


1. INTRODUCTION

During the recent years the existence of the giant monopole
resonances (GMR) in heavy nuclei has experimentally been es-
tablished in various reactions’ '* For mot very heavy nuclei
(A<65 the results of various experiments have been rather
contradictory. In some experiments with these nuclei 0% states
were found at the emergies that followed the 80/& V%ule es-
tablished for the GMR emergies in heavy nuclei, and which ex-
haust a great amount of energy weighted sum rules(EWSqu'&sf
In other experiments the monopole states were mnot found at the
expected energies’®/, or the amount of the EWSR exhausted by
such states was only few percent’ 101V,

In this paper we deal with the 1€ nucleus for which a0t
state at 20.3 MeV was recently found in inelastic scattering
of 3He ions’Vthe width of this state being L.1 MeV. A few
years ago in the framework of the hyperspherical functions
method the existence of 0* states in very light nuclei (A <16)
has been predicted’!%. These states would exhaust a great amo-
unt of the EWSR and they would have very small widths. In this
paper we intend to show that using the transition densities
as calculated in the hyperspherical functions method we are
able to explain the measured 0* state in '2C as being a collec-
tive one, in contradiction to the original i}:u:el:preet:eztionf11
that this state exhausts only 2.67% of the monopole EWSR.

In Sect.? we briefly present the hyperspherical functions
method and compile the results of previous calculations of pro-—
perties of the 0% state in I%C, In Sect.3 we describe the way
of constructing the transition potential and that of analysts
of inelastic scattering. In Sect.4 we discuss the approxima-
tions and uncertainties of the analysis.

2. PREDICTION OF THE PROPERTIES OF MONOPOLE GIANT RESONANCE
IN LIGHT NUCLEI IN THE HYPERSPHERICAL FUNCTIONS METHOD

The monopole or "breathing mode' oscillations in nuclei cor-
respond to variations in the nuclear mattex density i.e., they
characterize nuclear matter compressibility. The hyperspheri-
cal functions method provides a convenient basis for a microsco-
pic description of such vibrations /1. The point of this method
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is that a collective variable is being introduced which can
be dlrectly associated with the mean-square nuclear radius:
=A<r? >i.e., with the mean nuclear density. The excitations
1n this varlable correspond to the monopole vibrations of the
nucleus as a whole; the density being then a dynamical vari-
able.
In the method of hyperspherical functionms the wave function
of the nucleus is thought to be amn expansion over standard hy-
perspherical harmonic polynomials

‘ ~(3a~2)/ ‘ SR
W(1,2,...8) = p iz Xy (@ Yy, @), . W

where B are the hyperspherical angles, and
f xK (p)dp =
The Hamiltonian has the form

2 . _ 2 A ’ . . '
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2m p

3a-¢ dp dp 2m 2
The hyperspherical harmonics are eigenfunctions of the angular
part of the Laplacian

H=-

A YKy (Gi )= KK+ n- 2)YKy(gi ) (3

Q,
The K is an analogue of the angular momentum at n=3 and it is
called the global angular momentum. The subscript y denotes
all the quantum numbers necessary to enumerate various dege-
nerated states of Eq.(3).

The system of equations for radial eigenfunctions y(p) and
eigenvalues E can be written as follows:

{dz Lg@Lg+ 1)

- —(E+ wa(pmx (o) =

dp2 pe (4)
2m ¥’ '
o~ r—— W oo »
W ky=gy =V (P)XKV (e K%
where m is nucleon mass Ly =K+4(3A-6) and W (p) are the

matrix elements of the potential energy of the nucleon—nucleon
effectivi interaction
Vv = % )y Vi, y= f(r, W
KZ]_ V()i V0= 1(ry,)

ar

o and r denote spin and isospin, respectively.

Having found the effective interaction matrix element W (pL
we insert it into Eq.(4) to find its elgenvalues E and elgen—
functions XKy{p) Subsequently Eq.(4) is firstly being solved
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Fig.!. The radial wave functions Fig.2. Three wave functious:
for the ground and the two mono-  for ground, first and se-
pole excited states in an effec— cond excited monopole sta-
tive potential. tes in € nucleus.

for the ground state and them for the first, second, etec., mo-
nopole excited states of the nucleus as a whole. Thus the solu-
tions for the ground and the monopole excited states are found
in a consistent way. The radial wave functions for the ground
and the two monopole states in an effective Wpy + L{L+ 1)/ p2
potential are schematically shown inm Fig.l. It can be seen that
the wave functions of the excited states have some nodes while
those of the ground state have none. What is more interesting,
the wave functions for the excited states are pushed out to-
wards larger radii. This is illustrated more precisely in Fig.Z,
where three wave functions: for ground, first and second exci-
ted monopole states in '*C nucleus are shown. It is then evi-
dent that the increase in the nuclear size in the excited sta-
tes is automatically accounted for in the hyperspherical func-—
tions method. ’

Now, we briefly review the properties of the GMR in !2C
nucleus obtained in the framework of the hyperspherical func-
tions method.

i) The Excitation Energy

The excitation energy of the GMR was found directly as a dif-
ferenmce between first and second eigenvalues of Eq.{(4). In
Ref.” 13 the energies of the MR in 12C were calculated using
various nueleon-nucleon effective interactions. It appeared



there that the E, .value calculated’!® with the Brink-Bocker
B1 potentlal 14"cm.m:ldes with the excitation energy of the
0t state measured recently in 1ne1astlc 3He, sca'ttering

11) The Monopole Energy Weighted Sum Rules “(EWSR)

In Ref. ¥ the EWSR were estlmated accordlng to the formula
h=A. 2 -
E(E - Eo) no‘ = ‘-H-é';;'-' <0 {1‘ 0> . . % - (5)
*%here
Mpo=<n% Z r110>

0> and {n> are the wave functions of the ground and excitred
states, respectively. n enumerates all the o* states, m 1is
the nucleon mass and A is the mass number of the nucleus.

The calculations were carried out for nuclei with A= 4,6,
12,16 and it was shown for all these nuclei the first 0% state
exhausts 80-90%7 of the monopole EWSR. One may believe that this
result is not very sensitive to the kind of the nucleon-nucleon
effective potential used.

1ii) The Width of the GMR

It is easy to show in the hyperspherical functions method
that 4mong the giant resonances of different multipolarity the
width of the GMR should be the smallest. It is determined by
‘a particular nature of its radial wave function, In Fig.3 we
show three wave functions in their potential wells: the wave
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Fig.3. Three wave functions in
their potential wells: the wave
function of the monopole x( AIQ
and dlpole X(NAK+1) excited
: states in A nucleus and the
1501 ground state wave function of
: the ‘A-1 nucleus.



function of the monopole X(NAK) and dipole x( NAK+_1) excited
states in A nucleus and the ground state wave function of the
A-1 nucleus. The widths for decay and spread of the GMR are
determined by overlap integrals and that is why alil the in-
tegrals involving monopole excited !slg?te wave functiom (that.
have a node) will be small. In Ref. the widths of the GMR
in 150 has been estimated to be 1 MeV what is similar to the
width of the 07 state recently measured in “C.

3. THE POTENTIALS AND THE METHOD OF ANALYSIS
A. Folding Model

The radial wave functions gy (p) have been used to calcu-
late the matrix elements of the density operator ny @ 17/ Fo1d-
ing these densitiles witn the effective nucleon—nucleon inter-
action we obtain the potentials

Agjhg-

v (= | Y (1'1) Bg, (r2 yW(r-r F 2) d1'_1 dr2 . ' 6)

13‘..?\;
For the effective nucleon-nucleon potential we have taken

spin—-, and isospin-independent zero-range Lwo-, and three-
body terms of the Skyrme form with parameters as given in

Ref. 8. The potentials Vig11 » Vypee and Vii,12 for the 3He-
system are shown in Fig.4 (the convention is the following:
the first pair of indices cor-
responds to projectile 'and the

12C

,-—1\ second pair of indices to tar—
et ~. Vi : - get). The potentials Viq 11

= ~a and Vi1 2 represent the inter-
> L, 5 © 7 action in elastic and inelas-

tic chamnels, respectively
with *He in ground state and
12C  jn ground state and in
monopele excited state in 12¢
nucleus. ’
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Fig.4. The potentialsV,, .
Vi1,22 and Vi1 ggor the sHet2 ‘
system. (The first pair of in-
dices corresponds to projectile
and the second pair of indices
to target}.




B. Elastic Scattering

The potentials calculated according to Eq. (6) are real.
The diagonal components (in both the pairs of indices) are
used as real parts of the optical model potentials. It has
been a common practice to define the imaginary part of optical
potential in a Woods-Saxon form and to search parameters by
fitting theoretical elastic differential cross section to. ex-—,
perimental data. However, we have followed another Way Suppos-—
ing that the imaginary potential should have a similar form
to the real one “ :

C=Vym +iXy, g ). (7>

The scaling factor X;,if in elastic channel was searched upon
by fitting the theoretical differential cross sections to ex—
perimental data. Unfortunately, we have had at our disposal

no experimental data of the 3He-12C scattering in elastic chan-
nel at T (%He) = 108.5 MeV where inelastic cross section to

0" (E;=20.3 MeV} state has been measured. We used then for
X11,11 the same value (0.63) which we has found in our analy-
sis of elastic scattering of *He jons on !2C atTL(BHB)=139.0MeV,
i.e., at the same energy per nucleon as in the former case.

In addition to the ®He-12Cand ‘He-12Csystems we have ana-
lysed the scattering of®Li "ions 12C at]EGLﬂ=9O.0 MeV. For
this case we have obtained X ;; 41=1.0. The calculated elastic
scattering differential cross sections together with experi~
mental data (whenever available) are shown in Fig.5. In spite
of the simplicity of the potential used here, with only one
free parameter, the agreement with experiment appears to be
good.

C. Inelastic Scattering

Experimental data for inelastic scattering to 0+(Ex=20-3 MeV)
state in 12C 1V yere analysed using the coupled channel code
CHUCK 2/1%/ with two channels (elastic and 0% inelastic) expli~
citly included. In elastic channel we have used the optical
model potential described in the previous section. In inelas-
tic channel we have used the potential in the form (7) but
with the scaling factor Xij gs~ 0.8X14,11 - This somewhat weaker
absorption in inelastic channel is physically well grounded.

For the interchannel coupli%% potential AC it is customa-
Ty to use the collective modelV #0/. A deformation parameter S (n)
for the transition to the n-th state is defined from the effec-
tive nuclear matrix element /2122, The scattering interaction

-
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‘ Fig.S. The calculated elastic

do /d6 scattering differential cross
0 de aﬁRUfh szctions tog(lather witg e%peril—%
12 mental data (points) for °He-’
10 3He C z atnTL(sHe)=]08.g MeV, 4I—Ic'e- 126 at
. =1085Mey| T(*He)=139.0 Mev’2VbLi-1%C at
101 [ T, (BLi)= 90.0 Mev’ 34/ systems.
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Fig.6. The calculated differen- 103
tial cross sections to 0 (E, = }

= 20.3 MeV) state in inelastic
scattering of He , *He | 8Li

on 12C. Points - experimental

data /2% . Oc_m_[dEg]
for L=0is 8.
o _ o\l
<51ALTO> = W i-

{4m o3
The form factor Lils taken to be proportional to transition
potentlal V11.12 ; h
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The value of Xy ;5 was arbitrarily put equal to 1.
The monopole sum rule (5) now becomes

S (E, -Eppimeamtl L (8)
s FEOMY T Tem Acr2y .

<r 2> is mean square radius of the nucleus. If the EWSR (8) is
exhausted by excitation of a single state, then

2 n2 1

Bo _%TEE' ExA<r?> ’
where E; is the excitation energy of the considered state.

Comparlng B% and BB, as extracted from scalxng the calcu-
lated inelastic differential cross section in order to get the
experimental one (B2 = d0®X(®)/ do™ (8)), we can determine the
percentage degletloﬂ of the EWSR. In our analysis we have ob-
tained B /B§ =27. Certainly, this value should not be
greater than 1. The latter value would mean that 100% of the
EWSR is depleted in the considered state. However, in view of
many approximations and uncertainties in -our analysis the quo-
ted result seemd to be reasconable, These approximations and
uncertainties we discuss in the next sectiom.

In Fig.6 the calculated differential cross sectien to 0V
(E ;=20.3 MeV) state in the inelastic scattering of 2He on
12C is compared with experimental data using B§x2{]5 the
value obtained from analysis. For completness the theoretical
cross sections (with the same B8%x ) for two other reactions:
*He~ 2Cand®Li-1%Care also shown.

4, DISCUSSION

It has been a common practice to use the deformed potential
model to analyse inelastic scattering to low lying excited sta-
tes and to giant resonances in heavy nuclei. This iIs a standard
model in which the surface of the optical potential is being
deformed. A different approach is to use the tramsition poten-
tial calculated from a folding model. The transition demsity
is being inserted into the folding integral (6} in order to
get the transition potential. The transition density may be
obtained from microscoplc nuclear structure calculations, for
example, those using the random—phase approximation. In prac-
tice, however, in analyses of inelastic scattering to the giant
resonances the Tassie or hydrodynamical’®% model density are
being used 7%, yn this approximation the depleticn of the EWSR
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for glant quadrupole resomnance is very similar to that ob~
tained in the deformed potentxal model However, these two
models give very different results for the GMR: for medium-—
weight nucleil the foldlng model ylelds for the percentage
depletlon a value which is a few times greater than that gl—
ven by the deformed- potent1a1 model. Moreover, this. value is
often greater than 1004, for not wvery heavy nuclei a value of
about 180% was obtained 78/ In view of these considerations

our result for the depletion of the EWSR for 12C should not.

be surprising: since we have used a fully mlcroscoplc approach
to the transition potential for very high nucleus, then we
should have expected an overestimatiom of the depletion fac-
tor. This overestimation is mainly conmnected with the weak-
ness of the used transition potential. This weakness has at.
least two sources. Firstly, we have been using in the foldlng
integral the zero-range effective nucleon-nucleon potent1a1
a, finite range elementary potentlal would considerably stren-
' gthen the transitiom potential. Secondly, for the imaginary
part.of the transition potential we have. chosen the same shape
and strength as for the real one.

In deformed potent1a1 model the 1mag1nary part of the tran-
sition potential is pushed out towards greater radii. and from
this range of radii there comes a great amount of transmission
amplltude. :

In conclusion more experimental data and more careful ana-
lyses are needed before definite conclusions will be drawn
concerning the existence of monopole resomances in light nuc—
lei.
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