ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

A-81

3/11-75 **E7**

YO 7/2-75 A.G.Artukh, V.V.Avdeichikov, G.F.Gridnev, A.N.Mezentsev, V.L.Mikheev, V.V.Volkov

PRODUCTION OF ¹⁴ Be IN HEAVY ION REACTIONS

ЛАБОРАТОРИЯ ЯДЕРНЫХ РЕАНЦИЙ

E7 - 8298

A.G.Artukh, V.V.Avdeichikov,* G.F.Gridnev, A.N.Mezentsev, V.L.Mikheev, V.V.Volkov

PRODUCTION OF Be IN HEAVY ION REACTIONS

Submitted to Physics Letters

06ъска селения из тату Крадная селентана Библиютека

* On leave from the V.G.Khlopin Radium Institute, Leningrad, U.S.S.R.

The possible nucleon stability of 14 Be was first indicated in ref. ${}^{/1/}$ and based on the non-linear extrapolation of the binding energies of two neutrons, E $_{2n}$, for known isotopes with neutron number N = 10.

At attempt to produce ^{14}Be in multinucleon transfer reactions by bombarding ^{232}Th with ^{15}N ions has been made by the authors of ref. $^{/2/}$. It was established that the logarithms of the differential cross sections $(d\sigma/d\Omega)_{40}\circ$ for the production of the known C,B,Be and Li isotopes are proportional to the mass difference between the initial and final nuclei, Q_{gg} , i.e.,

$$\ln(d\sigma/d\Omega)_{40^\circ} = \operatorname{const} \cdot Q_{gg} . \tag{1}$$

An analogous dependence was obtained in bombarding 232 Th and 197 Au with 16 O ions earlier $^{/3/}$. For the system 232 Th 15 N, even weakly bound nuclei such as 14 B, 11 Be and 11 Li fit the Q systematics of cross sections. This justified the use of this relation to estimate the yield of 14 Be. In ref. $^{/2/}$ one succeeded in recording 20 000 12 Be nuclei. If, in accordance with ref. $^{/1/}$ E $_{2n}$ for 14 Be were equal to 1.9 MeV, one could expect some 70 events of 14 Be detection, and about 30 events at $E_{2n} \sim 0.1$ MeV. In the experiments we recorded only three events which may be assigned to 14 Be. Since this effect was considerably weaker than that expected and was comparable with the background, this formed the basis for the conclusion drawn in ref. $^{/2/}$ about the possible particle instability of 14 Be.

In 1973, the¹⁴ Be production was observed in bombarding 238 U with 4.8 GeV protons by J.Bowman and collaborators $^{/4/}$.

This year, we have reverted to experiments on the production of ¹⁴ Be in multinucleon transfer reactions with an increased sensitivity of the technique used. In particular, the addition of the time-of-flight technique to the combination of the magnetic analysis and ΔE , E technique used previously ^{/5/} provided the possibility of reducing the background.

The experiments were carried out using the 310 cm heavy ion cyclotron of the JINR Laboratory of Nuclear Reactions. A metallic 232 Th target 20.3 mg/cm² thick was bombarded with 145 MeV 15 N ions. The reaction products emitted from the target at 40° passed through the magnetic spectrometer and were detected by a telescope of two silicon-surface-barrier detectors, a ΔE detector $40\,\mu\text{m}$ thick and 27 mm in diameter, and a total absorption detector E. The two-dimensional $\Delta E_{e}E$ spectrum was recorded by two 4096-channel analyzers operated in the regime of the $128(\Delta E) \times 64(E)$ channel. The main contributors to the background in the region where 14 Be was detected (the peak tails) were partucles with time-offlight considerable shorter than that of ¹⁴ Be. In order to reduce this background, the electronic circuit permitted the recording of only those products whose time-of-flight exceeded a threshold of 130 ns.

The investigation of the time microstructure of the external beam from the 310 cm heavy ion cyclotron has shown that the fwhm of the burst duration was 2 ns, the interval between bursts being about 200 ns. The time-of-flight of reaction products from the target to the detector telescope was 50-150 nsec. This made it possible to use a definite phase of the high-frequency voltage on the dees as a starting time mark. The relationship between the time of the arrival of elastically scattered ions in the telescope and the high-frequency phase was regularly checked and established to be kept constant with an accuracy of 3% in prolonged measurements.

An analysis of the energy spectra of C,B and Be isotopes in bombarding 232 Th with ¹⁵N ions has shown ^{/2/} that they have similar shapes with the fwhm of about 20 MeV and regularly change in the positions of their maxima. The maximum yield of ¹⁴Be is most likely to be expected at the same magnetic rigidity BR as that for ¹²Be.

During the 40 hour measurements at BR = 10.50 kGm, which corresponds to the maximum 12 Be yield in working with a given target, 16 events of 14 Be production were recorded reliably. Figure 1 shows the yields of Be, Li and He isotopes in this bombardment. The number of the $E_0 - \Delta E$ channel from the two-dimensional spectrum served as an identification parameter. The counting rate in each $E_0 - \Delta E$ channel was equal to the sum of the counting rates in the ΔE channels, corresponding to the specific losses in energy of a given isotope with the ion charge equal to its atomic number. The dashed line shows the results of the calibration measurements without discriminating particles by their time-of-flight. Solid lines with shaded areas show the peaks obtained in the main measurements with time-of-flight discrimination. The ion flux in the main measurements by a factor of 30 exceeded that having passed through the target in the calibration measurements. It is seen from this figure that time-of-flight discrimination efficiently suppresses the detection of light products and, correspondingly, the background due to the "tails" of the amplitude spectra in the ΔE and E detectors.

The ¹⁵N ion flux which passed through the target during the measurements corresponds to the production of $100\ 000\ ^{12}$ Be nuclei passed through the detector telescope in the focal plane of the magnetic spectrometer. So, the ratio of the ¹²Be yield to that of ¹⁴Be is about 6000. This ratio corresponds to the upper limit on the ¹⁴Be production cross section (3 x 10⁻⁵ mb/sr) established in ref. ^{/2/}. Thus, the particle stability of ¹⁴Be, found in experiments with high energy protons ^{/4/} has now been substantiated by our experiments using heavy ions. This leads to the question of the reasons why the production

.

Fig. 1. The yields of Be, Li and He isotopes at the bombardment of 232 Th with 145 MeV 15 N ions, BR = = 10.50 kGm. The dashed line corresponds to calibration measurements without time-of-flight discrimination. Shaded peaks were obtained in the main measurements with time-of-flight discrimination. The ion flux passing through the target in the main measurements was 30 times as large as that in calibration measurements.

cross section for ¹⁴Be disagrees with the Q systematics following eq. (1). For the system²³²Th $^{gg}_{+}^{15}N$, this systematics is presented in Fig. 2. In ref. ^{/2./} the assumption about the applicability of the Q gg systematics to the estimation of the production cross section for ^{14}Be was based on the fact that ¹¹Li well fitted the Q gg systematics of the production cross section for ^{14}Be was based on the fact that ^{11}Li well fitted the Q gg systematics for ^{14}Be systematics based on the fact that ^{11}Li well fitted the Q gg systematics for ^{14}Be systematics based on the fact that ^{11}Li well fitted the Q gg systematics for ^{14}Be systematics based on the fact that ^{11}Be systematics for ^{14}Be systematics based on the fact that ^{11}Be systematics for ^{14}Be systematics based on the fact that ^{11}Be systematics based on the fact that ^{11}Be systematics for ^{14}Be systematics based on the fact that ^{11}Be systematics based on the fact that ^{11}Be systematics for ^{14}Be systematics based on the fact that ^{11}Be systematics based on the fact that ^{11}Be systematics for ^{14}Be systematics based on the fact that ^{11}Be systematics based on the fact that ^{11}Be systematics for ^{14}Be systematics based on the fact that ^{11}Be systematics based on the fact that $^$

Fig. 2. The Q_{gg} systematics of cross sections of multi-nucleon transfer reactions for the system $^{232}\mathrm{Th}+$ $^{15}\mathrm{N}$ at the projectile energy of 145 MeV.

tics. As compared with ¹⁴Be , ¹¹Li has a considerably larger value of Q_{gg} , a somewhat larger N/Z ratio and a yield close to that expected for ¹⁴Be. The data from ref. ^{/6/} indicate that E_{2n} is equal to 0.17 MeV and 0.41 MeV for ¹¹Li and ¹⁴Be, respectively. This implies that dissociation processes are expected to manifest themselves on ¹⁴Be less strongly than on ¹¹Li.

Apparently some features of transfer reaction mechanisms can manifest themselves in cross sections for the production of weakly bound nuclei. The isotope ${}^{11}Li$ is

produced by the stripping of four protons from 15 N, while 14 Be is formed in the exchange reaction involving the stripping of three protons and pick-up of two neutrons. Since the isotope 13 Be is particle unstable, for the production of 14 Be, the heavy nucleus must transfer to the light one at once a neutron pair into the 14 Be state located below E $_{2n} = 0.41$ MeV. It is possible that this may lead to the deviation of the 14 Be production cross section from the Q $_{gg}$ systematics.

The extensive data available on multinucleon transfer cross sections indicate that relation (1) is fulfilled for isotopic production cross sections most reliably in the case of nucleon stripping from a projectile $^{/7/}$. This requirement has been met in experiments on the search for 10 He (ref. $^{/8/}$) by bombarding 232 Th with 15 N ions, where 10 He might be produced as a result of the stripping of five protons from 15 N.

The authors express their deep gratitude to Academician G.N.Flerov for his support in fulfilling this work. They are also thankful to the staff of the U-310 cyclotron for providing an intense and stable ^{15}N ion beam during the experiments.

References

- A.A.Vorobiev, V.T.Grachev, Yu.K.Zalite, I.A.Kondurov, A.M.Nikitin, D.M.Seliverstov. Preprint FTI-232, Leningrad, 1969.
- A.G.Artukh, V.V.Avdeichikov, J.Ero, G.F.Gridnev, V.L.Mikheev, V.V.Volkov, J.Wilczynski. Phys.Lett., 33B, 407 (1970).
- 3. A.G.Artukh, V.V.Avdeichikov, J.Ero, G.F.Gridnev, V.L.Mikheev, V.V.Volkov, J.Wilczynski. Nucl.Phys., A160, 511 (1970).
- 4. J.B.Bowman, Á.M.Poskanzer, R.G.Korteling, G.W.Butler. Phys.Rev.Lett., 31, 614 (1973).
- 5. A.G.Artukh, V.V.Avdeichikov, J.Ero, G.F.Gridnev, V.L.Mikheev, V.V.Volkov. Nucl.Instr.& Meth., 83, 72 (1970).
- 6. C.Thíbault, R.Klapisch. Phys.Rev., C9, 793 (1974).

- 7. V.V.Volkov. Proc. Intern. Conf. on Reactions Between Complex Nuclei, Nashville. Tenn., 1974.
- 8. A.G.Artukh, V.V.Avdeichikov, G.F.Gridnev, V.L.Mikheev, V.V.Volkov, J.Wilczynski. Nucl.Phys., A186, 321 (1971).

Received by Publishing Department on October 2, 1974.

8.

9