism is not responsible for most of the fast particles emerging in heary-ion collisions. Hence, in any case, two-body oorrelations have to be taken into account. Certainly short-range nucleon-nucleon interactions, for which some kinematically allowed final states are no longer blocked by the Pauli principle, can play an essential role In this connection $14,17 /$. Long-range residuel interactions if, as usually, treated in the Markov approximation drive the system towards thermal equilibrium and should, in turn, further decrease the PEP meohanism. In this oonnection investigations of ooherent multiparticle phenomena caused by the residual interaction would be of great interest.

A final remark concerns the ability of TDHF to explain even that small fraction of energetio nucleons which possibly underlies the PEP mechan1sm. It is known ${ }^{14 /}$ that additional high-momentum components appear in a TDHF evolution, which are generated by the motion of the surfaces of the mean field. The latter is determined by the effective nucleon-nucleon force which itself is only adopted for bulk properties of static nuclel and nuclear matter. To the extent to which this type of high-momentum components form the PEP and to whioh a (still unknonw) effeotive nucleon-nucleon force to be used in dynamic oalculations at high exoitations differs from, say, the standard Skyrme forces, these PEP oould be basically spurious even in a numerical stable calculation.

The author is grateful to J. A. Maruhn for kindis providing him w1th a one-dimensional TDHF computer code which was only slightly modified to perform the calculations presented in this paper. A useful discussion on numerical details is also acknowledged.

referrnces

1. Britt R.C., Quinton A.R. Phys. Rev., 1961, 124, p.877;

Gallin J. et al. Phys. Rev., 1974, C9, p.1126;
Westberg L. et al. Phys.Rev., 1978, $\mathrm{C}_{1} 8$, p. 796.
2. Holub E. et al. Phys. Hev., 1983, C ${ }_{28} 8$, p. 252.
3. Gauron A. et al. Phys.Rev.Lett., 1981, 46, p.8.
4. We1ner R., Westström M. Phys.Rev.Lett., 1975, 34, p.1523;

Morrison W.W. et al. Phys.Lett., 1980, 93B, p. 379;
Garpman S.I.A., Sperber D., Zielinska-Pfabe M. Phys.Letto 1980, 90B, p. 53.
5. Blann M. Phys.Rev., 1981, C23, p. 205.
6. Yoshida S. Z. Phys., 1982, A308, p.133.
7. Bondorf J.P. et al. Phys.Lett., 1979, 84B, p.163;

Bondorf J.P. et al. Nucl. Phys., 1980, 4333, p. 285.
8. Sebille F., Remaud B. Z. Phys., 1983, A310, p.99.
9. Devi K. r. S. et al. Phys.Rev., 1981, C24, p. 2521.
10. Dhar A.K. et al. Phys.Rev., 1982, C25, p. 1432.
11. Stöoker E. et al. Phys.Lett., 1981, $101 \mathrm{~B}, \mathrm{p} .379$.
12. Bonche P., Koonin S.E., Negele J.W. Phys.Rev., 1976, C13, p. 1226.
13. Negele J.W. In: Theoretical Methods in Medium Energy and Heavy Ion Physics. Eds. McVoy K., Priedman W., Plenum Press, N. Y., p. 235.
14. Negele J.W. Ret.Mod. Phys., 1982, 54, p.913.
15.Drozdz S., Okolowioz J., Ploszajezak M. Phys.Lett., 1983, 121 B, p. 297.
16. Davies K. T. R. et.al. Preprint MAP-23, 1982.
17. Mädler P. Nuol. Phys., 1983, A404, p. 58.

Received by Publishing Department on February 10,1984

WILL YOU FILL blank spaces in your library? You can receive by post the books listed below. Prices - in US 8, including the packing and registered postage

D4-80-385 The Proceedings of the International School on Nuclear Structure. Alushta, 1980.
Proceedings of the VII All-Union Conference on Charged Particle Accelerators. Dubna, 1980. 2 volumes.
N.N.Kolesnikov et al. "The Energies and Half-Lives for the $a-$ and β-Decays of

D2-81-543 Proceedings of the VI International Conference on the Problems of Quantum Field Theory. Alushta, 1981
10,11-81-622 Proceedings of the International Meeting on Problems of Mathematical Simulation in Nuclear Physics Researches. Dubna, 1980
D1,2-81-728 Proceedings of the VI International Seminar on High Energy Physics Problems. Dubna, 1981
D17-81-758 Proceedings of the II International Symposium on Selected Problems in Statistical Mechanics. Dubna, 1981.
D1,2-82-27 Proceedings of the International Symposium on Polarization Phenomena in High Energy

Physics. Dubna, 1981.
D2-82-568 Proceedings of the Meeting on Investigations in the Field of Relativistic Nuclear Physics. Dubna, 1982

D9-82-664 Proceedings of the Symposium on the Problems of Collective Methods of Acceleration. Dubna, 1982
D3,4-82-704 Proceedings of the IV International School on Neutron Physics. Dubna, 1982

D2,4-83-179 Proceedings of the XV International School on High-Energy Physics for Young Scientists. Dubna, 1982
Proceedings of the VIII All-Union Conference on Charged Particle Accelerators. Protvino,
1982.2 volumes.

D11-83-511 Proceedings of the Conference on Systems and rechniques of Analitical Computing and Their Applications in Theoretical Physics. Dubna, 1982

DT-83-644, Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta, 1983.
D2,13-83-689 Proceedings of the Workshop on Radiation Problems

Orders for the above-mentioned books can be sent at the address Publishing nepartment, JINR Head Post Office, P.O.BOx $79101000^{\text {M Moscow, USSR }}$

Мэдлер Π.
Дает ли зависящий от времени метод Хартри-Фока мгновенно испущенные частицы?

Проводится систематическое исследование численной стабильности испускания быстрых нуклонных струй малой плотности в одномерных столкновениях ядерных слоев. Показано, что ложные струи связаны или со слишком больним пространственным шагом или со слишком узкой пространственной областью интегри рования. Систематика полученных результатов и сравнение с более реалистическими, но несколько противоречивыми, расчетами по методу Хартри-Фока с зависимостью от времени / 3 вх \dagger / позволяет заклочить, что связь внутреннего и относитепиного поимения е эопоиии по звХФ очень слабая и что механизм ферми евских струй не может отвечать за большинство энергетических нуклонов, обнаруженных в зксперименте. Исследуется переход к фрагментации.

Работа выполнена в Лаборатории теоретической физики оИяИ.

Препринт Объединенного института ядерных исследованй. Дубна 1984

Mädler P.

E7-84-85
Are Promptly Emitted Particles Really Seen in TDHF?
A systematic study of numerical stability of the emission of fast lowdensity nucleonic jets in one-dimensional slab collisions is performed. Spu rious jets are shown to be connected with either a too large grid-point spa cing or with a too small numerical box. From a systematics of our results and comparison with fast-particle predictions in more realistic, but somewhat contradictorily TDHF studies it is concluded that the coupling of the intrinsic motion to the relative motion in a TDHF evolution is very weak so that the Fermi-jet mechanism cannot be responsible for most of the energetic nucleons observed in experiment. The transition to fragmentation is investigated.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

